用户名: 密码: 验证码:
犬冠状病毒基因疫苗与重组腺病毒的构建、表达及免疫原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
犬冠状病毒(Canine coronavirus, CCV)是引起幼犬发生胃肠炎的重要病原之一,不但对我国养犬业危害较大,同时也对一些野生动物构成较大的威胁。血清学调查发现,该病呈世界分布,在我国很多地区犬群中也时有流行,导致较高的发病率和死亡率。免疫接种是预防此病的有效途径之一,因此为控制该病的流行须研制安全有效的疫苗。本研究首次对犬冠状病毒大熊猫株(CCV DXMV)纤突蛋白(S)、膜蛋白(M) 和核蛋白(N) 三种主要结构蛋白基因进行了克隆、测序及遗传进化分析,并用DNAstar软件对DXMV 株与疫苗株Insavc-1 S 蛋白和M 蛋白疏水性、Jameson-Wolf 抗原表位和表面极性进行了分析。结果表明,DXMV 野毒株的基因型为CCV 基因II 型;与疫苗株Insavc-1 相比,两毒株S 蛋白在糖基化位点、疏水性、Jameson-Wolf 抗原表位上存在比较明显的差异;DXMV 株S 蛋白和M 蛋白Jameson-Wolf 抗原表位指数要显著高于Insavc-1 疫苗弱毒,从分子水平上揭示了DXMV 株免疫原性要好于Insavc-1 疫苗株的原因。以pVAX1 为载体成功构建了三种CCV 基因疫苗表达载体pVAXS1 、pVAXM 和pVAXN。将三种真核表达载体转染MDCK 细胞后,间接ELISA 和间接荧光染色试验检测结果表明,三种目的蛋白均能在MDCK 细胞中表达。基因疫苗载体在小鼠上免疫试验结果表明,pVAXS1、pVAXM 和pVAXN 均可诱导小鼠产生特异性免疫应答;其中pVAXS1+pVAXM+pVAXN 三个基因疫苗混合免疫小鼠可诱导产生较强的体液免疫和细胞免疫应答。以感染性犬2 型腺病毒全基因组为载体,首次构建了的含有CCV S1 基因的重组CAV-2-S1 病毒。Western-blotting 检测结果证实,该重组病毒能表达具有免疫学活性的重组CCV S 1 蛋白。体外传代试验表明,该重组病毒具有良好的遗传稳定性。根据基因疫苗在小鼠上的免疫试验结果,将基因疫苗pVAXS1+pVAXM+pVAXN 和重组病毒CAV-2-S1 在犬上进行了免疫试验。结果表明,两者均可诱导犬产生特异性体液免疫和细胞免疫。其中pVAXS1+pVAXM+pVAXN 与重组病毒联合免疫能诱导机体产生较高水平的体液和细胞免疫应答。以上试验研究为CCV 基因疫苗和重组腺病毒疫苗的研制奠定了良好的基础。
In order to clarify the novel molecular biological characteristics of canine coronavirus strain DXMV (CCV DXMV) isolated from the liver of a died giant panda, three pairs of specific primers were designed for amplification of spike protein gene, membrane protein gene and nucleoprotein gene by RT-PCR, respectively, according to the genomic sequence of CCV strain Insavc-1 published in GenBank. The PCR products were cloned into pGEM-T and sequenced. Then the nucleotide sequences of the three structural protein genes were analysed by DNAMAN and DNAstar software, respectively. The full length of spike protein gene of strain DXMV was 4362bp,which encoded 1453 amino acids. The initiative 18 amino acids were signal peptide. The membrane protein gene was 789bp, encoding of polypeptide of 263 amino acids which had a 17 amino acids constituting signal peptide. The overall length of nucleoprotein gene was 1146bp, which encoded 382 amino acids. The homologies of nucleic acid and deduced amino acid sequence of spike protein, membrane protein and nucleoprotein among the different isolates of CCV strain accessed by GenBank were 22.7-99.7% and 38.3-99.7%, 77.7-99.5% and 81.7-98.9%, 91.4-99.8% and 92.1-99.7%, respectively. The variation parts of spike gene mainly existed in front half of nucleotide sequence, especially the region 350-370nt, 439-478nt and1718-1818nt, while the region 1060-1700 showed highly conservative bases. Phylogenetic analysis based on the complete spike and membrane gene, indicated that there were two different genotypes of CCV, genotype I and genotype II. The strain DXMV, together with most classical isolates such as K378, C54, V6, V1 and Insavc-1 belonged to genotype II, whereas E1mo02 and 2303 were included into genotype I. There were high homologies among the strains of genotype II, while the low identities between the genotype I and genotype II. There are 34 potential N-glycosylation sites in deduced S protein for strain DXMV and V54, but 33 for strain Insavc-1. The N-glycosylation site 566-568 was possessed for most virulent strains but not for vaccinal strain Insavc-1. Moreover, analysis of hydrophobicity,antigenic index
    and surface probability plot of spike and membrane proteins, indicated that there were some differences between strain DXMV and Insavc-1. Jameson-Wolf antigenic index of spike and membrane proteins of strain were significantly higher than that of the vaccinal strain Insavc-1, which revealed the possibly reasons that strain DXMV had better immunogenicity than that of Insavc-1 in molecular aspects. Three eukaryotic expression vectors, pVAXS1, pVAXM and pVAXN, used as gene vaccines of canine coronavirus were successfully constructed, and expressed in MDCK cell line. The S1 gene fragment of strain DXMV, which encoded major antigenic region A, B, C and D of S protein, was amplified from pTS by PCR with a pair of specific primers and cloned into pVAX1 vector. The recombinant pTM and pTN were digested by KpnI/NotI and interesting gene fragments were recovered and further subcloned into pVAX1, respectively. The three constructed expression vectors, namely pVAXS1, pVAXM and pVAXN were used for transfection in MDCK cell. Transcriptions of interesting genes were detected by RT-PCR. The interesting proteins were detected by indirect immunofluorescent technique and indirect ELISA method. The results showed that transcription of interesting genes could be detected at 36 h post-transformation, and expressed proteins could be detected by the two methods mentioned-above after 48-96 hours of transformation. In order to construct a recombinant canine adenovirus type 2 (CAV-2) to express the spike glycoprotein of canine coronavirus (CCV), complete expression cassette harboring S1 gene of CCV was subcloned into the shuttle vector pVAXE3, then further cloned into the backbone vector pPoly2-CAV2 containing complete genome of CAV-2. To gain the recombinant canine adenovirus, the recombinant plasmid pCAV-2-CCV-S1 was linearized by ClaI/AscI to release recombinant genome, and then transfected into MDCK cell. The recombinant virus CAV-2-S1 was gained through 4 times of passaging in MDCK, and the classical cytopathic effects (CPE) of CAV-2 could be observed. The recombinant S1 protein expressed by recombinant virus, which was identified by western blot analysis, could be specifically recognized by polyclonal serum against CCV. Eight groups of mice were immunized by intramuscular injection with the different combinations as following: sole expression plasmid, two expression plasmids or three expression plasmids. Indirect ELISA, serum neutralization test and lymphocyte
引文
[1] 候云德主编. 分子病毒学. 北京:学苑出版社.1990.381-394.
