用户名: 密码: 验证码:
腺苷A_(2A)受体阻断剂SCH58261对大鼠杏仁核点燃癫痫模型的影响及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:目前临床上仍有20%-30%的癫痫患者药物治疗效果较差,不能很好的控制癫痫发作,这部分患者的发作类型主要是颞叶癫痫,因此仍需研究新的抗癫痫药物。杏仁核电点燃模型是模拟人类颞叶癫痫最好的癫痫模型,且对现有的大部分抗癫痫药物耐药。因此应用点燃模型在动物体内研究药物是否具有抗癫痫作用可以为以后的临床药物治疗提供理论基础。近年来研究发现,腺苷A2A受体阻断剂在很多慢性疾病模型中如帕金森病模型可以长时间发挥作用,但是它在不同的癫痫模型中的作用存在争议,在此基础上,本实验研究腺苷A2A受体阻断剂SCH58261对大鼠杏仁核点燃癫痫模型的作用及对点燃进程的影响。
     方法:将电极植入Wistar大鼠右侧杏仁核,每天给予500肚的电流刺激,大鼠连续十天在刺激后达到5级发作视为点燃成功。点燃成功后的大鼠,通过腹腔给药的方法,观察SCH58261对模型成功后各发作参数的作用。除此之外,观察药物对杏仁核点燃进程的影响,每天刺激前30min给予SCH58261,记录大鼠每天发作级数及脑电变化。整个实验过程中,严密观察药物对大鼠行为学的影响。
     结果:在成功点燃的癫痫模型中,SCH58261(0.005,0.05,0.5mg/kg)对全面性发作阈值(GST)没有影响。以GST(+4μA)为刺激强度,SCH58261(0.005,0.05mg/kg)可以降低杏仁核后放电时间(ADD),运动性发作持续时间(MSD),5级发作持续时问(S5D)和癫痫发作总的持续时间(SD); SCH58261(0.005,0.05mg/kg)对癫痫4级发作潜伏期(S4L)和癫痫发作状态(SS)没有影响;SCH58261(0.5mg/kg)对点燃模型各发作参数均无抑制作用。以2×GST为刺激强度,SCH58261(0.05mg/kg)对ADD和S5D均无明显抑制作用,但可以降低MSD和SD发作时间。SCH58261(0.005,0.05,0.5mg/kg)不影响杏仁核点燃癫痫模型进程。
     结论:SCH58261在0.005-0.05mg/kg范围内不能影响杏仁核癫痫模型点燃进程,但可以抑制模型点燃成功后痫性发作。
     目的:临床很多颞叶癫痫患者及颞叶癫痫动物模型中都发现海马神经元缺失,并与癫痫反复发作有相关性。减轻海马神经元损伤对治疗癫痫有一定作用。MAPK信号通路与癫痫的关系密切,并且参与细胞生长分化的很多过程,同时它也是腺苷A2A受体的下游信号转导通路之一。本部分实验在此基础上,研究杏仁核点燃癫痫模型海马损伤情况及腺苷A2A受体阻断剂SCH58261对其保护作用以及与MAPKs的关系。
     方法:将电极植入Wistar大鼠右侧杏仁核,每天给予500μA的电流刺激,大鼠连续10天在刺激后达到5级发作视为点燃成功。SCH58261干预的大鼠,在每天刺激前30分钟腹腔注射0.05mg/kg药物。成功点燃的大鼠,在最后一次5级发作后2小时处死,尼氏染色法观察各组海马神经元损伤情况,Western blot检测海马JNK、p-JNK、p38、 p-p38、ERK、p-ERK的表达,免疫组化法观察p-JNK、p-p38的表达部位。
     结果:尼氏染色结果显示杏仁核点燃大鼠刺激侧海马CA3区有神经元损伤,腹腔注射SCH58261对神经元损伤有保护作用。假手术组、点燃模型组及SCH58261组海马CA3区正常形态神经元计数分别为36.0±2.6,,22.2±1.9,31.2±1.9;各组间差别有统计学意义。Western blot及免疫组化方法显示刺激侧海马CA3区p-JNK、p-p38表达明显增多,SCH58261对其有抑制作用;杏仁核点燃不影响p-ERK的表达。
     结论:腹腔注射SCH58261可以减轻杏仁核点燃模型海马CA3区神经元的损伤,其机制可能是通过抑制JNK、p38的活化实现的。
Objective:The current Antiepileptic drugs are not effective in20%-30%of epilepsy patients expecially in temporal lobe epilepsies. There is a need to develop new antiepileptic drugs. Amygdala kindling is one of the most commonly used experimental animal models of temporal lobe epilepsies which have the highest percentage of drug resistance. Experimental drug studies based on kindling model may provide good clues for clinical therapy for epilepsy. The brain neuroprotective effect of A2A receptor antagonists are maintained in chronic noxious brain conditions such as Parkinson's disease without observable peripheral effects. But the role of A2A receptor antagonists in different animal models of epilepsy is controversial. The purpose of this study was to evaluate the effect of adenosine A2A receptor antagonist SCH58261on amygdala-kindled seizures and its potential for epileptogenesis.
     Methods:Electrodes were implanted into the right amygdala of adult male Wistar rats. Kindling was accomplished using stimulus strength of500μA applied daily to the amygdala until consecutive ten stage5were induced in rats. Then effect of SCH58261was studied in fully kindled rats after intraperitoneal injection. In addition, the effect on kindling development was evaluated through SCH58261injection30min before daily stimulation. In all experiments, behavioral changes in the rats in response to SCH58261were monitored closely.
     Results:In fully amygdala-kindled rats SCH58261(0.005,0.05,0.5mg/kg) had no effect on generalized seizure threshold(GST). In the stimulus intensity of GST(+4μA) SCH58261(0.005,0.05mg/kg) decreased afterdischage duration (ADD), motor seizure duration (MSD), stage5duration (S5D)and seizure duration (SD); it had no influence on stage4latency (S4L) and seizure stage (SS). SCH58261(0.5mg/kg) had no effect on all seizure parameters. In the stimulus intensity of2×GST SCH58261(0.05mg/kg) decreased MSD and SD,but can not affect ADD and S5D. In contrast to the results in fully amygdala-kindled rats, SCH58261(0.005,0.05,0.5mg/kg) had few or no effects on the development of amygdala-kindled seizures.
     Conclusion:although SCH58261had no influence on the development of amygdala-kindled seizures, it had potent anticonvulsant profile and little adverse effects at the dosage of0.005-0.05mg/kg, suggesting that the substance was effective against amygdala-kindled seizures.
     Objective:Neuronal loss in hippocampus has been found in most patients with the temporal lobe epilepsy(TLE) and animal models simulating TLE;which is relative with recurrent seizures.The protective effect of hippocampus neuron is essential.The mitogen-activated protein kinase family(MAPKs) has been shown to be involved in cell cycle progression, proliferation and differentiation in all organisms including mammals,and considered to correlate with epilepsy.Meanwhile,the adenosine A2A receptors couple to the MAPKs. The purpose of this study was to evaluate the effect of adenosine A2A receptor antagonist SCH58261on hippocampus neuronal loss in amygdala-kindled models and its mechanisms.
     Methods:Electrodes were implanted into the right amygdala of adult male Wistar rats. Kindling was accomplished using stimulus strength of500μA applied daily to the amygdala until consecutive10stage5were induced in rats.The animals was injected intraperitoneally SCH582610.05mg/kg30min before daily stimulation in SCH group.All kindled rats was decapitated2h after the tenth stage5seizure.Nissl staining was used to observe neuronal loss in hippocampus.Western blot and immunohistochemistry were performed to test the expression of JNK,p-JNK,p38,p-p38,ERK,p-ERK in hippocampus.
