用户名: 密码: 验证码:
取向碳纳米管及其复合膜的制备和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管具有优异的光学、电学、热学和机械性能,因而在光电、能源、生物、医学等诸多领域都显示重要的应用前景。为了实现大规模生产应用,目前研究的主要方向是发展宏观尺度的碳纳米管本体材料,包括阵列、膜和纤维三种形貌,其中碳纳米管膜因其方便的制备和广泛的应用而受到重点关注。但是,因为碳纳米管在膜中无规聚集,无法有效控制和进一步提高碳纳米管膜的结构和性能,这严重限制了碳纳米管膜在多个领域的应用。比如在能源领域,为了解决能源危机,太阳能电池特别是被称为第三代的染料敏化太阳能电池(dye-sensitized solar cell, DSSC),因为较低的成本引起学术界和工业界的广泛兴趣,而如何进一步提高DSSC的光电转换效率和稳定性,是决定其应用的关键因素。目前的主要策略之一是发展新型电极材料,如碳纳米管膜已经被广泛研究用作对电极,但电荷在无规碳纳米管网络中传输的效率很低。本学位论文重点提出和发展了两种制备取向碳纳米管膜及其复合膜的新方法,比较系统地研究了取向碳纳米管作为对电极在DSSC中的应用前景。研究工作主要包括如下几个方面:
     超高碳纳米管阵列的制备。为了得到具有优异机械和电学性能的取向碳纳米管膜或复合膜,一个简单且有效的方法是基于高度取向的碳纳米管阵列来制备,因此合成高质量的碳纳米管阵列非常重要。本学位论文主要通过化学气相沉积法来合成多壁碳纳米管阵列(碳纳米管直径7-20纳米),比较系统地研究了催化剂、气体流量、温度、反应时间等实验参数对碳纳米管阵列高度、密度、纯度等的影响规律,确定了制各高质量的较高碳纳米管阵列的最佳条件。
     超长取向碳纳米管膜的制备及其在DSSC中的应用。目前取向碳纳米管膜主要通过干法纺丝从碳纳米管阵列中制备,目前合成可纺碳纳米管阵列的实验条件比较苛刻,并且可纺碳纳米管阵列的高度往往在300-400微米,最高一般不超过1毫米,由于单根碳纳米管的电阻极低,因而取向碳纳米管膜的电阻主要来自碳纳米管之间的接触电阻。碳纳米管越长,碳纳米管之间接触点越少,越有利于电子的快速传输,所以增加碳纳米管长度是提高取向碳纳米管膜电极应用的关键因素。本学位论文提出了一种新的粘附转移法,通过普通胶带将碳纳米管从阵列直接转移到各种基底上。该方法操作简单、效率高,尤其适用于高碳纳米管阵列。通过粘附转移法制备的超长取向碳纳米管膜的室温电导率达到1150S/cm,大大超过干法纺丝得到的取向碳纳米管膜的电导率(-500S/cm)。超长取向碳纳米管膜具有良好的柔性,弯曲180。后电导率基本保持不变,即使弯曲500次电导率仅下降1%。以上结果表明超长取向碳纳米管膜代表了一类新型、高效率的电极材料,特别是可用作柔性电极材料。本学位论文以其取代传统铂对电极,构建DSSC,光电转换效率超过9.00%,远高于在同等条件下干法纺丝得到的取向碳纳米管膜作为对电极时的4.18%,也高于铂对电极8.05%。比较系统地研究了超长取向碳纳米管膜厚度以及碳纳米管密度和长度对DSSC性能的影响规律,发现膜厚度为4微米和碳纳米管密度为2×1011cm-2时电池效率最高,且电池效率随着碳纳米管长度的增加而增加。另外,以超长取向碳纳米管膜作为对电极,构建高效率的柔性DSSC,光电转化效率为2.29%,也远高于干法纺丝得到的取向碳纳米管膜在同等条件下的1.22%。
     平行取向碳纳米管/环氧树脂复合膜的制备及其在DSSC中的应用。碳纳米管具有优异的机械和电学性能,而高分子来源广泛、结构可控、制备方便,通过形成复合材料可以充分发挥二者的优势。本学位论文发展了一种新的切片技术,制备平行取向碳纳米管/高分子复合薄膜。概括来说,高分子溶液或熔体加入到碳纳米管阵列中,固化后通过传统的切片技术纵向切片即可得到高质量的复合薄膜,膜的厚度可在50纳米到50微米内比较精确地进行调控,复合膜显示良好的柔性、较好的透明性、较高的导电率。以平行取向碳纳米管/环氧树脂复合膜为例,当膜厚度为75纳米时透光率达到94%。因为复合膜具有良好的柔性,所以主要以其作为对电极,构建柔性的DSSC。
     垂直取向碳纳米管/石蜡复合膜的制备及其应用。通常制备的取向碳纳米管复合膜主要采用环氧树脂、聚苯乙烯等高分子体系作为填充组分,在很多情况下,虽然可以通过溶剂、燃烧等方法去除,但常常存在后处理和残余物较多等问题。而且在这些复合膜中碳纳米管主要为平行取向,在垂直膜的方向物理性能都比较低。本学位论文以石蜡作为填充组分,通过横向切片制备了垂直取向碳纳米管/石蜡复合膜,复合膜的厚度也可以在50纳米到50微米内进行精确控制。通过真空升华的方法可以轻松有效地去除石蜡,分离出干净的碳纳米管。因为碳纳米管垂直于膜表面且上下贯通,因此碳纳米管长度和直径分布都比较窄。进一步通过加热和超声处理,可以将碳纳米管沿轴向剪开,获得多层石墨烯纳米带,产率接近100%。因为碳纳米管长度和直径都可以比较精确地控制,所以通过本方法可以有效地控制多层石墨烯纳米带的长度和宽度。
     综上所述,本论文发展了制备取向碳纳米管膜及其复合膜的两种新方法,这些方法操作方便、效率高,也具有较好的普适性,可以大规模推广使用。取向碳纳米管膜及其复合膜显示优异的光学、电学和机械性能,可广泛用作各种电极材料,这里重点以其作为对电极构建新型DSSC,发现基于取向碳纳米管的DSSC显示较高的效率。
Due to the novel electrical, optical, and mechanical properties, carbon nanotubes (CNTs) exhibit promising applications in a wide variety of fields, such as electrical and optical devices, energy, and biomedicine. However, in many cases, CNTs are required to be further assembled into bulk materials including array, film, and fiber. Among them, the CNT film may represent the most studied system. Unfortunately, as CNTs tend to aggregate during the conventional solution or melt process, it still remains challenging to control and improve the structure and property in the film, which has largely hindered the application in many fields. For instance, CNT films have been widely proposed as electrodes in organic solar cells such as dye-sensitized solar cells (DSSCs). DSSCs have been considered as the third generation solar cells and extensively investigated due to a low cost, easy fabrication, and high energy conversion efficiency. The development of new electrode materials represents a promising direction to improve the cell efficiency with target for a practical application. Therefore, CNT films have been widely explored for the electrode in DSSCs, particularly, as counter electrode to replace the conventional expensive and unstable platinum. However, the aggregated structure of CNTs has greatly lowered the efficiency of the resulting cell. To further improve the structure and property of CNT film, it is critically important to realize a high alignment of CNTs. Herein, two new methods have been developed for the preparation of aligned CNT films and composite films, and the use of them as counter electrodes to fabricate highly efficient DSSCs was carefully studied in this thesis. The main work is summarized as bellow.
