用户名: 密码: 验证码:
变速恒频风力发电机组模拟系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展、人类对生活水平要求的提高和低碳经济政策的提出,光靠常规能源的开发和利用已经远远满足不了社会的需要和可持续发展的要求。所以对可再生清洁能源的开发已经是一种迫在眉睫的趋势了,在已经开始开发的新能源中,风能无疑是技术最成熟、最具有规模开发和商业发展前景的。为此,风力发电事业近年来在世界各国都得到了大力的发展。尤其是在国内,近几年装机容量都以至少30%的速度快速增长。
     鉴于目前风能利用效率还有待风电技术的发展而提高,特别是国内的风力发电技术与国外相比还有很大的差距,所以认真而系统的对风力发电技术进行研究是非常必要的。但是实际的风电场大多处于偏远的地区,给大多数长期从事风电科研的人员带来实践研究的不便。为此,建立一套先进的风力发电模拟系统是在实验室环境下研究风电的一个必然途径。本文就将利用异步电动机作为原动机代替风力机,用DSP作为控制器,与无刷双馈发电机构成一套完善的风力发电模拟系统。文章主要就以下几个方面对系统的设计和构建作出详细的阐述。
     1、对风力发电的基本理论和风力机的工作原理进行详细的分析,就定浆距和变浆距风力机的区别与联系进行比较。在研究风力机模拟原理和技术的基础上,根据系统结构、模拟特性和原动机的不同,对目前已有的风力发电模拟方法进行分类分析。针对风力机的发展趋势,主要就变浆距风力机在风速不同的情况下其运行特性的不同,将变浆距风力机的运行区域划分为最大风能捕获区、恒速区和恒功率区,并就各个区段上风力机的运行特性进行详细分析,从而得出在不同区段上变浆距风力机的模拟方法和模拟重点。并通过仿真实验验证了分区段模拟方法的可行性和实效性。
     2、作为原动机的异步电动机,其控制策略的好坏直接影响整个系统的性能。文章就异步电动机的基本结构和工作原理进行了分析,对异步电动机在各种坐标系下的数学模型进行了研究。从能量回收的角度就目前已有的异步电动机控制方法进行分类分析和比较,最后选定直接转矩控制(DTC)作为本系统原动机的控制策略。为了使直接转矩控制具有更小的转矩脉动和较好的低速性能,文章利用灰色预测原理和模糊控制算法对传统的直接转矩控制进行优化,最后得到了控制效果比较理想的灰色模糊DTC,并通过仿真实验验证了该理论在风力机模拟系统中的可行性和优越性。
     3、发电机系统控制策略的好坏直接影响整个系统的模拟效果。在介绍无刷双馈电机的数学模型和工作原理的基础上,接着总结了本实验室在研究无刷双馈风力发电系统的控制策略上已取得的部分成果,包括同步坐标系下的功率解耦控制、自抗扰功率解耦控制和基于模型参考的功率解耦控制。
     4、用一个TI公司的TMS320F2812 DSP和ABB变频器作为原动机的控制器,用一个DSP和一组整流逆变装置作为发电机的控制器,用一个DSP实时监测和分析发电机的输出状态,与综合监控器(PC机或ARM)一起构成风力发电模拟系统的控制单元。以模块化的方式分别介绍了风力机模拟子系统、风速采集子系统、发电机控制子系统、发电机状态监测子系统和综合监控子系统的硬件设计和软件设计。使得整个系统从总体结构,硬件设计到软件设计都得以实现。
     5、为了使风力发电模拟系统融入实验室的风光互补发电系统,本文就构建一套综合网络监测系统的有关模拟系统部分做了详细分析,主要介绍网监系统的整体结构、数据采集模块、通信模块和终端显示模块。主要包括C2000 Plus串口转换器的工作原理,串口通信程序的实现方法,网络套接字的使用方法和ZedGraph图形界面控件的使用。
     最后在实验室以上述理论成果为基础搭建了风力发电模拟实验平台。在平台上对变速恒频风力发电进行了模拟发电实验,并对实验结果进行了分析。结果表明了本模拟系统的可行性和实用性。
Along with the industry development, the humanity level of living unceasing enhancement and the proposed low-carbon economic policies, the development and use of conventional energy source already could not satisfy society's need and the sustainable development request. Therefore the development of renewable clean energy is already a trend in the immediate, in various new energy sources, wind power is undoubtedly the most technologically mature, the most large-scale development and business development prospects. Therefore, the wind power generation in recent years, countries around the world have been vigorously developing. Especially in domestic, in recent years the installed capacity by at least 30% speed swift growth.
