用户名: 密码: 验证码:
刺槐根瘤菌遗传多样性与系统发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从甘肃、陕西两省的3个采样点分离获得84株刺槐共生根瘤菌,采用数值分类、RFLP和序列测定多相分类技术,对16S rDNA、recA、nifH和nodC基因进行遗传多样性和表型多样性分析。首次采用多点采样的方法系统地对中国刺槐根瘤菌进行遗传多样性究研。
     16S rDNA PCR-RFLP和全序列系统发育分析结果表明,中国刺槐根瘤菌共有9种酶切图谱类型组合,即9种基因型;16S rDNA全序列分析表明,9株代表菌株位于系统发育进化树的8个分支上,分别是M. loti/ciceri,M. tianshanense,M. huakuii,M. amorphae,R. giardinii,S. xinjiangense,S. morelense和B. liaoningense。其中16S rDNA RFLP基因型Ⅰ(M. amorphae)为刺槐优势根瘤菌基因型,占待测菌株的62.2%,广泛分布于3个采样点。
     nodC和nifH的研究结果表明,刺槐根瘤菌具有相对保守的共生基因。序列分析结果显示,nifH基因位于系统进化树M. albiziae,S. americanum和B. elkanii的分支上。nodC基因虽然在RFLP分析结果中为四种基因类型,但是序列系统发育分析表明,4种nodC基因型在系统发育树上聚在同一分支(彼此间相似性达98.6%—99.4%),与M. amorphae ACCC19665的nodC基因相距最近,即同源性最高。而且与以前研究的中国刺槐根瘤菌,北美刺槐根瘤菌和欧洲刺槐根瘤菌的nodC基因位于同一系统发育树分支上,同源性为98.9%—100%之间。
     recA基因序列分析结果中,位于B. liaoningense和R. giardinii分支的刺槐根瘤菌,其16S rDNA序列的聚类结果也分别位于B. liaoningense和R. giardinii,分析结果在种的水平上达到一致。但是,位于中慢生根瘤菌属的根瘤菌recA和16S rDNA聚类分析结果仅在属的水平上达到一致,在种的水平上稍有差异,其中recA系统发育树中位于M. ciceri,M. caraganae和M. amorphae分支上的代表菌株,在16S rDNA结果中依次位于M. loti,M. tianshanense和M. amorphae分支上。
     数值分类结果表明,在66%的水平上待测菌株聚成3个表观群,在83%水平上聚成5个亚群。其中亚群1、2和3主要由属于M. amorphae的待测菌株组成,构成表观群Ⅰ;亚群4 (M. huakuii)和亚群5 (M. tianshanes)一起构成表观群Ⅱ;表观群Ⅲ的待测菌株主要属于Sinorhizobium。表型多样性研究表明,西北干旱半干旱地区的刺槐根瘤菌可以利用绝大多数的碳源和氮源,而且它们具有很高的耐盐性、耐碱性、抗性。
84 isolates from Robinia pseudoacacia in 3 sampling sites in Shaanxi and Gansu were characterized using restriction fragment length polymorphism and sequencing of 16S rDNA, recA, nodC and nifH genes, as well as numerical taxonomy of physiological and chemical characteristics.
     16S rDNA patterns and sequences placed the tested strains in 9 RFLP groups, which located in 8 branches of the phylogenetic tree of 16S rDNA sequences. The 8 branches were M. loti/ciceri, M. tianshanense, M. huakuii, M. amorphae, R. giardinii, S. xinjiangense, S. morelense and B. liaoningense, among which the largest group was M. amorphae with 62.2% of tested stains from all the three sampling sites. The results revealed the rich genetic diversity of rhizobia nodulating Chinese Robinia.
     The results of nodC and nifH revealed that the tested strains nodulating Robinia shared the common symbiotic genes. The nifH gene sequences showed that tested strains were clustered into M. albiziae, S. americanum and B. elkanii in the nifH phylogenetic tree. The nodC PCR-RFLP result showed 4 genotypes, but phylogenetic tree by sequencing indicated they were on a single branch independently; the similarity between tested strains ranged from 98.6% to 99.4%. The similarity between group of the tested strains and the nearest reference strain, M. amorphae, ranged from 98.9% to 100%.
     The result of recA agreed with the study of 16S rDNA sequence analysis on the tested strains in branches of B. liaoningense and R. giardinii. Tested strains in groupes of M. ciceri,M. caraganae and M. amorphae in recA phylogenetic tree were different from the results of 16S rDNA phylogenetical tree, in which they belonged to M. loti,M. tianshanense and M. amorphae respectively.
     The physiological and chemical results showed that the tested strains were divided into 3 Groups on the level of 66% similarity and 5 subgroups on 83% similarity level. Group I included subgroups of 1, 2 and 3, where the most tested strains belonged to M. amorphae; Group II consisted of subgroups of 4 and 5, which belonged to M. huakuii and M. tianshanes respectively; most of tested strains in GroupⅢare Sinorhizobium.
引文
[1]朱奇,陈彦.生物固氮在我国农业生产中的研究现状及发展对策[J]. JOURNAL OF MICROBIOLOGY, 2003, 23(5): 40-43.
    [2]陈国安.重视生物固氮在我国农业持续发展中的地位[J].科技导报, 1998, 2: 58-59
    [3]窦新田.生物固氮[M].北京:农业出版社, 1989: 129-133.
    [4] Zabran H. Rhizobium-legume symbiosis and nitrogen fixation under severe condition and in arid climate [J]. Microbiol. Mol. Biol. Rev., 1999, 63: 968-989.