     Synthesis of ultrahigh CNT array. To prepare aligned CNT films and aligned CNT composite films with remarkable electrical and mechanical properties, a simple and effective method is to use highly aligned CNT arrays as building materials, so the quality of CNT arrays is very important at this point. Herein, CNT arrays with a high quality were synthesized by chemical vapor deposition. The resulting CNT show a multi-walled structure with diameters of7-20nm. The effect of growth parameters including catalyst, gas flow rate, temperature, and time has been carefully explored in the synthesis of CNT arrays. The optimal conditions for the synthesis of ultrahigh CNT arrays were discovered.
     Preparation of ultralong aligned CNT films and their application in DSSCs. Currently, aligned CNT films are generally dry-spun from CNT arrays. However, the synthesis of spinnable CNT array remains challenging. In addition, the spinnable array mainly shows a height of300-400μm (typically less than1mm), the resistance of CNT film is very high. It has been well known that the resistance of a CNT film is dominated by the contact resistances among CNTs as the resistances of individual CNTs are very low. Shorter CNTs produce more contact points with higher contact resistances. Therefore, the increase of CNT lengths is critical to improve the application of CNT film in electrode. Herein, a new approach called "adhesion and transfer method" has been developed to produce ultralong aligned CNT films. It represents a general approach in the preparation of CNT films, particularly appropriate for ultrahigh CNT arrays. The resulting ultralong and aligned CNT film indicated a conductivity of1150S/cm at room temperature, compared with~500S/cm for an aligned CNT film by a dry-spinning method. The aligned ultralong CNT film was further used as counter electrode to fabricate DSSCs. The energy conversion efficiency has achieved9.00%, much higher than4.18%for the cell based on the aligned CNT film synthesized by the dry-spinning process and8.05%based on the conventional platinum.
     Preparation of horizontally aligned CNT/epoxy composite films and their application in DSSCs. CNTs exhibit high mechanical strength and high electrical conductivity, while polymers could be easily processed with broad source and low cost. The above advantages may be combined by producing a CNT/polymer composite material. Herein, the conventional slice technology has been developed to prepare aligned CNT/epoxy composite film in which CNTs are aligned along the slicing direction. The thickness of the composite film can be accurately controlled from50nm to50μm. The resulting composite film could be also highly flexible, transparent, and conductive, which enable a promising application in electrode. Herein, the composite film has been used as counter electrode to fabricate DSSCs.
     Preparation and application of perpendicularly aligned CNT/olefin composite films. Polymer materials such as epoxy, polystyrene, and poly (methy1methacrylate) have been generally used as a second phase in the preparation of CNT composite materials, and solution or burning process has been mainly applied to remove the second phase in case that pure CNTs are required. However, the above post-treatments shares a big and common problem, i.e., difficulty in preparing high-purity CNTs as some impurities are often attached on CNTs. Herein, olefin has been mainly used to prepare vertically aligned CNT composite films also by using a slicing technique. The thickness of the composite film may be controlled from50nm to50μm. Olefin can be then easily removed by evaporation at high temperature at which CNTs would not be affected in both structure and property. Because CNTs are perpendicularly penetrated through the composite film, the lengths of CNTs are accordingly tuned from50nm to50μm. The CNTs were further unzipped into graphene nanoribbons after heating and ultrasonic treatments.
     In summary, two new methods have been developed for the preparation of aligned CNT films and composite films with high efficiency. The aligned CNT films showed excellent optical, electrical, and mechanical properties, and exhibited promising applications in various fields, particularly, as a new family of electrode materials. The use of them as counter electrodes in DSSCs have been studied as a demonstration.
引文
[1]S. Iijima, Helical microtubules of graphitic carbon, Nature,354 (1991) 56-58.
    [2]Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, M.Y. Zhou, W.Z. Li, Very long carbon nanotubes, Nature,394 (1998) 631-632.
    [3]Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science,282 (1998) 1105-1107.
    [4]R.H. Baughman, C.X. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon nanotube actuators, Science,284 (1999) 1340-1344.
    [5]A. Barinov, L. Gregoratti, P. Dudin, S. La Rosa, M. Kiskinova, Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation:defects and oxygen bonding, Advanced Materials,21 (2009) 1916-1920.
    [6]E.R. Meshot, D.L. Plata, S. Tawfick, Y.Y. Zhang, E.A. Verploegen, A.J. Hart, Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst, ACS Nano,3 (2009) 2477-2486.
    [7]R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes-the route toward applications, Science,297 (2002) 787-792.
    [8]Y.Y. Zhang, G.F. Zou, S.K. Doom, H. Htoon, L. Stan, M.E. Hawley, C.J. Sheehan, Y.T. Zhu, Q.X. Jia, Tailoring the morphology of carbon nanotube arrays:from spinnable forests to undulating foams, ACS Nano,3 (2009) 2157-2162.
    [9]A.J.S. Ahammad, J.J. Lee, M.A. Rahman, Electrochemical Sensors Based on Carbon Nanotubes, Sensors,9 (2009) 2289-2319.
    [10]P. Avouris, Z.H. Chen, V. Perebeinos, Carbon-based electronics, Nature Nanotechnology,2 (2007) 605-615.
    [11]W.A. Deheer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey baker, L. Forro, D. Ugarte, Aligned carbon nanotube films:production and optical and electronic properties, Science,268 (1995) 845-847.
    [12]L.B. Hu, D.S. Hecht, G. Gruner, Carbon Nanotube Thin Films:Fabrication, Properties, and Applications, Chemical Reviews,110 (2010) 5790-5844.
    [13]J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A-Mater. Sci. Process.,69 (1999) 255-260.
    [14]V. Presser, M. Heon, Y. Gogotsi, Carbide-Derived Carbons-From Porous Networks to Nanotubes and Graphene, Advanced Functional Materials,21 (2011) 810-833.
    [15]H. Zhang, G.P. Cao, Y.S. Yang, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries, Energy & Environmental Science,2 (2009) 932-943.
    [16]O. Yilmazoglu, A. Popp, D. Pavlidis, J.J. Schneider, D. Garth, F. Schuttler, G. Battenberg, Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing, Nanotechnology,23 (2012) 085501.
    [17]L. Zhang, S.J. Zhen, Y. Sang, J.Y. Li, Y. Wang, L. Zhan, L. Peng, J. Wang, Y.F. Li, C.Z. Huang, Controllable preparation of metal nanoparticle/carbon nanotube hybrids as efficient dark field light scattering agents for cell imaging, Chemical Communications,46 (2010) 4303-4305.
    [18]W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon Nanomaterials in Biosensors:Should You Use Nanotubes or Graphene?, Angewandte Chemie-International Edition,49 (2010) 2114-2138.
    [19]D. Yu, L. Dai, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors, Journal of Physical Chemistry Letters,1 (2010) 467-470.