     Results:Nissl staining revealed loss of neurons in the CA3of hippocampus in fully amygdala-kindled rats and intraperitoneal injection of SCH58261(0.05mg/kg) was protective.The normal neuron counting of hippocampus CA3was36.0±2.6,22.2±1.9,31.2±1.9in sham group,amygdala-kindled group and SCH group.The difference is statistical significant. Kindling increased the expression of p-JNK and p-p38and had no effect on activation of ERK.SCH58261was inhibitory to the activation of JNK and p38.
     Conclusion:Intraperitoneal injection of SCH58261(0.05mg/kg) was protective to neuronal loss of hippocampus CA3in amygdala-kindled rats through inhibiting the activation of JNK and p38.
引文
[1]Fredholm B B, Chen J F, Cunha R A, et al. Adenosine and brain function[J]. Int Rev Neurobiol.2005,63:191-270.
    [2]Fredholm B B, Ijzerman A P, Jacobson K A, et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update[J]. Pharmacol Rev.2011,63(1):1-34.
    [3]Gomes C V, Kaster M P, Tome A R, et al. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration[J]. Biochim Biophys Acta.2011,1808(5): 1380-1399.
    [4]Boison D. Adenosine and epilepsy:from therapeutic rationale to new therapeutic strategies[J]. Neuroscientist.2005,11(1):25-36.
    [5]Dolphin A C, Prestwich S A. Pertussis toxin reverses adenosine inhibition of neuronal glutamate release[J]. Nature.1985,316(6024):148-150.
    [6]Ribeiro J A, Cunha R A, Correia-De-Sa P, et al. Purinergic regulation of acetylcholine release[J]. Prog Brain Res.1996,109:231-241.
    [7]Greene R W, Haas H L. The electrophysiology of adenosine in the mammalian central nervous system[J]. Prog Neurobiol.1991,36(4):329-341.
    [8]Gouder N, Fritschy J M, Boison D. Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy[J]. Epilepsia.2003,44(7): 877-885.
    [9]Fedele D E, Li T, Lan J Q, et al. Adenosine Al receptors are crucial in keeping an epileptic focus localized[J]. Exp Neurol.2006,200(1):184-190.
    [10]Schaddelee M P, Dejongh J, Collins S D, et al. Population pharmacokinetic-pharmacodynamic modelling of the anti-hyperalgesic effect of 5'deoxy-N6-cylopentyladenosine in the mononeuropathic rat[J]. Eur J Pharmacol.2004, 504(1-2):7-15.
    [11]Shryock J C, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system:biochemistry, physiology, and pharmacology [J]. Am J Cardiol.1997,79(12A): 2-10.
    [12]Sweeney M I. Neuroprotective effects of adenosine in cerebral ischemia:window of opportunity [J]. Neurosci Biobehav Rev.1997,21(2):207-217.
    [13]Rebola N, Porciuncula L O, Lopes L V, et al. Long-term effect of convulsive behavior on the density of adenosine A1 and A 2 A receptors in the rat cerebral cortex [J]. Epilepsia. 2005,46 Suppl 5:159-165.
    [14]Jacobson K A, von Lubitz D K, Daly J W, et al. Adenosine receptor ligands: differences with acute versus chronic treatment[J]. Trends Pharmacol Sci.1996,17(3): 108-113.
    [15]Svenningsson P, Le Moine C, Aubert I, et al. Cellular distribution of adenosine A2A receptor mRNA in the primate striatum[J]. J Comp Neurol.1998,399(2):229-240.
    [16]Rebola N, Sebastiao A M, de Mendonca A, et al. Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats[J]. J Neurophysiol. 2003,90(2):1295-1303.
    [17]Cunha R A, Milusheva E, Vizi E S, et al. Excitatory and inhibitory effects of Al and A2A adenosine receptor activation on the electrically evoked [3H]acetylcholine release from different areas of the rat hippocampus [J]. J Neurochem.1994,63(1):207-214.
    [18]Pinna A, Corsi C, Carta A R, et al. Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation[J]. Eur J Pharmacol.2002, 446(1-3):75-82.
    [19]Monopoli A, Casati C, Lozza G, et al. Cardiovascular pharmacology of the A2A adenosine receptor antagonist, SCH 58261, in the rat[J]. J Pharmacol Exp Ther.1998, 285(1):9-15.
    [20]Loscher W. Animal models of intractable epilepsy[J]. Prog Neurobiol.1997,53(2): 239-258.
    [21]Loscher W, Schmidt D. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations[J]. Epilepsy Res.1988,2(3):145-181.
    [22]Goddard G V, Mcintyre D C, Leech C K. A permanent change in brain function resulting from daily electrical stimulation[J]. Exp Neurol.1969,25(3):295-330.
    [23]Zeraati M, Mirnajafi-Zadeh J, Fathollahi Y, et al. Adenosine Al and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats[J]. Seizure.2006,15(1):41-48.
    [24]Hosseinmardi N, Mirnajafi-Zadeh J, Fathollahi Y, et al. The role of adenosine Al and A2A receptors of entorhinal cortex on piriform cortex kindled seizures in rats[J]. Pharmacol Res.2007,56(2):110-117.
    [25]Crandall J E, Bernstein J J, Boast C A, et al. Kindling in the rat hippocampus:absence of dendritic alterations [J]. Behav Neural Biol.1979,27(4):516-522.
    [26]Sutula T, He X X, Cavazos J, et al. Synaptic reorganization in the hippocampus induced by abnormal functional activity[J]. Science.1988,239(4844):1147-1150.
    [27]Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science.2002,298(5600):1911-1912.
    [28]Chen X, Wu J, Hua D, et al. The c-Jun N-terminal kinase inhibitor SP600125 is neuroprotective in amygdala kindled rats[J]. Brain Res.2010,1357:104-114.
    [29]Melani A, Cipriani S, Vannucchi M G, et al. Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia[J]. Brain. 2009,132(Pt 6):1480-1495.
    [1]Cristalli G, Lambertucci C, Marucci G, et al. A2A adenosine receptor and its modulators:overview on a druggable GPCR and on structure-activity relationship analysis and binding requirements of agonists and antagonists[J]. Curr Pharm Des.2008,14(15): 1525-1552.
    [2]Fedele D E, Li T, Lan J Q, et al. Adenosine A1 receptors are crucial in keeping an epileptic focus localized[J]. Exp Neurol.2006,200(1):184-190.
    [3]Cunha R A. Neuroprotection by adenosine in the brain:From A(1) receptor activation to A (2A) receptor blockade[J]. Purinergic Signal.2005,1(2):111-134.
    [4]Gouder N, Fritschy J M, Boison D. Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy [J]. Epilepsia.2003,44(7): 877-885.
    [5]Svenningsson P, Le Moine C, Aubert I, et al. Cellular distribution of adenosine A2A receptor mRNA in the primate striatum[J]. J Comp Neurol.1998,399(2):229-240.
    [6]Lopes L V, Halldner L, Rebola N, et al. Binding of the prototypical adenosine A(2A) receptor agonist CGS 21680 to the cerebral cortex of adenosine A(1) and A(2A) receptor knockout mice[J]. Br J Pharmacol.2004,141(6):1006-1014.
    [7]Cunha R A, Milusheva E, Vizi E S, et al. Excitatory and inhibitory effects of Al and A2A adenosine receptor activation on the electrically evoked [3H]acetylcholine release from different areas of the rat hippocampus [J]. J Neurochem.1994,63(1):207-214.
    [8]Tomiyama M, Kimura T, Maeda T, et al. Upregulation of striatal adenosine A2A receptor mRNA in 6-hydroxydopamine-lesioned rats intermittently treated with L-DOPA[J]. Synapse.2004,52(3):218-222.
    [9]D'Alimonte I, D'Auro M, Citraro R, et al. Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease[J]. Eur J Neurosci.2009,30(6):1023-1035.
    [10]De Sarro G, De Sarro A, Di Paola E D, et al. Effects of adenosine receptor agonists and antagonists on audiogenic seizure-sensible DBA/2 mice[J]. Eur J Pharmacol.1999, 371(2-3):137-145.