    [2] 殷震,刘景华主编. 动物病毒学(第二版). 北京科学出版社. 1997.681-688.
    [3] 徐耀先,周晓峰,刘立德. 分子病毒学. 湖北科学技术出版社
    [4] Martin Enserink. Calling all coronavirologists. Science, 2003.300: 413.
    [5] Thomas G. Ksiazek, Dean Erdman, Cynthia S Goldsmith, Sherif R Zaki, Teresa Peret, Shannon Emery, Suxiang Tong, Carlo Urbani, James A Comer, Wilina Lim, Pierre E Rollin, Scott F Dowell, Ai-Ee Ling, Charles D Humphrey, Wun-Ju Shieh, Jeannette Guamer, Christopher D Paddock, Paul Rota, Barry Fields, Joseph DeRisi, Jyh-Yuan Yang, Nancy Cox, James M Hughes, James W LeDuc, William J Bellini, Larry J Anderson, the SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N Engi J Med, 2003. 348: 1953-1966.
    [6] Kathryn V Holmes. SARS-associated coronavirus. N Engi J Med, 2003. 348:1948-1951
    [7] Woode G N, Reed D E, Runnels R L, Herrig M A, Hill H T. Studies with an unclassified virus isolated from diarrheal calves. Vet Microbiol, 1982. 7:221-240.
    [8] Kroneman A, Comelissen L A, Horzinek M C, de Groot R J, Egberink H F. Identification and Characterization of a porcine torovirus. J Virol 1998. 72(5): 3507-3511.
    [9] Delmas B, Gelfi J, and Laude H. Antigenic Structure of Transmissible Gastroenteritis Virus. journal of Virol .1986, 67: 1405-1418.
    [10] Kim L, Hayes J, Parwani P, et al. Molecular Characterization and Pathogenesis of Transmissible Gastroenteritis Virus (TGEV) and Respirartory Coronavirus (PRCV) Field Isolates Co-circulating In a Swine Herd. Arch Virology 2000, 145: 1133-1147.
    [11] Nelson GW, Stohlman SA, Tahara SM. High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J Gen Virol. 2000 Jan;81(Pt 1):181-8.
    [12] Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1-30.
    [13] Pyrc K, Jebbink MF, Berkhout B, van der Hoek L. Genome structure and transcriptional regulation of human coronavirus NL63. Virol J. 2004 Nov 17;1(1):7.
    [14] Williams GD, Chang RY, Brian DA. A phylogenetically conserved hairpin-type 3' untranslated region pseudoknot functions in coronavirus RNA replication. J Virol. 1999 Oct;73(10):8349-55.
    [15] Popova R, Zhang X. The spike but not the hemagglutinin/esterase protein of bovine coronavims is necessary and sufficient for viral infection. Virology. 2002. 294: 222-236.
    [16] Gallagher T M, Buchmeier M J. Coronavirus spike proteins in viral entry and pathogenesis.Virology, 2001. 279:371-374.
    [17] Schneider-Schaulies. Cellular receptors for viruses: links to tropism and pathogenesis. J Gen Virol,2000.81:1413-1429.
    [18] Sawicki S G, Sawicki D L. A new model for coronavirus transcription. Adv Exp Med Biol,1998. 440:215-21915 Tresnan D B, Holmes K V. Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol, 1998. 440:69-75.
    [19] Milleri W Alien, Gennadiy Koev. Minireview: synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology, 2000. 273, 1-8.
    [20] Sit T L, Vaewhongs A A, Lommel S A. RNA-mediated transactivation of transcription from a viral RNA. Science, 1998. 281:829-832.
    [21] Miller W A, Dreher T W, Hall T C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-) sense genomic RNA. Nature, 1985. 313: 68-70.
    [22] Pettersson R F. Protein localization and virus assembly at intracellular membranes. Curr Top Microbiol Immunol, 1991. 170:67-106.
    [23] Kuo L, Masters PS. Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus.J Virol. 2002 May;76(10):4987-99.
    [24] Ziebuhr J. The coronavirus replicase. Curr Top Microbiol Immunol. 2005;287:57-94.
    [25] Sawicki D, Wang T, Sawicki S. The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol. 2001 Feb;82(2):385-96.
    [26] Nguyen VP, Hogue BG. Protein interactions during coronavirus assembly. J Virol. 1997 Dec;71(12):9278-84.
    [27] Risco C, Anton IM, Enjuanes L, Carrascosa JL. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol. 1996,70(7):4773-7.
    [28] Wang Y, Zhang X. The leader RNA of coronavirus mouse hepatitis virus contains an enhancer-like element for subgenomic mRNA transcription. J Virol. 2000 Nov;74(22):10571-80.