     Given the current wind energy utilization efficiency need to be improved, especially in the domestic wind power generation technology with foreign countries, there is still a wide gap, so earnest and systematic study of wind power generation technology is necessary. However, most of the actual wind farm in the remote suburbs, it brings inconvenient to the majority of wind power researchers. Therefore, establishes an advanced wind power generation simulation system is a foundation for study the wind power under the laboratory environment. This article will use of an induction motor as prime mover instead of the wind machine, with the DSP as controllers, with the brushless doubly-fed generator constitutes a complete simulation system. It will detail the following aspects of the system design and build.
     1. Make a detailed analysis of the basic theory of wind power and the working principle of wind turbine, and compared the differences and linkages of variable pitch wind turbine and fix pitch wind turbine. Study of wind turbine simulation theory and technology, and classified analysis the existing wind power simulation methods according to the difference of the system architecture, simulation features and the original motivation. Divide the work area of variable pitch wind turbine into the maximum power point tracking section, the constant-speed section and the constant-power section, according to its different operational characteristics in different wind speed circumstances. A detailed analysis of the performance characteristics of variable pitch wind turbines in each section, obtained its simulation method and simulation focus on different section. And through modeling and simulation verify the feasibility and effectiveness of this method.
     2. The asynchronous motor, as a prime mover of, its control strategy directly affects the performance of the whole system. So, this paper analyzes the basic structure and working principle of asynchronous motor, and studied the mathematical model of induction motors at different coordinate system. Classification analysis and comparison of the asynchronous motor control method from the perspective of energy recovery, and decided to use the direct torque control system as the prime mover of the control strategy. In order to direct torque control with a smaller torque ripple and better low-speed performance, the article using gray prediction theory and fuzzy control algorithm to optimize the conventional direct torque control. And through simulation results verify the feasibility and superiority of the theory in the wind turbine simulation systems.
     3. Generator system control strategy for a direct impact on the entire system simulation results. The paper introducing the working principle and mathematical model of brushless doubly-fed machine, and summarizes a part of the research results on the the control strategy for brushless doubly-fed wind power generation system in our laboratory. It including the power decoupling control strategy based on synchronous coordinate, the power decoupling control strategy based on ADRC and the power decoupling control strategy based on MFC.
     4. With a TI company's TMS320F2812 DSP and ABB converter as a prime mover controller, a DSP and a set of rectifier inverter device as the generator controller, using a DSP real-time monitoring and analysis the output of generator, and Integrated Monitor (PC or ARM) together constitute the control unit of wind power generation simulation system. Introduced the hardware design and software design of wind turbine simulation subsystem, wind speed acquisition subsystem, generator control subsystem, and generator condition monitoring subsystem and integrated monitoring subsystem in a modular way. Makes the whole system’s general architecture, hardware design to software design has realized.
     5. To make wind power generation simulation system to become part of the solar-wind power generation system in laboratory, this article has done a detailed analysis on how to construct a comprehensive network monitoring system. Focuses on the system’s overall structure, data acquisition module, communication module and terminal module. Include the work principle of C2000-Plus serial converter, the realization method of serial communication program, the using methods of network socket and graphical interface controls(ZedGraph).
     The wind power generation simulation platform has been implemented based on the above theory in our laboratory. Has done a VSCF wind power generation simulation experiment, and analyzed the experimental results. The results show that the feasibility and practicality of this simulation system.