    [11]Zhang G, Franklin P H, Murray T F. Activation of adenosine A1 receptors underlies anticonvulsant effect of CGS21680[J]. Eur J Pharmacol.1994,255(1-3):239-243.
    [12]El Y M, Ledent C, Parmentier M, et al. Adenosine A2A receptor deficient mice are partially resistant to limbic seizures[J]. Naunyn Schmiedebergs Arch Pharmacol.2009, 380(3):223-232.
    [13]El Y M, Ledent C, Parmentier M, et al. Absence of the adenosine A(2A) receptor or its chronic blockade decrease ethanol withdrawal-induced seizures in mice[J]. Neuropharmacology.2001,40(3):424-432.
    [14]Zeraati M, Mirnajafi-Zadeh J, Fathollahi Y, et al. Adenosine A1 and A2A receptors of hippocampal CA1 region have opposite effects on piriform cortex kindled seizures in rats[J]. Seizure.2006,15(1):41-48.
    [15]Hosseinmardi N, Mirnajafi-Zadeh J, Fathollahi Y, et al. The role of adenosine A1 and A2A receptors of entorhinal cortex on piriform cortex kindled seizures in rats[J]. Pharmacol Res.2007,56(2):110-117.
    [16]Tchekalarova J, Sotiriou E, Georgiev V, et al. Up-regulation of adenosine Al receptor binding in pentylenetetrazol kindling in mice:effects of angiotensin Ⅳ[J]. Brain Res.2005, 1032(1-2):94-103.
    [17]Cunha G M, Canas P M, Melo C S, et al. Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801[J]. Exp Neurol.2008,210(2):776-781.
    [18]Zocchi C, Ongini E, Conti A, et al. The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist[J]. J Pharmacol Exp Ther.1996,276(2):398-404.
    [19]Blum D, Galas M C, Pintor A, et al. A dual role of adenosine A2A receptors in 3-nitropropionic acid-induced striatal lesions:implications for the neuroprotective potential of A2A antagonists[J]. J Neurosci.2003,23(12):5361-5369.
    [20]Popoli P, Pintor A, Domenici M R, et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity:possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum[J]. J Neurosci.2002,22(5):1967-1975.
    [21]Monopoli A, Casati C, Lozza G, et al. Cardiovascular pharmacology of the A2A adenosine receptor antagonist, SCH 58261, in the rat[J]. J Pharmacol Exp Ther.1998, 285(1):9-15.
    [22]Marcoli M, Raiteri L, Bonfanti A, et al. Sensitivity to selective adenosine A1 and A2A receptor antagonists of the release of glutamate induced by ischemia in rat cerebrocortical slices[J]. Neuropharmacology.2003,45(2):201-210.
    [23]Popoli P, Frank C, Tebano M T, et al. Modulation of glutamate release and excitotoxicity by adenosine A2A receptors[J]. Neurology.2003,61(11 Suppl 6):S69-S71.
    [24]Xiaoqin Z, Zhengli L, Changgeng Z, et al. Changes in behavior and amino acid neurotransmitters in the brain of rats with seizure induced by IL-lbeta or IL-6[J]. J Huazhong Univ Sci Technolog Med Sci.2005,25(3):236-239.
    [25]D'Alimonte I, D'Auro M, Citraro R, et al. Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease[J]. Eur J Neurosci.2009,30(6):1023-1035.
    [26]Roseti C, Palma E, Martinello K, et al. Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GAB A(A) receptors microtransplanted to Xenopus oocytes[J]. Proc Natl Acad Sci U S A.2009,106(37):15927-15931.
    [27]Weiss S R, Post R M. Kindling:separate vs. shared mechanisms in affective disorders and epilepsy [J]. Neuropsychobiology.1998,38(3):167-180.
    [28]Hamada K, Song H K, Ishida S, et al. Contrasting effects of zonisamide and acetazolamide on amygdaloid kindling in rats[J]. Epilepsia.2001,42(11):1379-1386.
    [29]Weiss S R, Post R M. Carbamazepine and carbamazepine-10,11-epoxide inhibit amygdala-kindled seizures in the rat but do not block their development[J]. Clin Neuropharmacol.1987,10(3):272-279.
    [1]Loscher W. Animal models of intractable epilepsy[J]. Prog Neurobiol.1997,53(2): 239-258.
    [2]Gouder N, Fritschy J M, Boison D. Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy [J]. Epilepsia.2003,44(7): 877-885.
    [3]Goddard G V. Development of epileptic seizures through brain stimulation at low intensity [J]. Nature.1967,214(5092):1020-1021.
    [4]Goddard G V, Mcintyre D C, Leech C K. A permanent change in brain function resulting from daily electrical stimulation[J]. Exp Neurol.1969,25(3):295-330.
    [5]Crandall J E, Bernstein J J, Boast C A, et al. Kindling in the rat hippocampus:absence of dendritic alterations [J]. Behav Neural Biol.1979,27(4):516-522.
    [6]Sutula T, He X X, Cavazos J, et al. Synaptic reorganization in the hippocampus induced by abnormal functional activity[J]. Science.1988,239(4844):1147-1150.
    [7]Represa A, Le Gall L S G, Ben-Ari Y. Hippocampal plasticity in the kindling model of epilepsy in rats[J]. Neurosci Lett.1989,99(3):345-350.
    [8]Bertram E R, Lothman E W. Morphometric effects of intermittent kindled seizures and limbic status epilepticus in the dentate gyrus of the rat[J]. Brain Res.1993,603(1):25-31.
    [9]Cavazos J E, Das I, Sutula T P. Neuronal loss induced in limbic pathways by kindling: evidence for induction of hippocampal sclerosis by repeated brief seizures[J]. J Neurosci. 1994,14(5 Pt 2):3106-3121.
    [10]Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science.2002,298(5600):1911-1912.
    [11]Harrison J C, Zyla T R, Bardes E S, et al. Stress-specific activation mechanisms for the "cell integrity" MAPK pathway[J]. J Biol Chem.2004,279(4):2616-2622.
    [12]Gupta S, Barrett T, Whitmarsh A J, et al. Selective interaction of JNK protein kinase isoforms with transcription factors[J]. EMBO J.1996,15(11):2760-2770.
    [13]Kyriakis J M, Banerjee P, Nikolakaki E, et al. The stress-activated protein kinase subfamily of c-Jun kinases[J]. Nature.1994,369(6476):156-160.
    [14]Bruckner S R, Tammariello S P, Kuan C Y, et al. JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor-deprived sympathetic neurons[J]. J Neurochem.2001,78(2):298-303.
    [15]Davis R J. MAPKs:new JNK expands the group[J]. Trends Biochem Sci.1994,19(11): 470-473.
    [16]Robinson M J, Cobb M H. Mitogen-activated protein kinase pathways[J]. Curr Opin Cell Biol.1997,9(2):180-186.
    [17]Takeda K, Matsuzawa A, Nishitoh H, et al. Roles of MAPKKK ASK1 in stress-induced cell death[J]. Cell Struct Funct.2003,28(1):23-29.
    [18]Garrido Y C, Sanabria E R, Funke M G, et al. Mitogen-activated protein kinase is increased in the limbic structures of the rat brain during the early stages of status epilepticus[J]. Brain Res Bull.1998,47(3):223-229.
    [19]Jeon S H, Kim Y S, Bae C D, et al. Activation of JNK and p38 in rat hippocampus after kainic acid induced seizure[J]. Exp Mol Med.2000,32(4):227-230.
    [20]Mielke K, Brecht S, Dorst A, et al. Activity and expression of JNK1, p38 and ERK kinases, c-Jun N-terminal phosphorylation, and c-jun promoter binding in the adult rat brain following kainate-induced seizures[J]. Neuroscience.1999,91(2):471-483.