    [29] Dede Haan CA, Smeets M, Vernooij F, Vennema H, Rottier PJ. Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J Virol. 1999 Sep;73(9):7441-52.
    [30] Krishna Narayanan, Akihiko Maeda, Junko Maeda, Shinji Makino. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol, 2000. 74 (17): 8127-8134.
    [31] Lim KP, Liu DX. The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J Biol Chem. 2001 May 18;276(20):17515-23.
    [32] Hasoksuz M, Sreevatsan S, Cho K O, Hoet A E, Saif L J. Food. Molecular analysis of the Sl subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates. Virus Res,2002.84:101-109.
    [33] Mounir S, Talbot. Molecular characterization of the S protein gene of human coronavirus OC43. J GenVirol, 1993. 74:1981-1987.
    [34] Williams GD, Chang RY, Brian DA. Evidence for a pseudoknot in the 3' untranslated region of the bovine coronavirus genome. Adv Exp Med Biol. 1995;380:511-4.
    [35] Escors D, Ortego J, Laude H, Enjuanes L.The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol. 2001 Feb;75(3):1312-24.
    [36] Cynthia L Rowe, John O Fleming, Meera J Nathan, Jean-Yves Sgro, Ann C Palmenberg, Susan C Baker. Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure. Virol, 1997. 71(8):6183-6190.
    [37] Antoine A F de Vries, Marian C Horzinek, Peter J M Rottier, Raoul J de Groot. The genome organization of the nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Virology, 1997. 8:33-47.
    [38] Sims AC, Ostermann J, Denison MR. Mouse hepatitis virus replicase proteins associate with two distinct populations of intracellular membranes. J Virol. 2000 Jun;74(12):5647-54.
    [39] 金奇. 医学分子病毒学. 北京:科学出版社,2001.
    [40] Spiga O, Bernini A, Ciutti A, Chiellini S, Menciassi N, Finetti F, Causarono V, Anselmi F, Prischi F, Niccolai N. Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein. Biochem Biophys Res Commun. 2003 Oct 10;310(1):78-83.
    [41] Wesley RD. The S gene of canine coronavirus, strain UCD-1, is more closely related to the S gene of transmissible gastroenteritis virus than to that of feline infectious peritonitis virus. Virus Res 1999 Jun;61(2):145-52.
    [42] Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol. 1998 May;72(5):4508-14.
    [43] Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J Virol. 1995 Sep;69(9):5269-77.
    [44] Vennema H,Rossen JW,Wesseling J,Horzinek MC,Rottier PJ.Genomic organization and expression of the 3’end of the canine and feline enteric coronaviruses.Virology.1992.191(1):134-140.
    [45] Jurgen Schneider-Schaulies. Cellular receptor for viruses: links to tropism and pathogenesis. Journal of General Virology. 2000. 81:1413-1429.
    [46] Leparc-Goffart I, Hingley S T, Chua M M, Phillips J, Lavi E, Weiss S R. Targeted recombination within the spike gene of murine coronavirus mouse hepatitis virus-A59: Q159 is a determinant of hepatotropism. J Virol, 1998. 72:9628-9633.
    [47] Kuo L, Godeke G J, Raamsman M J, Masters P S, Rottier P J. Retargeting of coronavirus bysubstitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol,2000.74:1393-1406.
    [48] Compton S R, Kunita S. Characterization of the S protein of enterotropic murine coronavirus strain-Y. Adv Exp Med Biol, 1995. 380:23-28.
    [49] Wang FI, Fleming J, Lai MM. Sequence analysis of the spike protein gene of murine coronavirus variants: study of genetic sites affecting neuropathogenicity. Virology,1992.186:742-749.
    [50] 蔡宝祥.家畜传染病学.中国农业出版社.2001.
    [51] Das Sanna J, Fu L, Hingley S T, Lai M M, Lavi E. Sequence analysis of the S gene of recombinant MHV-2/A59 coronaviruses reveals three candidate mutations associated with demyelination and hepatitis. Neurovirol, 2001. 7:432-436.
    [52] Bingham R W, Madge M H, Tyrrell D A. Haemagglutination by avian infectious bronchitis virus-a coronavirus. J Gen Virol, 1975. 28:381-390.
    [53] Schultze B, Enjuanes L, Cavanagh D, Herrler G N-acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus. Adv Exp Med Biol, 1993. 342:305-310.
    [54] Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein. El glycoprotein, from a coronavirus. Nature, 1984. 308:751-752.
    [55] Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol. 2000 Mar;74(5):2333-42.
    [56] Godet M, Grosclaude J, Delmas B, Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol, 1994. 68:8008-8016.
    [57] Kunkel F, Herrler G Structural and functional analysis of the surface protein of human coronavirus OC43. Virology, 1993. 195:195-202.
    [58] Yoo D, Deregt D. A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization. Clin Diagn Lab Immunol, 2001.8:297-302.
    [59] Motokawa K, Hohdatsu T, Aizawa C, Koyama H, Hashimoto H. Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I. Arch Virol. 1995;140(3):469-80.
    [60] Simkins RA, Weilnau PA, Bias J, Saif LJ. Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV. Am J Vet Res. 1992 Jul;53(7):1253-8.
    [61] Ballesteros L, Sanchez C, and Enjuanes L. Two Amino Acid Changes at the N-terninus of TGEV Spike Protein Result in the Loss of EntericTropism. Virology 1997, 227(2): 378-388.
    [62] Bernard S and Laude H. Site-specific Alteration of Transmissible Gastroenteritis Virus Spike Protein Results in Markedly Reduced Pathogenicity. Journal of Gen. Virol 1995, 76: 2235-2241.
    [63] Haan CA, de Wit M, Kuo L, Montalto-Morrison C, Haagmans BL, Weiss SR, Masters PS, Rottier PJ.The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain.Virology. 2003 Aug 1;312(2):395-406.
    [64] Christine K, Graham D, Yolken R. et al. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with the Enteropathogenicity of TGEV. Journal of Virol 1997, 71(4): 3285-3287.