    [20]S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.-S. Kim, P.T. Hammond, Y Shao-Horn, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nature Nanotechnology,5 (2010) 531-537.
    [21]C.B. Jacobs, M.J. Peairs, B.J. Venton, Review:Carbon nanotube based electrochemical sensors for biomolecules, Analytica Chimica Acta,662 (2010) 105-127.
    [22]D.S. Hecht, L. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Advanced Materials,23 (2011) 1482-1513.
    [23]S. Sorgenfrei, C.-y. Chiu, R.L. Gonzalez, Jr., Y.-J. Yu, P. Kim, C. Nuckolls, K.L. Shepard, Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor, Nature Nanotechnology,6 (2011) 125-131.
    [24]D.-m. Sun, M.Y. Timmermans, Y. Tian, A.G. Nasibulin, E.I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Flexible high-performance carbon nanotube integrated circuits, Nature Nanotechnology,6 (2011) 156-161.
    [25]H.R. Byon, S.W. Lee, S. Chen, P.T. Hammond, Y. Shao-Horn, Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors, Carbon,49 (2011) 457-467.
    [26]S. Jung, K.B. Kim, G. Fernandes, J.H. Kim, F. Wahab, J. Xu, Enhanced thermoelectric power in nanopatterned carbon nanotube film, Nanotechnology,23 (2012) 135704.
    [27]D.H. Lee, J.A. Lee, W.J. Lee, S.O. Kim, Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films, Small,7 (2011) 95-100.
    [28]W.Y. Ko, J.W. Su, C.H. Guo, K.J. Lin, Extraordinary mechanical flexibility in composite thin films composed of bimetallic AgPt nanoparticle-decorated multi-walled carbon nanotubes, Carbon,50 (2012) 2244-2251.
    [29]T. Chen, S. Wang, Z. Yang, Q. Feng, X. Sun, L. Li, Z.-S. Wang, H. Peng, Flexible, Light-Weight, Ultrastrong, and Semiconductive Carbon Nanotube Fibers for a Highly Efficient Solar Cell, Angewandte Chemie-International Edition,50 (2011) 1815-1819.
    [30]S. Ryu, Y. Lee, J.-W. Hwang, S. Hong, C. Kim, T.G. Park, H. Lee, S.H. Hong, High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer, Advanced Materials,23 (2011) 1971-1975.
    [31]J.J. Vilatela, J.A. Elliott, A.H. Windle, A model for the strength of yarn-like carbon nanotube fibers, ACS Nano,5 (2011) 1921-1927.
    [32]G.D. Nessim, M. Seita, K.P. O'Brien, A.J. Hart, R.K. Bonaparte, R.R. Mitchell, C.V. Thompson, Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock, Nano Letters,9 (2009) 3398-3405.
    [33]F. Cicoira, C.M. Aguirre, R. Martel, Making contacts to n-type organic transistors using carbon nanotube arrays, ACS Nano,5 (2011) 283-290.
    [34]P. Dawson, J.A. Duenas, M.G. Boyle, M.D. Doherty, S.E.J. Bell, A.M. Kern, O.J.F. Martin, A.S. Teh, K.B.K. Teo, W.I. Milne, Combined antenna and localized plasmon resonance in raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes, Nano Letters,11 (2011) 365-371.
    [35]B.K. Sarker, S. Shekhar, S.I. Khondaker, Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties, ACS Nano,5 (2011) 6297-6305.
    [36]S. Shekhar, P. Stokes, S.I. Khondaker, Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis, ACS Nano,5 (2011) 1739-1746.
    [37]N. Liu, G. Fang, W. Zeng, H. Zhou, H. Long, X. Zhao, Enhanced field emission from three-dimensional patterned carbon nanotube arrays grown on flexible carbon cloth, Journal of Materials Chemistry,22 (2012) 3478-3484.
    [38]B.K. Sarker, S.I. Khondaker, High-performance short channel organic transistors using densely aligned carbon nanotube array electrodes, Applied Physics Letters,100 (2012)023301.
    [39]Y. Ye, Y. Mao, H. Wang, Z. Ren, Hybrid structure of pH-responsive hydrogel and carbon nanotube array with superwettability, Journal of Materials Chemistry,22 (2012) 2449-2455.
    [40]J. Yu, O. Zvarec, D.M. Huang, M.A. Bissett, D.B. Scanlon, J.G. Shapter, A.D. Abell, Electron transfer through alpha-peptides attached to vertically aligned carbon nanotube arrays:a mechanistic transition, Chemical Communications,48 (2012) 1132-1134.
    [41]C. Wang, K. Ryu, A. Badmaev, J. Zhang, C. Zhou, Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes, ACS Nano,5 (2011) 1147-1153.
    [42]Q. Zhang, J.-Q. Huang, M.-Q. Zhao, W.-Z. Qian, Y. Wang, F. Wei, Radial growth of vertically aligned carbon nanotube arrays from ethylene on ceramic spheres, Carbon,46 (2008) 1152-1158.
    [43]Z.W. Pan, H.G. Zhu, Z.T. Zhang, H.J. Im, S. Dai, D.B. Beach, D.H. Lowndes, Patterned growth of vertically aligned carbon nanotubes on pre-patterned iron/silica substrates prepared by sol-gel and shadow masking, Journal of Physical Chemistry B, 107(2003) 1338-1344.
    [44]G.S.B. McKee, C.P. Deck, K.S. Vecchio, Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis, Carbon,47 (2009) 2085-2094.
    [45]X. Liu, K.H.R. Baronian, A.J. Downard, Direct growth of vertically aligned carbon nanotubes on a planar carbon substrate by thermal chemical vapour deposition, Carbon,47 (2009) 500-506.
    [46]Q. Zhang, D.-G. Wang, J.-Q. Huang, W.-P. Zhou, G.-H. Luo, W.-Z. Qian, F. Wei, Dry spinning yarns from vertically aligned carbon nanotube arrays produced by an improved floating catalyst chemical vapor deposition method, Carbon,48 (2010) 2855-2861.
    [47]Q. Zhang, M.-Q. Zhao, J.-Q. Huang, J.-Q. Nie, F. Wei, Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition, Carbon,48(2010)1196-1209.
    [48]Q. Zhang, M.-Q. Zhao, J.-Q. Huang, Y. Liu, Y. Wang, W.-Z. Qian, F. Wei, Vertically aligned carbon nanotube arrays grown on a lamellar catalyst by fluidized bed catalytic chemical vapor deposition, Carbon,47 (2009) 2600-2610.
    [49]A.C. Dupuis, The catalyst in the CCVD of carbon nanotubes-a review, Progress in Materials Science,50 (2005) 929-961.
    [50]R.A. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor:Turpentine oil, Chemical Physics Letters,414 (2005) 6-10.
    [51]M.S. He, S. Zhou, J. Zhang, Z.F. Liu, C. Robinson, CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism, Journal of Physical Chemistry B,109 (2005) 9275-9279.
    [52]Y. Shi, Y. Ding, H. Liu, W. Jiang, B. Lu, Growth of patterned and aligned carbon nanotube bundles on micro-structured substrate, Applied Surface Science,255 (2009) 7713-7718.
    [53]Y. Chen, J. Yu, Growth direction control of aligned carbon nanotubes, Carbon,43 (2005)3183-3186.