    [21]Brecht S, Simler S, Vergnes M, et al. Repetitive electroconvulsive seizures induce activity of c-Jun N-terminal kinase and compartment-specific desensitization of c-Jun phosphorylation in the rat brain[J]. Brain Res Mol Brain Res.1999,68(1-2):101-108.
    [22]Morgan L, Neame S J, Child H, et al. Development of a pentylenetetrazole-induced seizure model to evaluate kinase inhibitor efficacy in the central nervous system [J]. Neurosci Lett.2006,395(2):143-148.
    [23]Cole-Edwards K K, Musto A E, Bazan N G. c-Jun N-terminal kinase activation responses induced by hippocampal kindling are mediated by reactive astrocytes[J]. J Neurosci.2006,26(32):8295-8304.
    [24]Jong Y J, Kumar V, O'Malley K L. Intracellular metabotropic glutamate receptor 5 (mGluR5) activates signaling cascades distinct from cell surface counterparts [J]. J Biol Chem.2009,284(51):35827-35838.
    [25]Sherman M Y, Goldberg A L. Cellular defenses against unfolded proteins:a cell biologist thinks about neurodegenerative diseases[J]. Neuron.2001,29(1):15-32.
    [26]Che Y, Yu Y M, Han P L, et al. Delayed induction of p38 MAPKs in reactive astrocytes in the brain of mice after KA-induced seizure[J]. Brain Res Mol Brain Res. 2001,94(1-2):157-165.
    [27]Zocchi C, Ongini E, Conti A, et al. The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist[J]. J Pharmacol Exp Ther.1996,276(2):398-404.
    [28]Yang M, Soohoo D, Soelaiman S, et al. Characterization of the potency, selectivity, and pharmacokinetic profile for six adenosine A2A receptor antagonists[J]. Naunyn Schmiedebergs Arch Pharmacol.2007,375(2):133-144.
    [29]Cunha G M, Canas P M, Melo C S, et al. Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801[J]. Exp Neurol.2008,210(2):776-781.
    [30]Duarte-Araujo M, Timoteo M A, Correia-De-Sa P. Adenosine activating A(2A)-receptors coupled to adenylate cyclase/cyclic AMP pathway downregulates nicotinic autoreceptor function at the rat myenteric nerve terminals[J]. Neurochem Int. 2004,45(5):641-651.
    [31]Melani A, Cipriani S, Vannucchi M G, et al. Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia[J]. Brain. 2009,132(Pt 6):1480-1495.
    [32]Bennett B L, Sasaki D T, Murray B W, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase[J]. Proc Natl Acad Sci U S A.2001,98(24):13681-13686.
    [33]Sabapathy K, Hu Y, Kallunki T, et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development[J]. Curr Biol.1999,9(3): 116-125.
    [34]Guan Q H, Pei D S, Zhang Q G, et al. The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-nuclear pathways[J]. Brain Res.2005,1035(1): 51-59.
    [35]Dixon A K, Gubitz A K, Sirinathsinghji D J, et al. Tissue distribution of adenosine receptor mRNAs in the rat[J]. Br J Pharmacol.1996,118(6):1461-1468.
    [36]Schulte G, Fredholm B B. Signalling from adenosine receptors to mitogen-activated protein kinases[J]. Cell Signal.2003,15(9):813-827.
    [1]Guieu R, Couraud F, Pouget J, et al. Adenosine and the nervous system:clinical implications[J]. Clin Neuropharmacol.1996,19(6):459-474.
    [2]Poulsen S A, Quinn R J. Adenosine receptors:new opportunities for future drugs[J]. Bioorg Med Chem.1998,6(6):619-641.
    [3]Dunwiddie T V. The physiological role of adenosine in the central nervous system[J]. Int Rev Neurobiol.1985,27:63-139.
    [4]Simpson R E, O'Regan M H, Perkins L M, et al. Excitatory transmitter amino acid release from the ischemic rat cerebral cortex:effects of adenosine receptor agonists and antagonists[J]. J Neurochem.1992,58(5):1683-1690.
    [5]Latini S, Pazzagli M, Pepeu G, et al. A2 adenosine receptors:their presence and neuromodulatory role in the central nervous system[J]. Gen Pharmacol.1996,27(6): 925-933.
    [6]Ribeiro J A. Adenosine A2A receptor interactions with receptors for other neurotransmitters and neuromodulators[J]. Eur J Pharmacol.1999,375(1-3):101-113.
    [7]Furlong T J, Pierce K D, Selbie L A, et al. Molecular characterization of a human brain adenosine A2 receptor[J]. Brain Res Mol Brain Res.1992,15(1-2):62-66.
    [8]Weaver D R, Reppert S M. Adenosine receptor gene expression in rat kidney [J]. Am J Physiol.1992,263(6 Pt 2):F991-F995.
    [9]Marquardt D L, Walker L L, Heinemann S. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells[J]. J Immunol.1994,152(9):4508-4515.
    [10]Meng F, Xie G X, Chalmers D, et al. Cloning and expression of the A2a adenosine receptor from guinea pig brain[J]. Neurochem Res.1994,19(5):613-621.
    [11]Le F, Townsend-Nicholson A, Baker E, et al. Characterization and chromosomal localization of the human A2a adenosine receptor gene:ADORA2A[J]. Biochem Biophys Res Commun.1996,223(2):461-467.
    [12]Chu Y Y, Tu K H, Lee Y C, et al. Characterization of the rat A2a adenosine receptor gene[J]. DNA Cell Biol.1996,15(4):329-337.
    [13]Dixon A K, Gubitz A K, Sirinathsinghji D J, et al. Tissue distribution of adenosine receptor mRNAs in the rat[J]. Br J Pharmacol.1996,118(6):1461-1468.
    [14]Rosin D L, Robeva A, Woodard R L, et al. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system[J]. J Comp Neurol.1998,401(2): 163-186.
    [15]Cunha R A, Johansson B, van der Ploeg I, et al. Evidence for functionally important adenosine A2a receptors in the rat hippocampus[J]. Brain Res.1994,649(1-2):208-216.
    [16]O'Regan M H, Simpson R E, Perkins L M, et al. Adenosine receptor agonists inhibit the release of gamma-aminobutyric acid (GABA) from the ischemic rat cerebral cortex[J]. Brain Res.1992,582(1):22-26.
    [17]Barraco R A, Clough-Helfman C, Goodwin B P, et al. Evidence for presynaptic adenosine A2a receptors associated with norepinephrine release and their desensitization in the rat nucleus tractus solitarius[J]. J Neurochem.1995,65(4):1604-1611.
    [18]Johansson B, Georgiev V, Fredholm B B. Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain:comparison with dopamine receptors[J]. Neuroscience.1997,80(4):1187-1207.
    [19]Dixon A K, Gubitz A K, Sirinathsinghji D J, et al. Tissue distribution of adenosine receptor mRNAs in the rat[J]. Br J Pharmacol.1996,118(6):1461-1468.
    [20]Cunha R A, Johansson B, Fredholm B B, et al. Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus[J]. Neurosci Lett.1995, 196(1-2):41-44.
    [21]Meng F, Xie G X, Chalmers D, et al. Cloning and expression of the A2a adenosine receptor from guinea pig brain[J]. Neurochem Res.1994,19(5):613-621.
    [22]Svenningsson P, Le Moine C, Aubert I, et al. Cellular distribution of adenosine A2A receptor mRNA in the primate striatum[J]. J Comp Neurol.1998,399(2):229-240.
    [23]Kreth S, Ledderose C, Kaufmann I, et al. Differential expression of 5'-UTR splice variants of the adenosine A2A receptor gene in human granulocytes:identification, characterization, and functional impact on activation[J]. FASEB J.2008,22(9):3276-3286.
    [24]Olah M E. Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors [J]. J Biol Chem.1997, 272(1):337-344.