    [65] Rest J S, Minjdell DP. SARS associated coronavirus has a recombinant polymerse and coronavirus has a history of host-shifting. Infect Genel Evol,2003(3):219-225.
    [66] Kuo L, Masters PS.The small envelope protein E is not essential for murine coronavirus replication. J Virol. 2003 Apr;77(8):4597-608.
    [67] Zhang WG, Li JQ, Zhou HM. Genomic characterization of SARS coronavirus: a novel member of coronavirus. Yi Chuan Xue Bao. 2003 Jun;30(6):501-8.
    [68] Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol. 2000 Mar;74(5):2333-42.
    [69] Godet M, L'Haridon R, Vautherot JF, Laude H.TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992 Jun;188(2):666-75.
    [70] Wu Q, Zhang Y, Lu H, Wang J, He X, Liu Y, Ye C, Lin W, Hu J, Ji J, Xu J, Ye J, Hu Y, Chen W, Li S, Wang J, Wang J, Bi S, Yang H.The E protein is a multifunctional membrane protein of SARS-CoV. Genomics Proteomics Bioinformatics. 2003 May;1(2):131-44.
    [71] Huang C, Wei P, Fan K, Liu Y, Lai L.3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism. Biochemistry. 2004 Apr 20;43(15):4568-74.
    [72] Ziebuhr J, Siddell SG. Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab.J Virol. 1999 Jan;73(1):177-85.
    [73] Denison MR, Sims AC, Gibson CA, Lu XT. Processing of the MHV-A59 gene 1 polyprotein by the 3C-like proteinase. Adv Exp Med Biol. 1998;440:121-7.
    [74] Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res. 2003 Dec 15;31(24):7117-30.
    [75] He R, Leeson A, Ballantine M, Andonov A, Baker L, Dobie F, Li Y, Bastien N, Feldmann H, Strocher U, Theriault S, Cutts T, Cao J, Booth TF, Plummer FA, Tyler S, Li X. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 2004 Oct;105(2):121-5.
    [76] Brockway SM, Clay CT, Lu XT, Denison MR. Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J Virol. 2003 Oct;77(19):10515-27.
    [77] Saif LJ. Coronavirus immunogens. Vet Microbiol. 1993 Nov;37(3-4):285-97.
    [78] Wurzer W J, Obojes K, Vlasak R. The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: a proposal to reorganize group 2 Coronaviridae. J Gen Virol, 2002.83:395-402.
    [79] Kolb A F, Maile J, Heister A, Siddell S G Characterization of functional domains in the human coronavirus HCOV 229E receptor. J Gen Virol, 1996. 77:2515-2521.
    [80] Kolb A F, Hegyi A, Maile J, Heister A, Hagemann M, Siddell S G Molecular analysis of the coronavirus-receptor function of aminopeptidase N. Adv Exp Med Biol, 1998. 440:61-67.
    [81] Kolb A F, Hegyi A, Siddell S G Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N. J Gen Virol, 1997. 78:2795-2802.
    [82] Benbacer L, Kut E, Besnardeau L, Laude H, Delmas B. Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus. J Virol, 1997. 71:734-737.
    [83] Kojima A, Takada H, Okaniwa A. Multiplication of canine coronavirus in CRFK cells. Nippon Juigaku Zasshi. 1986 Dec;48(6):1063-70. No abstract available.
    [84] Ganesan P I, Ramadass F, and Gunaseelan L. Detection of canine coronavirus enteritis. Indian Veterinary Journal.67,November,1990:1088-1093
    [85] Yamanaka M, Crisp T, Brown R, Dale B. Nucleotide sequence of the inter-structural gene region of feline infectious peritonitis virus. Virus Genes. 1998;16(3):317-8.
    [86] Martin-Calvo M, Marcotegui MA, Simarro I. Canine-coronavirus (CCV) characterization in Spain. Epidemiological aspects. Zentralbl Veterinarmed B. 1994 Jun;41(4):249-56.
    [87] Tresnan D B, Levis R, Holmes K V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol, 1996. 70:8669-8674.
    [88] Tresnan DB, Holmes KV. Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med 1998;440:69-75.
    [89] Wentworth D E, Holmes K V. Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13):influence of N-linked glycosylation. J Virol, 2001.75:9741-9752.
    [90] Delmas B, Gelfi J, Kut E, Sjostrom H, Noren 0, Laude H, Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site. J Virol, 1994. 68:5216-5224.
    [91] Breslin J J, Mork I, Smith M K, Vogel L K, Hemmila E M, Bonavia A, Talbot P J, Sjostrom H, Noren 0, Holmes K V. Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 degrees C. J Virol, 2003. 77:4435-4438.
    [92] Schwegmann-Wessels C, Zimmer G, Laude H, Enjuanes L, Herrler G Binding of transmissible gastroenteritis coronavirus to cell surface sialoglycoproteins. J Virol, 2002. 76:6037-6043.
    [93] Schultze B, Herrler G Recognition of cellular receptors by bovine coronavirus. Arch Virol/SuppI,1994.9:451-459.
    [94] Wurzer W J, Obojes K, Vlasak R. The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: a proposal to reorganize group 2 Coronaviridae. J Gen Virol,
    2002.83:395-402.
    [95] Krernpl C, Schultze B, Herrler G Analysis of cellular receptors for human coronavirus OC43. Adv Exp Med Biol, 1995. 380:371-374.
    [96] Schultze B, Herrler G Bovine coronavirus use N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J Gen Virol, 1992. 73:901-906.
    [97] Collins A R. HLA class I antigen serves as a receptor for human coronavirus OC43. Immunol Invest, 1993. 22:95-103.
    [98] Collins A R. Human coronavirus OC43 interacts with major histocompatibility complex class I molecules at the cell surface to establish infection, Immunol Invest, 1994. 23:313-321.
    [99] Collins A R. Interferon gamma potentiates human coronavirus OC43 infection of neuronal cells by modulation of HLA class I expression. Immunol Invest, 1995. 24:977-986.