引文
[1]中华人民共和国国务院新闻办公室.中国的能源现状与政策.2007
    [2]李俊峰,等.中国风电发展报告2008.北京:中国环境科学出版社.2008
    [3] http://www.chinanewenergy.com/html/20090104/63385.html
    [4]朱瑞兆.中国风能资源分布.百思论坛(http://www.baisi.net/index.php)
    [5]北京银联信息咨询中心.2009中国风电产业发展研究报告.2009
    [6]林炯康.基于参考模型的风力发电系统实验平台研究[D].广州:华南理工大学,2007
    [7]姚兴佳,等.风力发电机组风轮功率输出特性模拟试验方法:发明专利. 200610048043[P].2007
    [8]赵栋利,等.一种变速恒频风力双馈发电机实验模拟系统:发明专利. 200510086939[P].2007
    [9]吴捷,等.风力发电模拟实验平台:实用新型专利.200820205396[P].2009
    [10]杨俊华,吴捷.绿色能源与生态环境控制[J].控制理论与应用,2004,21(6): 864-869
    [11]叶杭冶.风力发电机组的控制技术[M] .北京:机械工业出版社,2006
    [12]许洪华,倪受元.独立运行风电机组的最佳叶尖速比控制[J].太阳能学报,1998(1):30-35
    [13]董萍.风力发电建模、控制及其仿真研究[D].华南理工大学.2004
    [14] Rajib Datta and V.T.Ranganathan. A method of Tracking the Peak Power Points for a Variable Speed Wind Energy VOnversion System[J]. IEEE Transactions on energy conversion.2003.3
    [15] H. D.Battista & R. J. Mantz. Sliding Mode Control of Torque Ripple in Wind Energy Conversion Systems with Slip Power Recovery [C].Proc. of the 24th Annual Conf. of IEEE, IECON’98, 1998(2):651-656
    [16] http://dqx.hnie.edu.cn/show.aspx?bm=index2&id=258
    [17]吴捷,许燕灏.基于异步电动机的风力机风轮动态模拟方法[J].华南理工大学学报(自然科学版),2005,Vol.33(6):46-49
    [18]贾要勤,曹秉刚,杨仲庆.风力机模拟平台的MPPT快速响应控制方法[J].太阳能学报,2004,25(3):364-369
    [19] Nunes A.A.C.Wind Turbine Simulator Using A DC Machine and A Power ReversibleConverter[C]. In Proc. ICEMA Conf. Adelaide, Australia, 1993:536-540
    [20] Stein W.M. A Power Electronics based PowerShedding Control for Wind/Diesel Systems[C]. Int.J.Ambient Energy, 1992,13(2):65 - 74
    [21] Battaiotto P. E., Mantz R. J., and Puleston P. F. A Wind Turbine Emulator based on a Dual DSP Processor System[J]. Control Eng. Practice, 1996, 4(9):1261-1266
    [22]郑康,潘再平.变速恒频风力发电系统中的风力机模拟[J].机电工程. 2003, 20(6):40-43
    [23] Barrero F. etac. A Test-Ring To Evaluate A Wind Turbine Generation Control System based on DSP [C]. nProc.EPE’97Conf., Trondheim, Norway, 1997: 2642-2645
    [24] Andrew Miller, Edward Muljadi, Donald S. Zinger. A Variable Speed Wind Turbine Power Control [J]. IEEE Transactions on Energy Conversion, 1997, 12(2)
    [25]李勤.无刷双馈风力发电机系统的研究[D] .杭州:浙江大学硕士学位论文.2002
    [26] Hossein Madadi Kojabadi, Liuchen Chang, Tobie Boutot.Development of a Novel Wind Turbine Simulator for Wind Energy Conversion Systems Using an Inverter-Controlled Induction Motor[J]. IEEE Transactions on Energy Conversion, 2004, 3(9)
    [27]卞松江,潘再平,贺益康.风力机特性的直流电机模拟[J].太阳能学报.2003,24(3)
    [28] Chang L., Doraiswami R., Boutot T., Kojabadi H. Development of a Wind Turbine Simulator for Wind Energy Conversion Systems [J]. IEEE, 2000, NO.7
    [29]许燕灏.基于DSP的风力发电模拟系统的研究[D].广州:华南理工大学. 2005
    [30]李伟伟,徐殿国,张学广.基于直流电机模拟风力机的静态和动态特性[J].电机与控制应用.2007,34(11):1-5,46