    [25]Kull B, Svenningsson P, Fredholm B B. Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum[J]. Mol Pharmacol.2000,58(4):771-777.
    [26]Offermanns S, Simon M I. G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C[J]. J Biol Chem.1995,270(25):15175-15180.
    [27]Sexl V, Mancusi G, Holler C, et al. Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells[J]. J Biol Chem.1997, 272(9):5792-5799.
    [28]Daniel P B, Walker W H, Habener J F. Cyclic AMP signaling and gene regulation[J]. Annu Rev Nutr.1998,18:353-383.
    [29]Sternweis P C, Smrcka A V. G proteins in signal transduction:the regulation of phospholipase C[J]. Ciba Found Symp.1993,176:96-106,106-111.
    [30]Rebecchi M J, Pentyala S N. Structure, function, and control of phosphoinositide-specific phospholipase C[J]. Physiol Rev.2000,80(4):1291-1335.
    [31]Neves S R, Ram P T, Iyengar R. G protein pathways[J]. Science.2002,296(5573): 1636-1639.
    [32]Kruger W, Peterson C L, Sil A, et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription[J]. Genes Dev.1995,9(22):2770-2779.
    [33]Widmann C, Gibson S, Jarpe M B, et al. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human[J]. Physiol Rev.1999,79(1): 143-180.
    [34]Chen Z, Gibson T B, Robinson F, et al. MAP kinases[J]. Chem Rev.2001,101(8): 2449-2476.
    [35]Schlessinger J. Cell signaling by receptor tyrosine kinases[J]. Cell.2000,103(2): 211-225.
    [36]Ono K, Han J. The p38 signal transduction pathway:activation and function[J]. Cell Signal.2000,12(1):1-13.
    [37]Kyriakis J M, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiol Rev.2001,81(2): 807-869.
    [38]Jones S M, Kazlauskas A. Connecting signaling and cell cycle progression in growth factor-stimulated cells[J]. Oncogene.2000,19(49):5558-5567.
    [39]Jones S M, Kazlauskas A. Growth factor-dependent signaling and cell cycle progression[J]. FEBS Lett.2001,490(3):110-116.
    [40]Koch W J, Hawes B E, Allen L F, et al. Direct evidence that Gi-coupled receptor stimulation of mitogen-activated protein kinase is mediated by G beta gamma activation of p21ras[J]. Proc Natl Acad Sci U S A.1994,91(26):12706-12710.
    [41]Hawes B E, van Biesen T, Koch W J, et al. Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation[J]. J Biol Chem.1995,270(29):17148-17153.
    [42]Pan M G, Wang Y H, Hirsch D D, et al. The Wnt-1 proto-oncogene regulates MAP kinase activation by multiple growth factors in PC12 cells[J]. Oncogene.1995,11(10): 2005-2012.
    [43]Sexl V, Mancusi G, Holler C, et al. Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells[J]. J Biol Chem.1997, 272(9):5792-5799.
    [44]Klinger M, Kudlacek O, Seidel M G, et al. MAP kinase stimulation by cAMP does not require RAP1 but SRC family kinases[J]. J Biol Chem.2002,277(36):32490-32497.
    [45]Merighi S, Mirandola P, Milani D, et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells[J]. J Invest Dermatol.2002, 119(4):923-933.
    [46]Seidel M G, Klinger M, Freissmuth M, et al. Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap 1-dependent and via a p21(ras)-dependent pathway[J]. J Biol Chem.1999,274(36):25833-25841.
    [47]Marston H M, Finlayson K, Maemoto T, et al. Pharmacological characterization of a simple behavioral response mediated selectively by central adenosine A1 receptors, using in vivo and in vitro techniques [J]. J Pharmacol Exp Ther.1998,285(3):1023-1030.
    [48]Turgeon S M, Pollack A E, Schusheim L, et al. Effects of selective adenosine A1 and A2a agonists on amphetamine-induced locomotion and c-Fos in striatum and nucleus accumbens[J]. Brain Res.1996,707(1):75-80.
    [49]Hauber W, Munkle M. Motor depressant effects mediated by dopamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen[J]. Eur J Pharmacol.1997,323(2-3):127-131.
    [50]Ferre S, Fredholm B B, Morelli M, et al. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia[J]. Trends Neurosci.1997, 20(10):482-487.
    [51]Olah M E, Stiles G L. Adenosine receptor subtypes:characterization and therapeutic regulation[J]. Annu Rev Pharmacol Toxicol.1995,35:581-606.
    [52]Pinna A, di Chiara G, Wardas J, et al. Blockade of A2a adenosine receptors positively modulates turning behaviour and c-Fos expression induced by D1 agonists in dopamine-denervated rats[J]. Eur J Neurosci.1996,8(6):1176-1181.
    [53]Mandhane S N, Chopde C T, Ghosh A K. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats[J]. Eur J Pharmacol.1997,328(2-3):135-141.
    [54]Kanda T, Jackson M J, Smith L A, et al. Adenosine A2A antagonist:a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys [J]. Ann Neurol.1998,43(4):507-513.
    [55]Richardson P J, Kase H, Jenner P G. Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson's disease[J]. Trends Pharmacol Sci.1997,18(9): 338-344.
    [56]Baldwin H A, Johnston A L, File S E. Antagonistic effects of caffeine and yohimbine in animal tests of anxiety [J]. Eur J Pharmacol.1989,159(2):211-215.
    [57]Jain N, Kemp N, Adeyemo O, et al. Anxiolytic activity of adenosine receptor activation in mice[J]. Br J Pharmacol.1995,116(3):2127-2133.
    [58]Florio C, Prezioso A, Papaioannou A, et al. Adenosine Al receptors modulate anxiety in CD1 mice[J]. Psychopharmacology (Berl).1998,136(4):311-319.
    [59]Charney D S, Heninger G R, Jatlow P I. Increased anxiogenic effects of caffeine in panic disorders[J]. Arch Gen Psychiatry.1985,42(3):233-243.
    [60]Jenck F, Moreau J L, Martin J R. Dorsal periaqueductal gray-induced aversion as a simulation of panic anxiety:elements of face and predictive validity[J]. Psychiatry Res. 1995,57(2):181-191.
    [61]Minor T R, Winslow J L, Chang W C. Stress and adenosine:Ⅱ. Adenosine analogs mimic the effect of inescapable shock on shuttle-escape performance in rats[J]. Behav Neurosci.1994,108(2):265-276.
    [62]Minor T R, Chang W C, Winslow J L. Stress and adenosine:Ⅰ. Effect of methylxanthine and amphetamine stimulants on learned helplessness in rats[J]. Behav Neurosci.1994,108(2):254-264.
    [63]Zarrindast M R, Moghadamnia A A. Adenosine receptor agents and conditioned place preference[J]. Gen Pharmacol.1997,29(2):285-289.
    [64]Daly J W, Fredholm B B. Caffeine--an atypical drug of dependence [J]. Drug Alcohol Depend.1998,51(1-2):199-206.
    [65]Valdes J J, Mcguire P S, Annau Z. Xanthines alter behavior maintained by intracranial electrical stimulation and an operant schedule[J]. Psychopharmacology (Berl).1982,76(4): 325-328.
    [66]Mumford G K, Holtzman S G. Do adenosinergic substrates mediate methylxanthine effects upon reinforcement thresholds for electrical brain stimulation in the rat?[J]. Brain Res.1991,550(1):172-178.
    [67]Daly J W, Shi D, Wong V, et al. Chronic effects of ethanol on central adenosine function of mice[J]. Brain Res.1994,650(1):153-156.
    [68]Fredholm B B, Johansson B, Lindstrom K, et al. Age-dependent changes in adenosine receptors are not modified by life-long intermittent alcohol administration[J]. Brain Res. 1998,791(1-2):177-185.