    [100] Compton S R, Stephensen C B, Snyder SW, Weismiller D G, Holmes K V. Coronavirus species specificity: murine coronavirus binds to a mouse-specific epitope on its carcinoembryonic antigen-related receptor glycoprotein. J Virol, 1992. 66:7420-7428.
    [101] Miguel B, Pharr G T. Wang C, The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Arch Virol, 2002. 147:2047-2056.
    [102] Tsai J C, Zeius B D, Holmes K V, Weiss S R. The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAM1 receptor specificity of the virus strain. J Virol, 2003.77:841-850.
    [103] Wessner D R, Shick P C, Lu J H, Cardellichio C B, Gagneten S E, Beauchemin N, Holmes K V,Dveksler G S. Mutational analysis of the virus and monoclonal antibody binding sites in MHVR, the cellular receptor of the murine coronavirus mouse hepatitis virus strain A59. J Virol, 1998.72:1941-1948.
    [104] Chou CF, Shen S, Tan YJ, Fielding BC, Tan TH, Fu J, Xu Q, Lim SG, Hong W. A novel cell-based binding assay system reconstituting interaction between SARS-CoV S protein and its cellular receptor. J Virol Methods. 2005 Jan;123(1):41-8.
    [105] Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus. Cell Mol Life Sci. 2004 Nov;61(21):2738-43.
    [106] Binn L.N.et al:Recovery and characterization of a coronavirus from military dogs with diarrhoea.Proceedings of the Annual Meeting of the U.S.Animal Health Association.78,1974:359-366.
    [107] Binn L N, Status Report. A Review of viruses Recovered.JAVMA.156,1970:1672-1677.
    [108] Appel M, Max J G, et al. Status Report: Canine viral Enteritis from Dogs.JAVMA. 173, 1978:1516-1518.
    [109] Appel M J G, Cooper B J,Greisen H, scott F, Carmichael L .Canine Viral Enteritis I. status report on corova-and parvo-like viral enteritides.Cornell Veterinarian.69,1979:123-133.
    [110] 王允海. 兽医大学学报. 一起军犬冠状病毒感染的报告,1,1990:99-101.
    [111] 叶俊华等. 警犬场犬冠状病毒病的调查. 中国兽医科技,6(22),1992:15-16. 
    [112] 缪勤. 犬冠状病毒病. 中国畜禽传染病,4,1993:63-65.
    [113] 胡桂学等. 犬冠状病毒感染. 经济动物学报,4,1997,31-35. 
    [114] 夏咸柱主编. 养犬大全. 吉林人民出版社,1993,561-564.
    [115] Carmichael L.E.and Binn L.N.:New enteric viruses in the dog.Advances in Veterinary Science and Compoarative Medicine.25,1981:1-37.
    [116] Chappuis,G.et al:Control of canine distemper.Veterinary Microbiology.44,1995: 351-358.
    [117] 田克恭:犬冠状病毒感染.中国养犬杂志,1,1990:20-22. 
    [118] Mochizuki M, Hashimoto M, Ishida T, et al. Recent epidemiological status of canine viral enteric infections and Giardia infection in Japan. J Vet Med Sci. 2001,63:573-575.
    [119] Mainka S A, Qiu X, He T, et al. Serologic survey of giant panda (Ailuropoda melanoleuca), and domestic dogs and cats in the Wolong Reserve, China. Journal of Wildlife Disease, 1994, 30(1):86-89.
    [120] Marsilio F, Tiscar P G, Gentile L, et al. Serologic survey for selected viral pathogens in brown bears from Italy [J]. J Wildl Dis. 1997,33:304-307.
    [121] Kimber K R, Kollias G V, Dubovi E J. Serologic survey of selected viral agents in recently captured wild North American river otters (Lontra canadensis). J Zoo Wildl Med. 2000,31:168-175.
    [122] Zarnke R L, Evermann J, Ver Hoef J M, et al. Serologic survey for canine coronavirus in wolves from Alaska . J Wildl Dis. 2001,37:740-745.
    [123] Tennant B J, Gaskell R M, Jones R C ,et al. Studies on the epizootiology of canine coronavirus. Veterinary Record, 1993, 132(2):7-11.
    [124] 何爱华,杜胜芳,林桂华,等. 首次从腹泻熊猫粪便中检出冠状病毒简报[J]. 中国人兽共患病杂志,1996,4(3):4.
    [125] 高凤山,胡桂学,夏咸柱,等. 联合PCR 诊断大熊猫犬瘟热和犬冠状病毒的混合感染. 吉林农业大学学报,2003,25(1):91-93.
    [126] 胡桂学,高凤山,高玉伟,等. 大熊猫犬冠状病毒的分离与鉴定. 畜牧兽医学报, 2004, 35(2):202-207.
    [127] Larson DJ, Morehonse LG, Solorzane RF, Jinden D A. Transmissible gastroenteritis in nenonatal dogs: experimental intestinal infection with transmissiable gastroenteritis virus. American Journal of Veterinary Research. 40,1979:477-486.
    [128] 徐汉坤:犬肠道病毒研究进展,国外兽医学--畜禽传染病,1,1985:4-8.
    [129] Ganesan PI, Ramadass F, Gunaseelan L. Detection of canine coronavirus enteritis.Indian Veterinary Journal.67,November,1990:1088-1093.
    [130] Lee B H, et al.Serologic surgey for canine coronavirus infection in Korea.Korean Journal of Veterinary Public Health.17,1993:295-300.
    [131] Martin C M. et al. Indentification of canine coronavirus in Spain.Medicina Veterinaria.10,1993:605-608.
    [132]Pollock,R.V.H.,et al: Canine viral enteritis: Recent development. Modern Veterinary Practice.60,1979:375-380.
    [133] Marshall J N, Healey D S, Studdert M J, Scott, P C, Kennett M L, Ward B K, Gust I D.. Viruses and virus-like particles in the faeces of dogs with and without diarrhoea. 1984,Aust. Vet. J. 6133-38.