    [31] Dolan D S L, Lehn PW. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow[C].Applied Power Electronics Conference and Exposition, 2006: 717-724
    [32]阮虎,徐华中.基于直接转矩控制的风轮模拟仿真研究[J].微计算机信息,2007:23(6)
    [33]叶远茂,吴捷,张先亮等.变浆距风力机分区段模拟方法及其控制策略[J].电网技术.2010,34(1):159-163
    [34]徐大平,张新房,柳亦兵.风力发电控制问题综述[J].中国电力,2005, 38(4):70-74
    [35]张仰飞,袁越,陈小虎等.风力机参数的可辨识分析[J].电力系统自动化.2009,33(6):86-89
    [36]蒋豪贤.电机学[M].广州:华南理工大学出版社,1997
    [37]顾绳谷.电机及拖动基础[M].第2版.北京:机械工业出版社,1997
    [38]陈伯时.电力拖动自动控制系统[M].第3版.北京:机械工业出版社,2003
    [39]孙振川.异步电机直接转矩控制理论和技术的研究[D].济南:山东大学.2008
    [40]黄天太.异步电机直接转矩控制系统研究[D].南京:南京航空航天大学.2007
    [41]李夙.异步电动机直接转矩控制[M].北京:机械工业出版社,1994
    [42]刘述喜,王明渝.模糊控制在感应电动机直接转矩控制中的应用[J].重庆大学学报,2005,28(12):23-26
    [43]曹承志,梁越洋.基于灰色预测理论的DTC模糊控制器优化设计[J].沈阳工业大学学报,2008,30(5):587-590
    [44] S. Williamson, et al. Generalised Theory of the Brushless Doubly-Fed Machine. Part 1: Analysis [J]. IEE Proc. Electr. Power Appl.1997,Vol.144(2): 111-122
    [45]张凤阁.磁场调制式无刷双馈电机研究[D] .沈阳:沈阳工业大学,1999
    [46]张凤阁,王凤翔,徐隆亚.磁阻和笼型转子无刷双馈电机的统一等效电路和转矩公式[J] .中国电机工程学报,1999, Vol.19(11): 28-31
    [47]王凤翔,张凤阁,郑钢.笼型转子无刷双馈电机的动态特性仿真[J] .电机与控制学报, 1998,Vol.2(4):221-224
    [48]张凤阁,王凤翔,林成武.无刷双馈电机的结构特点与设计原则[J] .微特电机,1999, Vol.27(3):21-24
    [49]申辉阳,杨向宇,程志伟.无刷双馈电机基于同步角的向量解耦控制[J] .中小型电机,2005, Vol.32(3): 30-35
    [50]杨向宇,励庆孚.变频器-无刷双馈电机调速系统的仿真研究[J] .中国电机工程学报,2002, Vol.22(7): 95-100
    [51]张先勇.无刷双馈风力发电机组的建模与控制研究[D].广州:华南理工大学,2007
    [52]黄守道等.无刷双馈电机转子磁场定向控制策略的研究[J].电工技术学报, 2002,Vol.17(2):34-39
    [53]黄守道,王耀南等.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学报,2005,Vol.25(4):87-93
    [54]黄守道.无刷双馈电机的控制方法研究[D] .长沙:湖南大学,2005
    [55] R.Li, A.K. Wallace, et al. Two-axis Model Development of Cage-Rotor Brushless Doubly-Fed Machines [J]. IEEE Trans. On Energy Conversion, 1991, Vol.6 (3): 453-460
    [56] D.Zhou, R.Spee.Synchronous Frame Model and Decoupled Development for Doubly-Fed Machines[C]. Proc. of 1994 IEEE Industry Electronics Spec. Conf. 1994:1229-1236
    [57]韩京清.线性系统的结构与反馈系统计算[C] .全国控制理论及其应用学术交流会议论文集.北京:科学出版社,1981
    [58]韩京清.非线性状态误差反馈控制律-NLSEF[J].控制与决策,1995,Vol.10(3):221-225
    [59]韩京清.自抗扰控制器及其应用[J] .控制与决策,1998,Vol.13(1):19-23
    [60]韩京清.从PID控制技术到“自抗扰控制”技术[J] .控制工程,2002,Vol.9(3):13-18
    [61]李乔.并联型混合有源电力滤波器的自抗扰与H∞鲁棒控制[D].广州:华南理工大学,2005
    [62]王秀峰,孙永华,祝和云.自适应控制系统-理论、设计与应用[M] .北京:化学工业出版社,1990
    [63] A.Morse. Structure and design of linear model following systems [J] .IEEE Trans. on Automatic Control, 1973, Vol.18 (4):346-354
    [64] C.M.Liaw. Modified linear model-following controller for current-source inverter-fed induction motor drives [J]. IEE Proceedings, 1990, Vol.137 (1):49-56
    [65]阿斯特罗姆等.自适应控制:第二版,影印本[M].北京:科学出版社,2003
    [66] Y.D.Laudau. Adaptive control: the model reference approach [M].New York, USA: M.Dekker, 1979
    [67] S.Bolognani, G.S.Buha, D.Ciscato, D.Longo. Adaptive Control of a voltage inverter unduction motor drive [J].IEEE IECON'84:83-88, 1984, Tokyo, Japan