    [69]Jarvis M F, Becker H C. Single and repeated episodes of ethanol withdrawal increase adenosine A1, but not A2A, receptor density in mouse brain[J]. Brain Res.1998,786(1-2): 80-88.
    [70]Kaplan G B, Sears M T. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs [J]. Psychopharmacology (Berl).1996, 123(1):64-70.
    [71]Zarrindast M R, Naghipour B, Roushan-Zamir F, et al. Effects of adenosine receptor agents on the expression of morphine withdrawal in mice[J]. Eur J Pharmacol.1999, 369(1):17-22.
    [72]Holmgren M, Hedner J, Mellstrand T, et al. Characterization of the antinociceptive effects of some adenosine analogues in the rat[J]. Naunyn Schmiedebergs Arch Pharmacol. 1986,334(3):290-293.
    [73]Sollevi A. Adenosine for pain control[J]. Acta Anaesthesiol Scand Suppl.1997,110: 135-136.
    [74]Belfrage M, Segerdahl M, Arner S, et al. The safety and efficacy of intrathecal adenosine in patients with chronic neuropathic pain[J]. Anesth Analg.1999,89(1): 136-142.
    [75]Sawynok J. Adenosine receptor activation and nociception[J]. Eur J Pharmacol.1998, 347(1):1-11.
    [76]Normile H J, Gaston S, Johnson G, et al. Activation of adenosine A1 receptors in the nucleus accumbens impairs inhibitory avoidance memory [J]. Behav Neural Biol.1994, 62(2):163-166.
    [77]Ribeiro J A, Cunha R A, Correia-De-Sa P, et al. Purinergic regulation of acetylcholine release[J]. Prog Brain Res.1996,109:231-241.
    [78]Fiebich B L, Biber K, Lieb K, et al. Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors[J]. Glia.1996,18(2):152-160.
    [79]Rudolphi K A, Schubert P, Parkinson F E, et al. Neuroprotective role of adenosine in cerebral ischaemia[J]. Trends Pharmacol Sci.1992,13(12):439-445.
    [80]Phillis J W. The effects of selective Al and A2a adenosine receptor antagonists on cerebral ischemic injury in the gerbil[J]. Brain Res.1995,705(1-2):79-84.
    [81]Turgeon S M, Pollack A E, Schusheim L, et al. Effects of selective adenosine Al and A2a agonists on amphetamine-induced locomotion and c-Fos in striatum and nucleus accumbens[J]. Brain Res.1996,707(1):75-80.
    [82]Simpson R E, O'Regan M H, Perkins L M, et al. Excitatory transmitter amino acid release from the ischemic rat cerebral cortex:effects of adenosine receptor agonists and antagonists[J]. J Neurochem.1992,58(5):1683-1690.
    [83]Bona E, Aden U, Gilland E, et al. Neonatal cerebral hypoxia-ischemia:the effect of adenosine receptor antagonists [J]. Neuropharmacology.1997,36(9):1327-1338.
    [84]Jones P A, Smith R A, Stone T W. Protection against hippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist[J]. Brain Res.1998,800(2):328-335.
    [85]Monopoli A, Lozza G, Forlani A, et al. Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats[J]. Neuroreport.1998, 9(17):3955-3959.
    [86]Parsons B, Togasaki D M, Kassir S, et al. Neuroleptics up-regulate adenosine A2a receptors in rat striatum:implications for the mechanism and the treatment of tardive dyskinesia[J]. J Neurochem.1995,65(5):2057-2064.
    [87]Pinna A, Wardas J, Cristalli G, et al. Adenosine A2A receptor agonists increase Fos-like immunoreactivity in mesolimbic areas[J]. Brain Res.1997,759(1):41-49.
    [88]Ward R P, Dorsa D M. Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-Ht4 or 5-Ht6 receptors following antipsychotic administration[J]. Neuroscience.1999,89(3):927-938.
    [89]Kafka S H, Corbett R. Selective adenosine A2A receptor/dopamine D2 receptor interactions in animal models of schizophrenia[J]. Eur J Pharmacol.1996,295(2-3): 147-154.
    [90]Hauber W, Munkle M. Motor depressant effects mediated by dopamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen[J]. Eur J Pharmacol.1997,323(2-3):127-131.
    [91]Rimondini R, Ferre S, Ogren S O, et al. Adenosine A2A agonists:a potential new type of atypical antipsychotic [J]. Neuropsychopharmacology.1997,17(2):82-91.
    [92]Rimondini R, Ferre S, Ogren S O, et al. Adenosine A2A agonists:a potential new type of atypical antipsychotic[J]. Neuropsychopharmacology.1997,17(2):82-91.
    [93]Hauber W, Koch M. Adenosine A2a receptors in the nucleus accumbens modulate prepulse inhibition of the startle response[J]. Neuroreport.1997,8(6):1515-1518.
    [94]Koch M, Hauber W. Regulation of sensorimotor gating by interactions of dopamine and adenosine in the rat[J]. Behav Pharmacol.1998,9(1):23-29.
    [95]Murray T F, Sylvester D, Schultz C S, et al. Purinergic modulation of the seizure threshold for pentylenetetrazol in the rat[J]. Neuropharmacology.1985,24(8):761-766.
    [96]Dunwiddie T V, Worth T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat[J]. J Pharmacol Exp Ther.1982,220(1):70-76.
    [97]Barraco R A, Swanson T H, Phillis J W, et al. Anticonvulsant effects of adenosine analogues on amygdaloid-kindled seizures in rats[J]. Neurosci Lett.1984,46(3):317-322.
    [98]De Sarro G, De Sarro A, Di Paola E D, et al. Effects of adenosine receptor agonists and antagonists on audiogenic seizure-sensible DBA/2 mice[J]. Eur J Pharmacol.1999, 371(2-3):137-145.
    [99]Portas C M, Thakkar M, Rainnie D G, et al. Role of adenosine in behavioral state modulation:a microdialysis study in the freely moving cat[J]. Neuroscience.1997,79(1): 225-235.
    [1]Cacciari B, Pastorin G, Spalluto G. Medicinal chemistry of A2A adenosine receptor antagonists[J]. Curr Top Med Chem,2003,3(4):403-411.
    [2]Xu K, Bastia E, Schwarzschild M. Therapeutic potential of adenosine A(2A) receptor antagonists in Parkinson's disease[J]. Pharmacol Ther,2005,105(3):267-310.
    [3]Salamone J D, Betz A J, Ishiwari K, et al. Tremorolytic effects of adenosine A2A antagonists:implications for parkinsonism[J]. Front Biosci,2008,13:3594-3605.
    [4]Melani A, Gianfriddo M, Vannucchi M G, et al. The selective A2A receptor antagonist SCH 58261 protects from neurological deficit, brain damage and activation of p38 MAPK in rat focal cerebral ischemia[J]. Brain Res,2006,1073-1074:470-480.
    [5]Thorsell A, Johnson J, Heilig M. Effect of the adenosine A2a receptor antagonist 3,7-dimethyl-propargylxanthine on anxiety-like and depression-like behavior and alcohol consumption in Wistar Rats[J]. Alcohol Clin Exp Res,2007,31(8):1302-1307.
    [6]Ferre S, Ciruela F, Borycz J, et al. Adenosine A1-A2A receptor heteromers:new targets for caffeine in the brain[J]. Front Biosci,2008,13:2391-2399.
    [7]Carriba P, Ortiz O, Patkar K, et al. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids[J]. Neuropsychopharmacology,2007,32(11):2249-2259.
    [8]Moro S, Gao Z G, Jacobson K A, et al. Progress in the pursuit of therapeutic adenosine receptor antagonists[J]. Med Res Rev,2006,26(2):131-159.
    [9]Muller C E, Ferre S. Blocking striatal adenosine A2A receptors:a new strategy for basal ganglia disorders [J]. Recent Pat CNS Drug Discov,2007,2(1):1-21.