    [134] Mochizuki M. Diarrhea causing viruses of dogs and cats. J. Jpn. Vet. Med. Assoc. 1996, 49: 293-300.
    [135]Yasoshima A, Fujinami F, Doi K, Kojima A, Takada H, Okaniwa A. Case report on mixed infection of canine coronavirus-electron microscopy and recovery of canine coronavirus.Jpn.J.Vet.Sci.45,1983:217-225.
    [136] Appel M. Canine coronavirus. In: Appel MJ, ed.Virus infections of carnivores I. Amsterdam. Elsevier Sciences Publishers, 1987;115-122.
    [137] Evermann JF, Foreyt W, Maag-Miller L, et al. Acute hemorrhagic enteritis associated with canine coronavirus and parvovirus infection in a captive coyote population. J Am Vet Med Assoc 1980;177:784-786.
    [138] East ML, Moestl K, Benetka V, Pitra C, Honer OP, Wachter B, Hofer H. Coronavirus infection of spotted hyenas in the Serengeti ecosystem. Vet Microbiol. 2004 Aug 19;102(1-2):1-9.
    [139] Yesilbag K, Yilmaz Z, Torun S, Pratelli A. Canine coronavirus infection in Turkish dog population. J Vet Med B Infect Dis Vet Public Health. 2004 Sep;51(7):353-5.
    [140] Foreyt WJ, Evermann JF. Serologic survey of canine coronavirus in wild coyotes in the western United States, 1972-1982. J Wildl Dis. 1985 Oct;21(4):428-30.
    [141] Tennant BJ, Gaskell RM, Kelly DF, Carter SD, Gaskell CJ. Canine coronavirus infection in the dog following oronasal inoculation. Res Vet Sci 1991; 51:11-18.
    [142] Pratelli A, Tempesta M, Roperto FP, Sagazio P, Carmichael L, Buonavoglia C. Fatal coronavirus infection in puppies following canine parvovirus 2b infection. J Vet Diagn Invest. 1999 Nov;11(6):550-553.
    [143] Vandenbergh J, Ducatelle R, Debouck P, et al. Coronavirus infection in a litter of pups. Vet Quart 1980;2:136-141.
    [144] Laurenson K, Van Heerden J, Stander P, Van Vuuren MJ. Seroepidemiological survey of sympatric domestic and wild dogs (Lycaon pictus) in Tsumkwe District, north-eastern Namibia. : Onderstepoort J Vet Res 1997 Dec;64(4):313-6.
    [145] Bandai C, Ishiguro S, Masuya N, Hohdatsu T, Mochizuki M.Canine coronavirus infections in Japan: virological and epidemiological aspects. J Vet Med Sci 1999 Jul;61(7):731-6.
    [146] Naylor MJ, Monckton RP, Lehrbach PR, Deane EM. Canine coronavirus in Australian dogs. 1: Aust Vet J 2001 Feb;79(2):116-9.
    [147] Garcelon DK, Wayne RK, Gonzales BJ. A serologic survey of the island fox (Urocyon littoralis) on the Channel Islands, California. J Wildl Dis 1992 Apr;28(2):223-9.
    [148] Zarnke RL, Evermann J, Ver Hoef JM, McNay ME, Boertje RD, Gardner CL, Adams LG, Dale BW, Burch J. Serologic survey for canine coronavirus in wolves from Alaska. J Wildl Dis. 2001 Oct;37(4):740-5.
    [149] Mochizuki M, Hashimoto M, Ishida T. Recent epidemiological status of canine viral enteric infections and Giardia infection in Japan. J Vet Med Sci. 2001 May;63(5):573-5.
    [150] Pensaert M, Callebaut P. The coronaviruses: clinical and structural aspects with some practical implications. Ann Med Vet 1978;122:301-322.
    [151] Sakulwira K, Vanapongtipagorn P, Theamboonlers A, Oraveerakul K. Prevalence of canine coronavirus and parvovirus in dogs with gastroenteritis in Thailand. Veterinarni Medicina.2003,48(6):163-167.
    [152] 刘海涛. 中药“372”防治犬冠状病毒性肠炎的试验报告,中国养犬杂志,2(3),1991:45-46.
    [153] 叶俊华. 警犬场犬冠状病毒病的调查,中国兽医科技,6(22),1992:15-16. 
    [154] 范志强,夏咸柱,武银莲,等.检测犬冠状病毒中和抗体的方法与应用.中国畜禽传染病,1998,20(6):357-360.
    [155] 张伯强, 陆承平. ELISA 法检测犬腹泻粪样中的犬冠状病毒.中国兽医学报.1997,5.
    [156] 王玉燕, 马光刚, 陆承平等. 犬、狐、貉粪样中犬冠状病毒的检测及基因型分析.2004 中国畜牧兽医学会学术年会暨第五届全国畜牧兽医青年科技工作者学术研讨会.2004,671-675.
    [157] 常国权. 冠状病毒垂直传播途径的发现. 中国畜禽传染病,2,1996:27.
    [158] 周向阳. 警犬冠状病毒病诊断报告.黑龙江畜牧兽医,6,1990:31-32. 
    [159] 王允海. 一起军犬冠状病毒感染的报告. 兽医大学学报,1,1990:99-101. 
    [160] Evermann J F, Foreyt W, Miller L M, Leather C W, Keirnan A J.M, Leamaster B. Acute hemorrgagic enteris associated with canine coronavirus and parvovirus infections in a captive couotle population.J.Am.Vit.Med.Assoc.177,1980:784-786.
    [161] McNulty M S, et al:Viruses and diarrhoea in dogs(letter).Veterinary Record.15, 1980(106):350-351.
    [162] Reseto A, Lema.F ,Cavalieri.F. Electron Microscopy Detection and characteri-zation of viral Particles in Dog stools. Archieve of Virology.66,1980:89-93.