    [54]R. Marangoni, P. Serp, R. Feurer, Y. Kihn, P. Kalck, C. Vahlas, Carbon nanotubes produced by substrate free metalorganic chemical vapor deposition of iron catalysts and ethylene, Carbon,39 (2001) 443-449.
    [55]C.N.R. Rao, A. Govindaraj, Carbon nanotubes from organometallic precursors, Accounts of Chemical Research,35 (2002) 998-1007.
    [56]H.Q. Hou, A.K. Schaper, Z. Jun, F. Weller, A. Greiner, Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor, Chemistry of Materials,15(2003)580-585.
    [57]Y.J. Jung, B.Q. Wei, R. Vajtai, P.M. Ajayan, Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns, Nano Letters,3 (2003) 561-564.
    [58]N. Jeong, Y. Seo, J. Lee, Vertically aligned carbon nanotubes synthesized by the thermal pyrolysis with an ultrasonic evaporator, Diamond and Related Materials,16 (2007) 600-608.
    [59]S. Handuja, S.P. Singh, P. Srivastava, V.D. Vankar, Growth of long aligned carbon nanotubes on amorphous hydrogenated silicon nitride by thermal chemical vapor deposition, Materials Letters,63 (2009) 1249-1251.
    [60]M. Kumar, Y. Ando, A simple method of producing aligned carbon nanotubes from an unconventional precursor-Camphor, Chemical Physics Letters,374 (2003) 521-526.
    [61]C.M. Seah, S.P. Chai, A.R. Mohamed, Synthesis of aligned carbon nanotubes, Carbon,49 (2011) 4613-4635.
    [62]K. Dasgupta, S. Kar, R. Venugopalan, R.C. Bindal, S. Prabhakar, P.K. Tewari, S. Bhattacharya, S.K. Gupta, D. Sathiyamoorthy, Self-standing geometry of aligned carbon nanotubes with high surface area, Materials Letters,62 (2008) 1989-1992.
    [63]D.C. Li, L.M. Dai, S.M. Huang, A.W.H. Mau, Z.L. Wang, Structure and growth of aligned carbon nanotube films by pyrolysis, Chemical Physics Letters,316 (2000) 349-355.
    [64]S.M. Huang, X.Y. Cai, C.S. Du, J. Liu, Oriented long single walled carbon nanotubes on substrates from floating catalysts, Journal of Physical Chemistry B,107 (2003) 13251-13254.
    [65]P. Puengjinda, N. Sano, W. Tanthapanichakoon, T. Charinpanitkul, Selective synthesis of carbon nanotubes and nanocapsules using naphthalene pyrolysis assisted with ferrocene, Journal of Industrial and Engineering Chemistry,15 (2009) 375-380.
    [66]H. Liu, Y. Zhang, D. Arato, R. Li, P. Merel, X. Sun, Aligned multi-walled carbon nanotubes on different substrates by floating catalyst chemical vapor deposition: Critical effects of buffer layer, Surface & Coatings Technology,202 (2008) 4114-4120.
    [67]P. Mauron, C. Emmenegger, A. Zuttel, C. Nutzenadel, P. Sudan, L. Schlapbach, Synthesis of oriented nanotube films by chemical vapor deposition, Carbon,40 (2002) 1339-1344.
    [68]A.P. Quist, E. Pavlovic, S. Oscarsson, Recent advances in microcontact printing, Analytical and Bioanalytical Chemistry,381 (2005) 591-600.
    [69]C.J. Brinker, A.J. Hurd, Fundamentals of sol-gel dip-coating, Journal De Physique Iii,4 (1994) 1231-1242.
    [70]T. Grady, T. Butler, B.D. MacCraith, D. Diamond, M.A. McKervey, Optical sensor for gaseous ammonia with tuneable sensitivity, Analyst,122 (1997) 803-806.
    [71]G.S. Choi, Y.S. Cho, K.H. Son, D.J. Kim, Mass production of carbon nanotubes using spin-coating of nanoparticles, Microelectronic Engineering,66 (2003) 77-82.
    [72]Y. Murakami, S. Chiashi, Y. Miyauchi, M.H. Hu, M. Ogura, T. Okubo, S. Maruyama, Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy, Chemical Physics Letters,385 (2004) 298-303.
    [73]D.Y. Kim, J.B. Yoo, I.T. Han, H.J. Kim, J.E. Jung, Y.W. Jin, J.M. Kim, K.H. Chin, The density control of carbon nanotubes using spin-coated nanoparticle and its application to the electron emitter with triode structure, Diamond and Related Materials,14 (2005) 2084-2088.
    [74]C. Emmenegger, J.M. Bonard, P. Mauron, P. Sudan, A. Lepora, B. Grobety, A. Zuttel, L. Schlapbach, Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism, Carbon,41 (2003) 539-547.
    [75]Y.S. Cho, G.S. Choi, S.Y. Hong, D. Kim, Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition, Journal of Crystal Growth,243 (2002) 224-229.
    [76]L. Shen, P.E. Laibinis, T. Alan Hatton, Aqueous magnetic fluids stabilized by surfactant bilayers, Journal of Magnetism and Magnetic Materials,194 (1999) 37-44.
    [77]X. Liu, T.P. Bigioni, Y. Xu, A.M. Cassell, B.A. Cruden, Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates, Journal of Physical Chemistry B,110 (2006) 20102-20106.
    [78]R.D. Bennett, G.Y. Xiong, Z.F. Ren, R.E. Cohen, Using block copolymer micellar thin films as templates for the production of catalysts for carbon nanotube growth, Chemistry of Materials,16 (2004) 5589-5595.
    [79]A.J. Hart, A.H. Slocum, L. Royer, Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation, Carbon, 44 (2006) 348-359.
    [80]E. Jiran, C.V. Thompson, Capillary instabilities in thin, continuous films, Thin Solid Films,208 (1992) 23-28.
    [81]E. Jiran, C.V. Thompson, Capillary instabilities in thin-films, Journal of Electronic Materials,19 (1990) 1153-1160.
    [82]S.-P. Chai, S.H.S. Zein, A.R. Mohamed, Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane, Chemical Physics Letters,426 (2006) 345-350.
    [83]D. Yuan, L. Ding, H. Chu, Y. Feng, T.P. McNicholas, J. Liu, Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts, Nano Letters,8 (2008) 2576-2579.
    [84]Z. Zhang, M. Shakerzadeh, B. Tay, X. Li, C. Tan, L. Lin, P. Guo, T. Feng, Z. Sun, Fabrication of aligned carbon nanotubes on Cu catalyst by dc plasma-enhanced catalytic decomposition, Applied Surface Science,255 (2009) 6404-6407.
    [85]G.Y. Zhang, D. Mann, L. Zhang, A. Javey, Y.M. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, H.J. Dai, Ultra-high-yield growth of vertical single-walled carbon nanotubes:Hidden roles of hydrogen and oxygen, Proceedings of the National Academy of Sciences of the United States of America,102 (2005) 16141-16145.
    [86]C. Liu, Y.C. Chen, Y. Tzeng, Effects of carbon content in iron catalyst coatings on the growth of vertically aligned carbon nanotubes on smooth silicon surfaces by thermal chemical vapor deposition, Diamond and Related Materials,13 (2004) 1274-1280.