    [68] K.Ohnishi, Y.Ueda, K.Miyachi. Model Reference Adaptive system against rotro resistance variation in induction motor drive [J].IEEE Trans. on Industrial Electronics, 1986, Vol.33(3): 217-223
    [69]刘白雁,丁崇生.模型跟随自适应控制新方法及其工程应用[M].西安:西安交通大学出版社,2004
    [70]李言俊,张科.自适应控制理论及应用[M].西安:西北工业大学出版社,2005
    [71]王念旭.DSP基础与应用系统开发[M].北京:北京航天航空大学出版社,2001
    [72]苏奎峰.TMS320F2812原理与开发[M].北京:电子工业出版社,2005
    [73]张勇.基于双DSP+ARM的风力发电模拟实验平台[D].广州:华南理工大学.2008
    [74]邱晓欢.风力机模拟实验平台的开发与实现[D].广州:华南理工大学.2009
    [75] ACS 800标准应用程序7.x固件手册[G].北京:ABB电气传动系统有限公司,2002
    [76]孟如,孙进生. ACS400变频器的串行通讯控制[J].河北理工学院学报, 2002,24(2):149-152
    [77] Modbus适配器模块RMBA-01用户手册[G].北京ABB电气传动系统有限公司.2002
    [78] ACS 800泵和风机控制(PFC)应用程序7.x固件手册[G].北京:ABB电气传动系统有限公司.2002
    [79] STC12C2052AD系列单片机器件手册[G].宏晶科技(深圳).2005
    [80]富士IGBT-IPM应用手册[G].富士电机电子设备技术株式会社(日本).2004
    [81] http://www.avrw.com/article/art_110_2781.htm
    [82]张家胜,努尔泰,陈飞.有源能量回馈器在电梯节能方面的应用[J].建筑节能,2008,36(7):18-19
    [83]张勇,曾君,王世闻等.风力发电机组便携式电能质量检测系统[J].控制理论与应用,2008,25(1):163-166
    [84]王幸之,王雷,翟成,等.单片机应用系统抗干扰技术[M] .北京:北京航空航天大学出版社,2000
    [85]王世闻,吴捷,林炯康.基于DSP的多通道同步DAS及其应用[J].微计算机信息,2007,23(3-2):167-169
    [86] A.Ferrero and R.Ottoboni. A High accuracy Fourier analysis based on synchronous sampling techniques[J]. IEEE Trans on IM, 1996(8):827-830
    [87]柳澹.分布式风力-太阳能混合发电能量管理系统的研究[D].广州:华南理工大学,2008
    [88] ADS8364 Datasheet. 250kHz, 16-Bit, 6-Channel Simultaneous Sampling Analog To Digital Converters[G]. Texas Instruments, 2002
    [89]孙秋野,孙凯,冯健.ARM嵌入式系统开发典型模块[M].北京:人民邮电出版社,2007
    [90]李驹光. ARM应用系统开发详解—基于S3C4510B的系统设计(第二版).北京:清华大学出版社,2004
    [91] EC-9S数字风速传感器、EC-9X数字风向传感器使用说明书[G].锦州:锦州阳光科技发展有限公司
    [92]谷海涛,颜湘武,于世涛.TMS320F2812在变频调速系统中的应用[J].中小型电机,2005,32(5):41-45
    [93]卞松江.变速恒频风力发电关键技术研究[D].杭州:浙江大学,2003
    [94]杨俊华.无刷双馈风力发电系统及其控制研究[D].广州:华南理工大学,2006
    [95]马艺炜,陈渊睿,曾君.风电场电能质量分析与评估[J].控制理论与应用,2008, 25(2):307-310
    [96]吴晓朝,吴捷,杨金明等.风电场电能质量监测系统的研究与应用[J].计算机工程与设计,2006,27(19):3525-3527
    [97]胡铭,陈珩.电能质量及其分析方法综述[J].电网技术,2000, 24(2): 26-29
    [98]余晓明,吴捷.基于DSP的通用FFT算法在电网谐波分析检测中的应用[J].北京联合大学学报,2007,21(3):128-131
    [99] C2000 Plus说明书[G].深圳:深圳市东方数码技术有限公司
    [100]李现勇. Visual C++串口通信技术与工程实践[M].北京:人民邮电出版社,2002
    [101]谭思亮,邹超群. Visual C++串口通信工程开发实例导航[M].北京:人民邮电出版社,2003
    [102] http://www.99inf.net/SoftwareDev/VC/28104.htm
    [103]韩兆兵,李小进,方海英.Visual C++ 6.0网络开发技术[M].北京:人民邮电出版社,1999
    [104]李博轩. Visual C++ 6.0网络及Internet开发指南[M].北京:清华大学出版社,2000
    [105]毛建一.基于PLC的风/光互补发电能量管理系统的研究与实现[D].广州:华南理工大学,2009
    [106]白焰,钟艳辉,秦宇飞.基于VC的Modbus协议通信测试软件的实现—Modbus串口通信与Modbus/TCP通信[J].现代电力,2008,25(6):76-80
    [107]范晓平.跟着实例学Visual C++ 6.0访问数据库·绘图·制表[M].北京:北京航空航天大学出版社,2003
    [108]于国卿,李趁趁,赵雨森.ZedGraph控件在水闸监测系统开发中的应用研究[J].南水北调与水利科技,2008,6(3):43-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700