    [163] Osterhaus A D, et al. Canine viral enteritis:Prevalence of Parvo-,Corona-and rotavirus infectious in dogs in the Netherlands.Vet.Quart.2,1980:181-190.
    [164] Naylor MJ, Walia CS, McOrist S, Lehrbach PR, Deane EM, Harrison GA. Naylor Molecular characterization confirms the presence of a divergent strain of canine coronavirus (UWSMN-1) in Australia.J Clin Microbiol. 2002 Sep;40(9):3518-22.
    [165] Naylor MJ, Harrison GA, Monckton RP, McOrist S, Lehrbach PR, Deane EM. Identification of canine coronavirus strains from feces by S gene nested PCR and molecular characterization of a new Australian isolate. J Clin Microbiol. 2001 Mar;39(3):1036-41.
    [166] William MA, Bobby E, et al. Canine Coronavirus Vaccine. United States Patent. 4(25),1989,4824785.
    [167] Erles,K., Toomey,C., Brooks,H.W. and Brownlie,J.Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease.Virology.2003 310 (2), 216-223.
    [168] Carmichael L.E.and Binn L.N. New enteric viruses in the dog. Advances in Veterinary Science and Compoarative Medicine.25,1981:1-37.
    [169] Keenan K P, Jervis H R, Marchwicki R H, Binn L N. Intestinal infection of neonatal dogs with canine coronavirus 1-71: studies by virologic, histologic, histochemical, and immunofluorescent techiniques, American Journal of Veterinary Research.37,1976:247-256.
    [170] Vandenberghe J, Ducatelle R, Debouck P, Hoorens J. Coronavirus infection in a little of pups.vet.quart.2,1980:136-141.
    [171] Tennant B J, et al. Canine coronavirus infection in the dog following oronasal inoculation Research in Veterinarty Science.51,1991:11-18.
    [172] McNulty M S, Viruses and diarrhoea in dogs (letter).Veterinary Record.15, 1980(106):350-351 .
    [173] 范泉水,何洪彬,夏咸柱等.新生幼犬的被动免疫研究进展.中国预防兽医学报.2000,4.
    [174] Horsburgh B C, Brierley I, David K B T, et al. Analysis of a 9.6Kb sequence from the 3’end of canine coronavirus genomic RNA.J Gen Virol,1992,75:2849-2862.
    [175] Wesseling J G,Vennema H,Godeke G J,et al. Nucleotide sequence and expression of the spike(S) gene of canine coronavirus and comparison with the S proteins of feline and porcine coronavirus.J Gen Virol,1994,75:1789-1794.
    [176] 王世若主编. 现代动物免疫学. 吉林科学出版社,2002.
    [177] Correa I, Jimenez G, Sune C, et al. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus[J]. Virus Res, 1988, 10: 77-94.
    [178] Delmas B, Rasschaert D, Gtodet M, et al. Four major antigenic site of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S[J]. J Gen Virol, 1990,71: 1313-1323.
    [179] Falima G, Willewp A, Correa C, et al. Residues involved in the antigenic sites of transmissible gastroenteritis virus S glycoprotein[J]. J Virol, 1991, l83: 225-238.
    [180] Simpkins R A, Weilnau P A, Bias J, et al. Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV[J]. Am. J. Vet. Res, 1992, 53: 1253-1258.
    [181] Pratelli A, Elia G, Martella V, Tinelli A, Decaro N, Marsilio F, Buonavoglia D, Tempesta M, Buonavoglia C. M gene evolution of canine coronavirus in naturally infected dogs. Vet Rec. 2002 Dec 21-28;151(25):758-61.
    [182] Pratelli A, Martella V, Decaro N, Tinelli A, Camero M, Cirone F, Elia G, Cavalli A, Corrente M, Greco G, Buonavoglia D, Gentile M, Tempesta M, Buonavoglia C. Genetic diversity of a canine coronavirus detected in pups with diarrhoea in Italy. J Virol Methods. 2003 Jun 9;110 (1):9-17.
    [183] Pratelli A, Decaro N, Tinelli A, Martella V, Elia G, Tempesta M, Cirone F, Buonavoglia C.Two genotypes of canine coronavirus simultaneously detected in the fecal samples of dogs with diarrhea. J Clin Microbiol. 2004 Apr;42(4):1797-9.
    [184] Pratelli A, Buonavoglia D, Martella V, Tempesta M, Lavazza A, Buonavoglia C. Diagnosis of canine coronavirus infection using nested-PCR. J.Virol Meth 2000; 84:91-94.
    [185] Phillips T R, Jensen J L, Rubino M J, et al. Effect of vaccines on the canine immune system. Canadan Journal of Veterinary Research.53,1989:154-160.
    [186] Riffault S, Baric R, and Levy L. In Vivo Induction of Inferonalpha in Pig by Non-infectious Coronavirus: Tissue Localizaton and in Situ Phenotypic Characterization of Inferonalpha Producing Cells. Journal of General Virology .1997, 78(10): 2483-2487.
    [187] Motokawa, K. Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid protein of feline, canine and porcine coronavirus. Journal of Microbiology and Immunology, 1996.,40(6): 425-433.
    [188] Martin M, Balbin M, Garwes DJ, et al. Antigenic Structure of Transmissible 83 Gastroenteritis Virus Nucleoprotein. Virology .1992, 188: 168-174
    [189] Laude, H, Rasschaert, D, Delmas, B et al. Molecular biology of transmissible gastroenteritis virus. Vet Virol, 1990.,23: 147-154.
    [190] Garwes, D, Pocock, D. H and Wllaszka, T. M.. The polypeptide structure of transmissible gastroenteritis virus. Journal of Gen.Virol, 1975, 29: 25-34.
    [191] Seo L H, Wang L, Smith R, et al. The carboxyl-terminal 120 residue polypeptide of infectious bronchitis virus nucleocapsid induce cytotoxic T lymphocytes and protects chickens from acute infection. J Virol ,1997,71:7889-7894.
    [192] Seah J N, Yu L, Kwang J. Location of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein Vet Microbiol,2000,75F:11-16.