    [87]B. Zhao, D.N. Futaba, S. Yasuda, M. Akoshima, T. Yamada, K. Hata, Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts, ACS Nano,3 (2009) 108-114.
    [88]W.D. Zhang, J.T.L. Thong, W.C. Tjiu, L.M. Gan, Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters, Diamond and Related Materials,11 (2002) 1638-1642.
    [89]D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima,84% Catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach, Journal of Physical Chemistry B,110 (2006) 8035-8038.
    [90]Y.H. Cao, Y.Q. Xu, Controlling the growth morphology of carbon nanotubes: from suspended bridges to upright forests, Nanoscale,4 (2012) 1682-1687.
    [91]S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science,283 (1999) 512-514.
    [92]Y. Yun, V. Shanov, Y. Tu, S. Subramaniam, M.J. Schulz, Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition, Journal of Physical Chemistry B,110 (2006) 23920-23925.
    [93]Z.J. Zhang, B.Q. Wei, G. Ramanath, P.M. Ajayan, Substrate-site selective growth of aligned carbon nanotubes, Applied Physics Letters,77 (2000) 3764-3766.
    [94]C. Zhang, S. Pisana, C.T. Wirth, A. Parvez, C. Ducati, S. Hofmann, J. Robertson, Growth of aligned millimeter-long carbon nanotube by chemical vapor deposition, Diamond and Related Materials,17 (2008) 1447-1451.
    [95]L. Delzeit, C.V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, M. Meyyappan, Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts, Journal of Physical Chemistry B,106 (2002) 5629-5635.
    [96]R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Substrate-support interactions in metal-catalyzed carbon nanofiber growth, Carbon,39 (2001) 2277-2289.
    [97]S. Wei, W.P. Kang, J.L. Davidson, J.H. Huang, Aligned carbon nanotubes fabricated by thermal CVD at atmospheric pressure using Co as catalyst with NH3 as reactive gas, Diamond and Related Materials,15 (2006) 1828-1833.
    [98]E. Terrado, E. Munoz, W.K. Maser, A.M. Benito, M.T. Martinez, Important parameters for the catalytic nanoparticles fort-nation towards the growth of carbon nanotube aligned arrays, Diamond and Related Materials,16 (2007) 1082-1086.
    [99]H. Ago, K. Imamoto, N. Ishigami, R. Ohdo, K.-i. Ikeda, M. Tsuji, Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire, Applied Physics Letters,90 (2007).
    [100]S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Science,265 (1994) 635-639.
    [101]S.M. Huang, X.Y. Cai, J. Liu, Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates, Journal of the American Chemical Society,125 (2003) 5636-5637.
    [102]S.M. Huang, M. Woodson, R. Smalley, J. Liu, Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process, Nano Letters,4 (2004) 1025-1028.
    [103]E. Joselevich, C.M. Lieber, Vectorial growth of metallic and semiconducting single-wall carbon nanotubes, Nano Letters,2 (2002) 1137-1141.
    [104]A. Ismach, E. Joselevich, Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth, Nano Letters, 6(2006)1706-1710.
    [105]A. Ural, Y.M. Li, H.J. Dai, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces, Applied Physics Letters,81 (2002) 3464-3466.
    [106]J.M. Schnorr, T.M. Swager, Emerging applications of carbon nanotubes, Chemistry of Materials,23 (2011) 646-657.
    [107]W.S. Choi, S.H. Ryu, Enhancement of dispersion of carbon nanotube and physical properties of poly(styrene-co-acrylonitrile)/multiwalled carbon nanotube nanocomposite via surface initiated ATRP, Journal of Applied Polymer Science,116 (2010)2930-2936.
    [108]W.-B. Liu, S. Pei, J. Du, B. Liu, L. Gao, Y. Su, C. Liu, H.-M. Cheng, Additive-free dispersion of single-walled carbon nanotubes and its application for transparent conductive films, Advanced Functional Materials, (2011) 2330-2337.
    [109]F. Berti, L. Lozzi, I. Palchetti, S. Santucci, G. Marrazza, Aligned carbon nanotube thin films for DNA electrochemical sensing, Electrochimica Acta,54 (2009) 5035-5041.
    [110]A.O. Lobo, M.A.F. Corat, E.F. Antunes, M.B.S. Palma, C. Pacheco-Soares, E.E. Garcia, E.J. Corat, An evaluation of cell proliferation and adhesion on vertically-aligned multi-walled carbon nanotube films, Carbon,48 (2010) 245-254.
    [111]S. Kim, S. Ju, J.H. Back, Y. Xuan, P.D. Ye, M. Shim, D.B. Janes, S. Mohammadi, Fully transparent thin-film transistors based on aligned carbon nanotube arrays and indium tin oxide electrodes, Advanced Materials,21 (2009) 564-568.
    [112]N.P. Zschoerper, V. Katzenmaier, U. Vohrer, M. Haupt, C. Oehr, T. Hirth, Analytical investigation of the composition of plasma-induced functional groups on carbon nanotube sheets, Carbon,47 (2009) 2174-2185.
    [113]A.A. Kuznetzov, S.B. Lee, M. Zhang, R.H. Baughman, A.A. Zakhidov, Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays, Carbon,48 (2010) 41-46.
    [114]A.E. Aliev, M.H. Lima, E.M. Silverman, R.H. Baughman, Thermal conductivity of multi-walled carbon nanotube sheets:radiation losses and quenching of phonon modes, Nanotechnology,21 (2010) 035709.
    [115]W. Wang, X. Sun, W. Wu, H. Peng, Y. Yu, Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet, Angewandte Chemie-International Edition,51 (2012) 4644-4647.
    [116]Y. Chai, Z. Xiao, P.C.H. Chan, Horizontally aligned carbon nanotube bundles for interconnect application:diameter-dependent contact resistance and mean free path, Nanotechnology,21 (2010) 235705.
    [117]H. Ago, Y. Nakamura, Y. Ogawa, M. Tsuji, Combinatorial catalyst approach for high-density growth of horizontally aligned single-walled carbon nanotubes on sapphire, Carbon,49 (2011) 176-186.
    [118]M. Sun, Z. Xiao, Y. Chai, Y. Li, P.C.H. Chan, Inductance properties of in situ-grown horizontally aligned carbon nanotubes, Ieee Transactions on Electron Devices,58(2011)229-235.
    [119]H.X. Zhang, C. Feng, Y.C. Zhai, K.L. Jiang, Q.Q. Li, S.S. Fan, Cross-stacked carbon nanotube sheets uniformly loaded with SnO(2) nanoparticles:a novel binder-free and high-capacity anode material for lithium-ion batteries, Advanced Materials,21 (2009) 2299-2304.
    [120]S. Motahari, F. Shayeganfar, M. Neek-Amal, Van der Waals energy surface of a carbon nanotube sheet, Solid State Communications,152 (2012) 225-230.
    [121]K.L. Jiang, J.P. Wang, Q.Q. Li, L.A. Liu, C.H. Liu, S.S. Fan, Superaligned carbon nanotube arrays, films, and yarns:a road to applications, Advanced Materials, 23(2011)1154-1161.