    [10]Vu C B. Recent advances in the design and optimization of adenosine A2A receptor antagonists[J]. Curr Opin Drug Discov Devel,2005,8(4):458-468.
    [11]Ledent C, Vaugeois J M, Schiffmann S N, et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor[J]. Nature,1997,388 (6643):674-678.
    [12]Daly J W, Hide I, Muller C E, et al. Caffeine analogs:structure-activity relationships at adenosine receptors[J]. Pharmacology,1991,42(6):309-321.
    [13]Daly J W, Padgett W L, Shamim M T. Analogues of caffeine and theophylline:effect of structural alterations on affinity at adenosine receptors[J]. J Med Chem,1986,29 (7):1305-1308.
    [14]Erickson R H, Hiner R N, Feeney S W, et al.1,3,8-trisubstituted xanthines. Effects of substitution pattern upon adenosine receptor A1/A2 affinity [J]. J Med Chem,1991,34 (4):1431-1435.
    [15]Jacobson K A, Gallo-Rodriguez C, Melman N, et al. Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists[J]. J Med Chem,1993,36 (10):1333-1342.
    [16]Nonaka H, Ichimura M, Takeda M, et al. KF17837 ((E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine), a potent and selective adenosine A2 receptor antagonist[J]. Eur J Pharmacol,1994,267(3):335-341.
    [17]Petzer J P, Steyn S, Castagnoli K P, et al. Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists[J]. Bioorg Med Chem,2003,11(7):1299-1310.
    [18]van den Berg D, Zoellner K R, Ogunrombi M O, et al. Inhibition of monoamine oxidase B by selected benzimidazole and caffeine analogues[J]. Bioorg Med Chem,2007, 15(11):3692-3702.
    [19]Jackson E K, Herzer W A, Suzuki F. KF17837 is an A2 adenosine receptor antagonist in vivo[J]. J Pharmacol Exp Ther,1993,267(3):1304-1310.
    [20]Nonaka Y, Shimada J, Nonaka H, et al. Photoisomerization of a potent and selective adenosine A2 antagonist, (E)-1,3-Dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine[J]. J Med Chem,1993,36(23):3731-3733.
    [21]Hockemeyer J, Burbiel J C, Muller C E. Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson's disease[J]. J Org Chem,2004,69(10):3308-3318.
    [22]Drabczynska A, Schumacher B, Muller C E, et al. Impact of the aryl substituent kind and distance from pyrimido[2,1-f]purindiones on the adenosine receptor selectivity and antagonistic properties [J]. Eur J Med Chem,2003,38(4):397-402.
    [23]Drabczynska A, Muller C E, Schumacher B, et al. Tricyclic oxazolo [2,3-fJ purinediones:potency as adenosine receptor ligands and anticonvulsants[J]. Bioorg Med Chem,2004,12(18):4895-4908.
    [24]Drabczynska A, Muller C E, Lacher S K, et al. Synthesis and biological activity of tricyclic aryloimidazo-, pyrimido-, and diazepinopurinediones[J]. Bioorg Med Chem,2006,14(21):7258-7281.
    [25]Drabczynska A, Muller C E, Schiedel A, et al. Phenylethyl-substituted pyrimido [2,1-f]purinediones and related compounds:structure-activity relationships as adenosine A(1) and A(2A) receptor ligands[J]. Bioorg Med Chem,2007,15(22):6956-6974.
    [26]Muller C E, Sauer R, Geis U, et al. Aza-analogs of 8-styrylxanthines as A2A-adenosine receptor antagonists [J]. Arch Pharm (Weinheim),1997,330(6):181-189.
    [27]Muller C E, Sandoval-Ramirez J, Schobert U, et al.8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonists[J]. Bioorg Med Chem,1998,6 (6):707-719.
    [28]Sauer R, Maurinsh J, Reith U, et al. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists[J]. J Med Chem,2000,43(3):440-448.
    [29]Vollmann K, Qurishi R, Hockemeyer J, et al. Synthesis and properties of a new water-soluble prodrug of the adenosine A 2A receptor antagonist MSX-2[J]. Molecules, 2008,13(2):348-359.
    [30]Weiss S M, Benwell K, Cliffe I A, et al. Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson's disease[J]. Neurology,2003,61(11 Suppl6):S101-S106.
    [31]Knutsen L J, Weiss S M. KW-6002 (Kyowa Hakko Kogyo)[J]. Curr Opin Investig Drugs,2001,2(5):668-673.
    [32]Kalda A, Yu L, Oztas E, et al. Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson's disease[J]. J Neurol Sci,2006, 248(1-2):9-15.
    [33]Muller C E, Geis U, Hipp J, et al. Synthesis and structure-activity relationships of 3,7-dimethyl-l-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists[J]. J Med Chem,1997,40(26):4396-4405.
    [34]Shamim M T, Ukena D, Padgett W L, et al. Effects of 8-phenyl and 8-cycloalkyl substituents on the activity of mono-, di-, and trisubstituted alkylxanthines with substitution at the 1-,3-, and 7-positions[J]. J Med Chem,1989,32(6):1231-1237.
    [35]Erickson R H, Hiner R N, Feeney S W, et al.1,3,8-trisubstituted xanthines. Effects of substitution pattern upon adenosine receptor A1/A2 affinity [J]. J Med Chem,1991,34 (4):1431-1435.
    [36]Massip S, Guillon J, Bertarelli D, et al. Synthesis and preliminary evaluation of new 1-and 3-[1-(2-hydroxy-3-phenoxypropyl)]xanthines from 2-amino-2-oxazolines as potential A1 and A2A adenosine receptor antagonists [J]. Bioorg Med Chem,2006,14(8):2697-2719.
    [37]Jacobson K A, Shi D, Gallo-Rodriguez C, et al. Effect of trifluoromethyl and other substituents on activity of xanthines at adenosine receptors[J]. J Med Chem,1993,36 (18):2639-2644.
    [38]Williams M, Francis J, Ghai G, et al. Biochemical characterization of the triazoloquinazoline, CGS 15943, a novel, non-xanthine adenosine antagonist[J]. J Pharmacol Exp Ther,1987,241(2):415-420.
    [39]Francis J E, Cash W D, Psychoyos S, et al. Structure-activity profile of a series of novel triazoloquinazoline adenosine antagonists [J]. J Med Chem,1988,31(5):1014-1020.
    [40]Kim Y C, Ji X D, Jacobson K A. Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) are selective for the human A3 receptor subtype[J]. J Med Chem, 1996,39(21):4142-4148.
    [41]Baraldi P G, Cacciari B, Romagnoli R, et al. Pyrazolo[4,3-e]1,2,4-triazolo [1,5-c]pyrimidine derivatives as highly potent and selective human A(3) adenosine receptor antagonists:influence of the chain at the N(8) pyrazole nitrogen[J]. J Med Chem,2000, 43(25):4768-4780.
    [42]Sarges R, Howard H R, Browne R G, et al.4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants[J]. J Med Chem,1990,33(8):2240-2254.
    [43]Dionisotti S, Conti A, Sandoli D, et al. Effects of the new A2 adenosine receptor antagonist 8FB-PTP, an 8 substituted pyrazolo-triazolo-pyrimidine, on in vitro functional models[J]. Br J Pharmacol,1994,112(2):659-665.
    [44]Baraldi P G, Cacciari B, Spalluto G, et al. Pyrazolo[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine derivatives:potent and selective A(2A) adenosine antagonists[J]. J Med Chem,1996,39(5):1164-1171.
    [45]Baraldi P G, Cacciari B, Spalluto G, et al. 1,2,3-Triazolo[5,4-e]1,2,4-triazolo [1,5-c]pyrimidine derivatives:a new class of A2A adenosine receptor antagonists[J]. Farmaco,1996,51 (4):297-300.