    [193] Peng D, Koetzner C A, Mcmahon T, et al. Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins [J]. J Virol,1995,69:5475-5484.
    [194] Li S, Lin L, Wang H, Yin J, Ren Y, Zhao Z, Wen J, Zhou C, Zhang X, Li X, Wang J, Zhou Z, Liu J, Shao J, Lei T, Fang J, Xu N, Liu S. The epitope study on the SARS-CoV nucleocapsid protein. Genomics Proteomics Bioinformatics. 2003 Aug;1(3):198-206.
    [195] Sanchez-Morgado JM, Poynter S, Morris TH. Molecular characterization of a virulent canine coronavirus BGF strain. Virus Res. 2004 Aug;104(1):27-31.
    [196] Woods Woods RD, Wesley RD. Seroconversion of pigs in contact with dogs exposed to canine coronavirus. Can J Vet Res. 1992 Jan;56(1):78-80.
    [197] Finlaison,D.S.,et al:Veterinary Microbiology.46,1995:295-303. 
    [198]Martin C M. et al. Indentification of canine coronavirus in Spain. Medicina Veterinaria.10,1993:605-608.
    [199] Takeuchi,A.,et al:Electron Microscope Study of Experimental Enteric Infection in Neonatal Dogs with a Canine Coronavirus. Laboratory Investigation. 34, 1976:539-549.
    [200] Williams F P, et al. Astrovirus-like,coronavirus-.like, and parvovirus-like particle detected in the diarrheal soods of beagle pups,Archieve of Virology. 66,1980:215-226.
    [201] Reseto A, Lema F, Cavalieri F. Electron Microscopy Detection and characterization of viral Particles in Dog stools. Archieve of Virology.66,1980: 89-93.
    [202] Tingpalapong M, Whimire R E, Watts D.M, Burke D S, Binn L N, Tesaprateep T, Laungtongkun S, Marchwicki R H. Epizootic of viral enteritis in Thai-land. American Journal of Veterinary Research.43,1982:1687-1690.
    [203]Carmichael LE, Binn L N. New enteric viruses in the dog. Advances in Veterinary Science and compoarative Medicine.25,1981:1-37.
    [204] 夏咸柱等. 犬冠状病毒在我国首次分离成功. 中国兽医学报,1(16),1996:58. 
    [205] Tennant B J, Gaskell R M, Jines R C, Gaskell C T. Studies on the epizootiology of canine coronavirus.The Veterinary Record.(1993)132,Jan.1993:7-11. 
    [206] 范志强.犬冠状病毒三种诊断方法的建立与初步应用,解放军农牧大学硕士论文.1997.
    [207] Tuchyia K, Kasaoka T, Azetaka M, Takahashi E, Konishi S. Plaque assay for canine coronavirus in CRFK cells.Jpn.J.Vet.Sci.49,1987:571-573.
    [208] 范泉水,齐桂凤,王度林,等.ELISA 双抗体夹心法诊断犬冠状病毒性肠炎.中国兽医科技,1995,9:9-10.
    [209] Mochizuki M, Sugiura R, Akuzawa M. Microneutralization Test with Canine Coronavirus for Detection of Coronavirus Antibodies in Dogs and Cats. Jap.J.Vet.Sci. 49(3),1987:563-565.
    [210] Tuchyia K, Horimoto T, Azetaka M, Talahashi E, Konishi S I. Enzyme-linked immunosorbennt assay for the detection of canine coeonavirus and its antibody in dogs. Veterinary Microbiology.26,1991:25-40.
    [221] Palmer-Densmore ML, Johnson AF,Sabara MI. Development and evaluation of an ELISA to measure antibody responses to both the nucleocapsid and spike proteins of canine coronavirus. J Immunoassay.1998, Feb;19(1):1-22
    [222] Rimmelzwaan GF, Groen J, Egcerink H, Borst G H A, Ugtdehaay F G G.M, Osterhaus A D. The use of enzyme-linked immunosorbant assay systems for serology and antigen detection in parvovirus,coronavirus and rotavirus infections in dogs in the Netherlands.Veterinary Microbiology.26,1991:25-40.
    [223] Pratelli A, Elia G, Martella V, Palmieri A, Cirone F, Tinelli A, Corrente M, Buonavoglia C. Prevalence of canine coronavirus antibodies by an enzyme-linked immunosorbent assay in dogs in the south of Italy. J Virol Methods. 2002 Apr,102(1-2):67-71.
    [224] Elia G, Fiermonte G, Pratelli A, Martella V, Camero M, Cirone F, Buonavoglia C. Recombinant M protein-based ELISA test for detection of antibodies to canine coronavirus. J Virol Methods. 2003 May, 109(2):139-42.
    [225] Pratelli A, Elia G, Decaro N, Tola S, Tinelli A, Martella V, Rocca S, Tempesta M, Buonavoglia C. Cloning and expression of two fragments of the S gene of canine coronavirus type I. J Virol Methods. 2004 Apr, 117(1):61-5.
    [226] Soma T, Hara M, Ishii H, Yamamoto S. Antibody testing against canine coronavirus by immunoperoxidase plaque staining. Vet Res Commun. 2001 May;25(4):327-36.
    [227] Sanchez CM, Jimenez G, Laviada MD, Correa I, Sune C, Bullido M, Gebauer F, Smerdou C, Callebaut P, Escribano JM, et al. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990 Feb,174(2):410-7.
    [228] Hohdsu T. Charaterization of monoclonal antibodies against feline infectious peritonitis virus type Ⅱand antigenic relationship between feline, porcine, and canine coronavirus. Archieve of Virology.117,1991:85-95.
    [229] Hohdatsu T, Sasamoto T, Okada S, Koyama H. Antigenic analysis of feline coronaviruses with monoclonal anribodies(Mabs):Preparation of Mabs which discriminate between FITV strain 79-1146 and FECV strgin 79-1683.Veterinary Microbiology.28,1991:13-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700