    [122]K. Liu, Y.H. Sun, L. Chen, C. Feng, X.F. Feng, K.L. Jiang, Y.G. Zhao, S.S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties, Nano Letters,8 (2008) 700-705.
    [123]M. Zhang, S.L. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets, Science,309 (2005) 1215-1219.
    [124]L. Xiao, Z. Chen, C. Feng, L. Liu, Z.Q. Bai, Y. Wang, L. Qian, Y.Y.Zhang, Q.Q. Li, K.L. Jiang, S.S. Fan, Flexible, stretchable, transparent carbon nanotube thin film loudspeakers, Nano Letters,8 (2008) 4539-4545.
    [125]C. Feng, K. Liu, J.S. Wu, L. Liu, J.S. Cheng, Y.Y Zhang, Y.H. Sun, Q.Q. Li, S.S. Fan, K.L. Jiang, Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes, Advanced Functional Materials,20 (2010) 885-891.
    [126]C.P. Huynh, S.C. Hawkins, Understanding the synthesis of directly spinnable carbon nanotube forests, Carbon,48 (2010) 1105-1115.
    [127]K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan, K. Jiang, Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors, Advanced Functional Materials,21 (2011) 2721-2728.
    [128]F. Yan, C. Zhang, D. Cott, G. Zhong, J. Robertson, High-density growth of horizontally aligned carbon nanotubes for interconnects, Phys. Status Solidi B-Basic Solid State Phys.,247 (2010) 2669-2672.
    [129]T. Xu, Z. Wang, J. Miao, X. Chen, C.M. Tan, Aligned carbon nanotubes for through-wafer interconnects, Applied Physics Letters,91 (2007) 042108.
    [130]T. Xu, J.M. Miao, H. Li, Z.H. Wang, Local synthesis of aligned carbon nanotube bundle arrays by using integrated micro-heaters for interconnect applications, Nanotechnology,20 (2009) 295303.
    [131]J.Y. Lu, J.M. Miao, T. Xu, B. Yan, T. Yu, Z.X. Shen, Growth of horizontally aligned dense carbon nanotubes from trench sidewalls, Nanotechnology,22 (2011) 265614.
    [132]Q. Cheng, B. Wang, C. Zhang, Z. Liang, Functionalized carbon-nanotube sheet/bismaleimide nanocomposites:mechanical and electrical performance beyond carbon-fiber composites, Small,6 (2010) 763-767.
    [133]P. Galvan-Garcia, E.W. Keefer, F. Yang, M. Zhang, S. Fang, A.A. Zakhidov, R.H. Baughman, M.I. Romero, Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns, Journal of Biomaterials Science-Polymer Edition, 18(2007)1245-1261.
    [134]M.D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M.E. Kozlov, J. Oh, N. Rawat, C.S. Haines, M.H. Haque, V. Aare, S. Stoughton, A.A. Zakhidov, R.H. Baughman, Biscrolling nanotube sheets and functional guests into yarns, Science,331 (2011) 51-55.
    [135]R. Ulbricht, S.B. Lee, X.M. Jiang, K. Inoue, M. Zhang, S.L. Fang, R.H. Baughman, A.A. Zakhidov, Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells, Solar Energy Materials and Solar Cells,91 (2007) 416-419.
    [136]P. Liu, L. Liu, Y. Wei, K. Liu, Z. Chen, K. Jiang, Q. Li, S. Fan, Fast high-temperature response of carbon nanotube film and its application as an incandescent display, Advanced Materials,21 (2009) 3563-3566.
    [137]L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, S. Fan, Flexible, stretchable, transparent carbon nanotube thin film loudspeakers, Nano Letters,12 (2012) 2652-2652.
    [138]L. Xiao, Y. Zhang, Y Wang, K. Liu, Z. Wang, T. Li, Z. Jiang, J. Shi, L. Liu, Q. Li, Y. Zhao, Z. Feng, S. Fan, K. Jiang, A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films, Nanotechnology,22 (2011) 025502.
    [139]K.L. Jiang, Q.Q. Li, S.S. Fan, Nanotechnology:Spinning continuous carbon nanotube yarns-Carbon nanotubes weave their way into a range of imaginative macroscopic applications, Nature,419 (2002) 801-801.
    [140]Y. Wei, K. Jiang, X. Feng, P. Liu, L. Liu, S. Fan, Comparative studies of multiwalled carbon nanotube sheets before and after shrinking, Physical Review B,76 (2007) 045423.
    [141]K. Liu, Y. Sun, P. Liu, J. Wang, Q. Li, S. Fan, K. Jiang, Periodically striped films produced from super-aligned carbon nanotube arrays, Nanotechnology,20 (2009) 335705.
    [142]A.E. Aliev, Y.N. Gartstein, R.H. Baughman, Mirage effect from thermally modulated transparent carbon nanotube sheets, Nanotechnology,22 (2011) 045423.
    [143]J.H. Kim, K.H. Lee, L.J. Overzet, G.S. Lee, Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO(x) composites for high-performance energy storage devices, Nano Letters,11 (2011) 2611-2617.
    [144]Y.H. Sun, K. Liu, J. Miao, Z.Y. Wang, B.Z. Tian, L.N. Zhang, Q.Q. Li, S.S. Fan, K.L. Jiang, Highly sensitive surface-enhanced raman scattering substrate made from superaligned carbon nano tubes, Nano Letters,10 (2010) 1747-1753.
    [145]P. Dawson, J.A. Duenas, M.G. Boyle, M.D. Doherty, S.E.J. Bell, A.M. Kern, O.J.F. Martin, A.S. Teh, K.B.K. Teo, W.I. Milne, Combined antenna and localized plasmon resonance in raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes, Nano Letters,11 (2011) 365-371.
    [146]U. Vohrer, I. Kolaric, M.H. Haque, S. Roth, U. Detlaff-Weglikowska, Carbon nanotube sheets for the use as artificial muscles, Carbon,42 (2004) 1159-1164.
    [147]Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites:Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science,35 (2010) 357-401.
    [148]E. Camponeschi, R. Vance, M. Al-Haik, H. Garmestani, R. Tannenbaum, Properties of carbon nanotube-polymer composites aligned in a magnetic field, Carbon,45 (2007) 2037-2046.
    [149]J. Dai, Q. Wang, W Li, Z. Wei, G. Xu, Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites, Materials Letters,61 (2007) 27-29.
    [150]H.S. Peng, Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity, Journal of the American Chemical Society,130 (2008) 42-43.
    [151]C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites, Polymer,46 (2005) 877-886.
    [152]W.H. Song, I.A. Kinloch, A.H. Windle, Nematic liquid crystallinity of multiwall carbon nanotubes, Science,302 (2003) 1363-1363.
    [153]Z.H. Fan, S.G. Advani, Characterization of orientation state of carbon nanotubes in shear flow, Polymer,46 (2005) 5232-5240.
    [154]W. Chen, X.M. Tao, Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes, Applied Surface Science,252 (2006) 3547-3552.
    [155]B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Aligned multiwalled carbon nanotube membranes, Science,303 (2004) 62-65.