    [46]Silverman L S, Caldwell J P, Greenlee W J, et al.3H-[1,2,4]-Triazolo [5,1-i]purin-5-amine derivatives as adenosine A2A antagonists [J]. Bioorg Med Chem Lett, 2007,17(6):1659-1662.
    [47]Baraldi P G, Cacciari B, Spalluto G, et al. Design, synthesis, and biological evaluation of a second generation of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as potent and selective A2A adenosine receptor antagonists [J]. J Med Chem,1998,41(12):2126-2133.
    [48]Zocchi C, Ongini E, Conti A, et al. The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist[J]. J Pharmacol Exp Ther,1996,276(2):398-404.
    [49]Todde S, Moresco R M, Simonelli P, et al. Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A(2A) receptor system using positron emission tomography [J]. J Med Chem,2000,43(23):4359-4362.
    [50]Baraldi P G, Cacciari B, Romagnoli R, et al.7-Substituted 5-amino-2-(2-furyl) pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A adenosine receptor antagonists:a study on the importance of modifications at the side chain on the activity and solubility [J]. J Med Chem,2002,45(1):115-126.
    [51]Neustadt B R, Hao J, Lindo N, et al. Potent, selective, and orally active adenosine A2A receptor antagonists:arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidines[J]. Bioorg Med Chem Lett,2007,17(5):1376-1380.
    [52]Colotta V, Catarzi D, Varano F, et al.4-Amino-6-benzylamino-1, 2-dihydro-2-phenyl-1,2,4-triazolo [4,3-alpha]-quinoxalin-1-one:a new A2A adenosine receptor antagonist with high selectivity versus Al receptors[J]. Arch Pharm (Weinheim), 1999,332(2):39-41.
    [53]Colotta V, Catarzi D, Varano F, et al. 1,2,4-Triazolo[4,3-a]quinoxalin-1-one:a versatile tool for the synthesis of potent and selective adenosine receptor antagonists [J]. J Med Chem,2000,43(6):1158-1164.
    [54]Colotta V, Catarzi D, Varano F, et al. Synthesis of 4-amino-6-(hetero) arylalkylamino-1,2,4-triazolo[4,3-a]quinoxalin-l-one derivatives as potent A(2A) adenosine receptor antagonists [J]. Bioorg Med Chem,2003,11(24):5509-5518.
    [55]Matasi J J, Caldwell J P, Hao J, et al. The discovery and synthesis of novel adenosine receptor (A(2A)) antagonists [J]. Bioorg Med Chem Lett,2005,15(5):1333-1336.
    [56]Ji X D, Jacobson K A. Use of the triazolotriazine [3H]ZM 241385 as a radioligand at recombinant human A2B adenosine receptors[J]. Drug Des Discov,1999,16(3):217-226.
    [57]Peng H, Kumaravel G, Yao G, et al. Novel bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines as highly potent and selective adenosine A2A receptor antagonists [J]. J Med Chem,2004,47(25):6218-6229.
    [58]Vu C B, Pan D, Peng B, et al. Studies on adenosine A2a receptor antagonists: comparison of three core heterocycles[J]. Bioorg Med Chem Lett,2004,14(19):4831-4834.
    [59]Vu C B, Peng B, Kumaravel G, et al. Piperazine derivatives of [1,2,4]triazolo [1,5-a][1,3,5]triazine as potent and selective adenosine A2a receptor antagonists[J]. J Med Chem,2004,47(17):4291-4299.
    [60]Vu C B, Shields P, Peng B, et al. Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2a receptor antagonists[J]. Bioorg Med Chem Lett, 2004,14(19):4835-4838.
    [61]Vu C B, Pan D, Peng B, et al. Novel diamino derivatives of [1,2,4]triazolo [1,5-a][1,3,5]triazine as potent and selective adenosine A2a receptor antagonists [J]. J Med Chem,2005,48(6):2009-2018.
    [62]Yang M, Soohoo D, Soelaiman S, et al. Characterization of the potency, selectivity, and pharmacokinetic profile for six adenosine A2A receptor antagonists[J]. Naunyn Schmiedebergs Arch Pharmacol,2007,375(2):133-144.
    [63]Holschbach M H, Bier D, Stusgen S, et al. Synthesis and evaluation of 7-amino-2-(2(3)-furyl)-5-phenylethylamino-oxazolo[5,4-d]pyrimidines as potential A2A adenosine receptor antagonists for positron emission tomography (PET)[J]. Eur J Med Chem,2006,41(1):7-15.
    [64]Dowling J E, Vessels J T, Haque S, et al. Synthesis of [1,2,4]triazolo[1,5-a]pyrazines as adenosine A2A receptor antagonists [J]. Bioorg Med Chem Lett,2005,15(21):4809-4813.
    [65]Yao G, Haque S, Sha L, et al. Synthesis of alkyne derivatives of a novel triazolopyrazine as A(2A) adenosine receptor antagonists[J]. Bioorg Med Chem Lett, 2005,15(3):511-515.
    [66]Chebib M, Mckeveney D, Quinn R J. 1-Phenylpyrazolo[3,4-d]pyrimidines; structure-ac:tivity relationships for C6 substituents at A1 and A2A adenosine receptors [J]. Bioorg Med Chem,2000,8(11):2581-2590.
    [67]Mihara T, Mihara K, Yarimizu J, et al. Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist,5-[5-amino-3-(4-fluorophenyl) pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson's disease and cognition[J]. J Pharmacol Exp Ther,2007,323(2):708-719.
    [68]Kiselgof E, Tulshian D B, Arik L, et al.6-(2-Furanyl)-9H-purin-2-amine derivatives as A2A adenosine antagonists[J]. Bioorg Med Chem Lett,2005,15(8):2119-2122.
    [69]Camaioni E, Costanzi S, Vittori S, et al. New substituted 9-alkylpurines as adenosine receptor ligands[J]. Bioorg Med Chem,1998,6(5):523-533.
    [70]Pinna A, Volpini R, Cristalli G, et al. New adenosine A2A receptor antagonists: actions on Parkinson's disease models[J]. Eur J Pharmacol,2005,512(2-3):157-164.
    [71]Volpini R, Costanzi S, Lambertucci C, et al.2- and 8-alkynyl-9-ethyladenines: Synthesis and biological activity at human and rat adenosine receptors[J]. Purinergic Signal,2005,1(2):173-181.
    [72]Lambertucci C, Vittori S, Mishra R C, et al. Synthesis and biological activity of trisubstituted adenines as A 2A adenosine receptor antagonists [J]. Nucleosides Nucleotides Nucleic Acids,2007,26(10-12):1443-1446.
    [73]Lambertucci C, Cristalli G, Dal Ben D, et al. New 2,6,9-trisubstituted adenines as adenosine receptor antagonists:a preliminary SAR profile[J]. Purinergic Signal,2007, 3(4):339-346.
    [74]Minetti P, Tinti M O, Carminati P, et al.2-n-Butyl-9-methyl-8-[1,2,3] triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization[J]. J Med Chem,2005,48 (22): 6887-6896.
    [75]Slee D H, Zhang X, Moorjani M, et al. Identification of novel, water-soluble, 2-amino-N-pyrimidin-4-yl acetamides as A2A receptor antagonists with in vivo efficacy [J]. J Med Chem,2008,51(3):400-406.
    [76]Slee D H, Chen Y, Zhang X, et al.2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists:1. Structure-activity relationships and optimization of heterocyclic substituents[J]. J Med Chem,2008,51(6):1719-1729.
    [77]Zhang X, Rueter J K, Chen Y, et al. Synthesis of N-pyrimidinyl-2-phenoxyacetamides as adenosine A2A receptor antagonists[J]. Bioorg Med Chem Lett,2008,18(6):1778-1783.
    [78]Alanine A, Anselm L, Steward L, et al. Synthesis and SAR evaluation of 1,2,4-triazoles as A(2A) receptor antagonists [J]. Bioorg Med Chem Lett,2004,14 (3):817-821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700