    [156]L. Li, Z. Yang, H. Gao, H. Zhang, J. Ren, X. Sun, T. Chen, H.C. Kia, H. Peng, Vertically aligned and penetrated carbon nanotube/polymer composite film and promising electronic applications, Advanced Materials,23 (2011) 3730-3735.
    [157]Q. Cheng, J. Wang, K. Jiang, Q. Li, S. Fan, Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites, Journal of Materials Research,23 (2008) 2975-2983.
    [158]Q.F. Cheng, J.P. Wang, J.J. Wen, C.H. Liu, K.L. Jiang, Q.Q. Li, S.S. Fan, Carbon nanotube/epoxy composites fabricated by resin transfer molding, Carbon,48 (2010)260-266.
    [159]J.G. Zhou, J. Cheiftz, R.Y. Li, F.P. Wang, X.T. Zhou, T.K. Sham, X.L. Sun, Z.F. Ding, Tailoring multi-wall carbon nanotubes for smaller nanostructures, Carbon,47 (2009) 829-838.
    [160]S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Physical Review Letters,84 (2000) 4613-4616.
    [161]P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Physical Review Letters,87 (2001) 215502.
    [162]P.K. Schelling, R. Keblinski, Thermal expansion of carbon structures, Physical Review B,68 (2003) 035425.
    [163]L.Z. Chen, C.H. Liu, K. Liu, C.Z. Meng, C.H. Hu, J.P. Wang, S.S. Fan, High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites, ACS Nano,5 (2011) 1588-1593.
    [164]M. Majumder, A. Stinchcomb, B.J. Hinds, Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery, Life Sciences,86(2010)563-568.
    [165]S. Kim, J.R. Jinschek, H. Chen, D.S. Sholl, E. Marand, Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport, Nano Letters,7 (2007) 2806-2811.
    [166]A.Y. Cao, P.L. Dickrell, W.G. Sawyer, M.N. Ghasemi-Nejhad, P.M. Ajayan, Super-compressible foamlike carbon nanotube films, Science,310 (2005) 1307-1310.
    [167]V.L. Pushparaj, L. Ci, S. Sreekala, A. Kumar, S. Kesapragada, D. Gall, O. Nalamasu, A.M. Pulickel, J. Suhr, Effects of compressive strains on electrical conductivities of a macroscale carbon nanotube block, Applied Physics Letters,91 (2007)153116. [168] U.Y. Lee, K. Heo, J.H. Bak, S.U. Cho, S. Moon, YD. Park, S. Hong, Scalable
    assembly method of vertically-suspended and stretched carbon nanotube network devices for nanoscale electro-mechanical sensing components, Nano Letters,8 (2008) 4483-4487.
    [169]A. Bsoul, M.S.M. Ali, K. Takahata, Piezoresistive pressure sensor using vertically aligned carbon-nanotube forests, Electronics Letters,47 (2011) 807-894.
    [170]D.J. Lipomi, M. Vosgueritchian, B.C.K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z.N. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nature Nano technology,6 (2011) 788-792.
    [171]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chemical Reviews,110 (2010) 6595-6663.
    [172]A. Listorti, B. O'Regan, J.R. Durrant, Electron transfer dynamics in dye-sensitized solar cells, Chemistry of Materials,23 (2011) 3381-3399.
    [173]R.F. Service, Outlook brightens for plastic solar cells, Science,332 (2011) 293-293.
    [174]B. Kippelen, J.L. Bredas, Organic photovoltaics, Energy & Environmental Science,2 (2009) 251-261.
    [175]M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nature Materials,9 (2010) 239-244.
    [176]B. Oregan, M. Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal tio2 films, Nature,353 (1991) 737-740.
    [177]A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Graetzel, Porphyrin-sensitized solar cells with cobalt (ii/iii)-based redox electrolyte exceed 12 percent efficiency, Science, 334(2011)629-634.
    [178]M. Gratzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C-Photochemistry Reviews,4 (2003) 145-153.
    [179]Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coordination Chemistry Reviews,248 (2004) 1381-1389.
    [180]Q.F. Zhang, C.S. Dandeneau, X.Y. Zhou, G.Z. Cao, ZnO nanostructures for dye-sensitized solar cells, advanced materials,21 (2009) 4087-4108.
    [181]T. Daeneke, T.H. Kwon, A.B. Holmes, N.W. Duffy, U. Bach, L. Spiccia, High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes, Nature Chemistry,3 (2011) 211-215.
    [182]A. Mishra, M.K.R. Fischer, P. Baeuerle, Metal-free organic dyes for dye-sensitized solar cells:from structure:property relationships to design rules, Angewandte Chemie-International Edition,48 (2009) 2474-2499.
    [183]J.G. Nam, Y.J. Park, B.S. Kim, J.S. Lee, Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode, Scripta Materialia,62 (2010) 148-150.
    [184]W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient dye-sensitized cells with catalytic multiwall carbon nanotube counter electrodes, Acs Applied Materials & Interfaces,1 (2009) 1145-1149.
    [185]Y.Y. Huang, E.M. Terentjev, Transparent electrode with a nanostructured coating, ACS Nano,5 (2011) 2082-2089.
    [186]J.A. Rogers, T. Someya, Y.G. Huang, Materials and mechanics for stretchable electronics, Science,327 (2010) 1603-1607.
    [187]H. Lindstrom, A. Holmberg, E. Magnusson, S.E. Lindquist, L. Malmqvist, A. Hagfeldt, A new method for manufacturing nanostructured electrodes on plastic substrates, Nano Letters,1 (2001) 97-100.
    [188]T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, M. Graetzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, Journal of the Electrochemical Society,153 (2006) 2255-2261.
    [189]Q.F. Zhang, G.Z. Cao, Nanostructured photoelectrodes for dye-sensitized solar cells, Nano Today,6 (2011) 91-109.
    [190]N. Hirata, J.J. Lagref, E.J. Palomares, J.R. Durrant, M.K. Nazeeruddin, M. Gratzel, D. Di Censo, Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films, Chemistry-a European Journal,10 (2004) 595-602.
    [191]Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara, S. Yanagida, Dye-sensitized TiO2 nanotube solar cells:fabrication and electronic characterization, Physical Chemistry Chemical Physics,7 (2005) 4157-4163.
    [192]K.Y. Chun, B.W. Park, Y.M. Sung, D.J. Kwak, Y.T. Hyun, M.W. Park, Fabrication of dye-sensitized solar cells using TiO(2)-nanotube arrays on Ti-grid substrates, Thin Solid Films,517 (2009) 4196-4198.
    [193]E. Ramasamy, W.J. Lee, D.Y. Lee, J.S. Song, Spray coated multi-wall carbon nanotube counter electrode for tri-iodide reduction in dye-sensitized solar cells, Electrochemistry Communications,10 (2008) 1087-1089.
    [194]B.H. Fan, X.G. Mei, K. Sun, J.Y. Ouyang, Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells, Applied Physics Letters,93 (2008) 143103.
    [195]S.S. Li, Y.H. Luo, W. Lv, W.J. Yu, S.D. Wu, P.X. Hou, Q.H. Yang, Q.B. Meng, C. Liu, H.M. Cheng, Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells, Advanced Energy Materials,1(2011)486-490.
    [196]Z.B. Yang, T. Chen, R.X. He, G.Z. Guan, H.P. Li, L.B. Qiu, H.S. Peng, Aligned Carbon Nanotube Sheets for the Electrodes of Organic Solar Cells, Advanced Materials,23 (2011) 5436-5439.
    [197]M. Stadermann, S.P. Sherlock, J.-B. In, F. Fornasiero, H.G. Park, A.B. Artyukhin, Y. Wang, J.J. De Yoreo, C.P. Grigoropoulos, O. Bakajin, A.A. Chernov, A. Noy, Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays, Nano Letters,9 (2009) 738-744.
    [198]N.S. Kim, Y.T. Lee, J.H. Park, H. Ryu, H.J. Lee, S.Y. Choi, J.B. Choo, Dependence of the vertically aligned growth of carbon nanotubes on the catalysts, Journal of Physical Chemistry B,106 (2002) 9286-9290.
    [199]C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, Diameter-controlled synthesis of carbon nanotubes, Journal of Physical Chemistry B,106 (2002) 2429-2433.
    [200]H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Influence of ethylene and hydrogen flow rates on the wall number, crystallinity, and length of millimeter-long carbon nanotube array, Journal of Physical Chemistry C,112 (2008) 12706-12709.
    [201]W. Fu, L. Liu, K. Jiang, Q. Li, S. Fan, Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays, Carbon,48 (2010) 1876-1879.
    [202]M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science,306 (2004) 1358-1361.
    [203]I. Chung, B. Lee, J.Q. He, R.P.H. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature,485 (2012) 486-494.
    [204]Y.C. Lan, Y. Wang, Z.F. Ren, Physics and applications of aligned carbon nanotubes, Advances in Physics,60 (2011) 553-678.
    [205]G.R. Li, F. Wang, Q.W. Jiang, X.P. Gao, P.W. Shen, Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells, Angewandte Chemie-International Edition,49 (2010) 3653-3656.
    [206]F.M. Du, R.C. Scogna, W. Zhou, S. Brand, J.E. Fischer, K.I. Winey, Nanotube networks in polymer nanocomposites:Rheology and electrical conductivity, Macromolecules,37 (2004) 9048-9055.
    [207]C.H. Yoon, R. Vittal, J. Lee, W.-S. Chae, K.-J. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode, Electrochimica Acta,53 (2008) 2890-2896.
    [208]H. Zhu, H. Zeng, V. Subramanian, C. Masarapu, K.-H. Hung, B. Wei, Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes, Nanotechnology,19 (2008) 465204.
    [209]J. Liu, Y.-T. Kuo, K.J. Klabunde, C. Rochford, J. Wu, J. Li, Novel dye-sensitized solar cell architecture using TiO(2)-coated vertically aligned carbon nanofiber arrays, Acs Applied Materials & Interfaces,1 (2009) 1645-1649.
    [210]J.E. Trancik, S.C. Barton, J. Hone, Transparent and catalytic carbon nanotube films, Nano Letters,8 (2008) 982-987.
    [211]J. Wang, M. Musameh, Carbon nanotube/teflon composite electrochemical sensors and biosensors, Analytical Chemistry,75 (2003) 2075-2079.
    [212]M. Roso, S. Sundarrajan, D. Pliszka, S. Ramakrishna, M. Modesti, Multifunctional membranes based on spinning technologies:the synergy of nanofibers and nanoparticles, Nanotechnology,19 (2008) 285707.
    [213]E. Ramasamy, WJ. Lee, D.Y. Lee, J.S. Song, Nanocarbon counterelectrode for dye sensitized solar cells, Applied Physics Letters,90 (2007) 173103.
    [214]K. Matsuda, M. Matsuo, S. Mizoguti, K. Higashiguchi, M. Irie, Reversed photo switching of intraniolecular magnetic interaction using a photochromic bis(2-thienyl)ethene spin coupler, Journal of Physical Chemistry B,106 (2002) 11218-11225.
    [215]T. Yamaguchi, N. Tobe, D. Matsumoto, H. Arakawa, Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes, Chemical Communications, (2007) 4767-4769.
    [216]Y.J. Zhou, Y. Bayram, F. Du, L.M. Dai, J.L. Volakis, Polymer-carbon nanotube sheets for conformal load bearing antennas, ieee transactions on antennas and propagation,58 (2010) 2169-2175.
    [217]D. Ghosh, P. Ghosh, M. Tanemura, A. Haysahi, Y. Hayashi, K. Shinji, N. Miura, M.Z. Yusop, T. Asaka, Highly transparent and flexible field emission devices based on single-walled carbon nanotube films, Chemical Communications,47 (2011) 4980-4982.
    [218]M.Y. Han, B. Oezyilmaz, Y Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons, Physical Review Letters,98 (2007) 206805.
    [219]X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.J. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science,319 (2008) 1229-1232.
    [220]A.G. Cano-Marquez, F.J. Rodriguez-Macias, J. Campos-Delgado, C.G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez, D.A. Cullen, D.J. Smith, M. Terrones, Y.I. Vega-Cantu, Ex-MWNTs:Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes, Nano Letters,9 (2009) 1527-1533.
    [221]A.L. Elias, A.R. Botello-Mendez, D. Meneses-Rodriguez, V.J. Gonzalez, D. Ramirez-Gonzalez, L. Ci, E. Munoz-Sandoval, P.M. Ajayan, H. Terrones, M. Terrones, Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels, Nano Letters,10 (2010) 366-372.
    [222]A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes, ACS Nano,4 (2010) 2059-2069.
    [223]L.Y. Jiao, X.R. Wang, G. Diankov, H.L. Wang, H.J. Dai, Facile synthesis of high-quality graphene nanoribbons, Nature Nanotechnology,5 (2010) 321-325.
    [224]M. Terrones, A.R. Botello-Mendez, J. Campos-Delgado, F. Lopez-Urias, Y.I. Vega-Cantu, F.J. Rodriguez-Macias, A.L. Elias, E. Munoz-Sandoval, A.G. Cano-Marquez, J.C. Charlier, H. Terrones, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today,5 (2010) 351-372.
    [225]J.-H. Kim, H.-S. Jang, K.H. Lee, L.J. Overzet, G.S. Lee, Tuning of Fe catalysts for growth of spin-capable carbon nanotubes, Carbon,48 (2010) 538-547.
    [226]M.H. Ruemmeli, F. Schaeffel, A. Bachmatiuk, D. Adebimpe, G. Trotter, F. Boerrnert, A. Scott, E. Coric, M. Sparing, B. Rellinghaus, P.G. McCormick, G. Cuniberti, M. Knupfer, L. Schultz, B. Buechner, Investigating the outskirts of fe and co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth, ACS Nano,4 (2010) 1146-1152.
    [227]K.L. Lu, R.M. Lago, Y.K. Chen, M.L.H. Green, P.J.F. Harris, S.C. Tsang, Mechanical damage of carbon nanotubes by ultrasound, Carbon,34 (1996) 814-816.
    [228]S.R. Dhakate, N. Chauhan, S. Sharma, R.B. Mathur, The production of multi-layer graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes, Carbon,49 (2011) 4170-4178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700