    [5]陈文新,汪恩涛,陈文峰等.根瘤菌-豆科植物共生多样性与地理环境的关系[J].中国农业科学, 2004, 37(1): 81-86.
    [6]周湘泉,韩素芬.豆科树种根瘤菌共生体系研究进展[J].林业科学, 1989, 25(3): 243-251.
    [7]韩素芬,周湘泉.我国豆科树种结瘤情况[J].南京林业大学学报(自然科学版): 84-89.
    [8]马晓彤,刘惠琴,宁国赞.我国根瘤菌与苜蓿共生固氮优良组合研究进展及前景(中国草学会第二届中国苜蓿大会论文集) [C].北京:中国农业大学出版社, 2003: 32-36.
    [9]陈文新,陈文峰.发挥生物固氮作用减少化学氮肥用量[J]. Review of China Agricultual Science and Technology, 2004, 6: 3-5.
    [10]陈强.四川省根瘤菌多样性和系统发育研究及葛属根瘤菌分类地位的确定[D].中国农业大学博士学位论文, 2004, 5: 34-36.
    [11]陈文新,汪恩涛,陈文峰.根瘤菌-豆科植物共生多样性与地理环境的关系[J].中国农业科学, 2004, 37, (1): 81-86.
    [12] Hawksworth D. L.. The fungal dimension of biodiversity: Magnitude, significance, and conservation [J]. Mycol. Res., 1991, 95(6): 641-655.
    [13]陈健斌.微生物的多样性及其特征[J].微生物学通报, 1994, 21(3): 173-176.
    [14]姜长阳.微生物多样性价值和保护策略[J].环境保护与循环策略, 1991: 8-7.
    [15]夏铭.生物多样性研究进展[M].北京:农业出版社, 1993, 137-139.
    [16]李阜棣等.生物科学和土壤科学中几个领域的研究进展[M].北京:农业出版社,1993,137-139.
    [17]王素英.根瘤菌分类的新进展[J].微生物学通报, 1997, 24(1): 44-47.
    [18]陈文新.中国豆科植物根瘤菌资源多样性与系统发育[J].中国农业大学学报, 2004 , 9(2): 6-7.
    [19]姚竹云,陈文新.根瘤菌的现代分类及其系统发育[J].微生物学杂志, 1998, 18(1): 38-43.
    [20]张小平,李阜隶.根瘤菌的遗传多样性与系统发育研究进展[J].应用与环境生物学报, 2002, 8(3): 325-333.
    [21] Perret X., Steahelin C., Broughton W. J. Molecular basis of symbiotic promiscuity [J]. Molecular Biology Reviews, 2000, 64: 180-201.
    [22]郑君芳,陈文峰,刘桂荣等.根瘤菌基因组结构的多样性及其与系统发育的关系[J].微生物学通报, 2003, 30(4): 126-130.
    [23]陈华癸.微生物学[M] .北京:中国农业出版社,1999 ,145-146
    [24]张小平,李阜隶.根瘤菌的遗传多样性与系统发育研究进展[J].应用与环境生物学报, 2002, 8(3): 325-333.
    [25] Colwell R. R., Johnson R., Wan L., et al. Numerical taxonomy and deoxyribonucleic acid reassociation in the taxonomy of some gram negative fermentative bacteria [J]. Int. J. Syst. Bacteriol.,1974, 24: 422-433.
    [26] Krieg N. R., Holt J. G. Bergey’s Manual of Systematic bacteriology [M]. Baltimore: Williams & Wilkins, 1984: 121-132.
    [27] Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya [J]. National Acad Sciences, 1990, 351: 52-529.
    [28] Sikora S., Tedzepovei S., Pejic I., et al. Genetic Diversity of Bradyrhizobium japonicum field population revealed by RAPD fingerprinting [J]. Appl. Microbiol., 1997, 82: 527-531.
    [29] Gustavo S., Virginia MA., JoséM., et al. Genetic diversity of fast-growing rhizobia that nodulate soybean [J]. Arch. Microbiol., 2003, 180: 45-52.
    [30] Young C., Cheng K. Genetic diversity of fast-and slow-growing soybean rhizobia determined by random amplified polymorphic DNA analysis [J]. Biol. Fertil. Soils, 1998, 26: 254-256.
    [31] Chen Wen-Ming, Lee Tsong-Ming. Genetic and phenotypic diversity of rhizobial isolates from sugarcane-Sesbania cannabina-rotation fields [J]. Biol. Fertil. Soils, 2001, 34: 14-20.
    [32] Stackebrandt E., Goebel B.M. Taxonomic note: a place for DNA-DNA reassociation and 16 S rRNA sequence analysis in the present species definition in bacteriology [J]. Int. J. Syst. Bacteriol., 1994, 44: 846-849.
    [33] Adams J.D.W., Frostick L.E. Analysis of bacterial activity, biomass and diversity during windrow composting [J]. Waste Management, 2009, 29: 598–605.
    [34] Broughton W. J. Roses by other name: Taxonomy of the Rhizobiaceae [J]. Journal of Bacteriology, 2003, 185(10): 2975–2979.
    [35] Chen, W.X., Wang, E.T., Wang S.Y., et al. Characteristics of Rhizobium Tianshanense sp.nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China [J]. Int. J. Syst. Bacteriol., 1995, 45: 153-159.
    [36]韦革宏,陈文新,朱铭莪.西北半干旱地区黄芪根瘤菌DNA同源性及16S rDNA全序列分析[J].中国农业科学, 2001, 34(4): 410-415.
    [37]韦革宏,朱铭莪,陈文新.鸡眼草根瘤菌的16S rDNA全序列分析[J].微生物学报, 2001, 41(1): 113-116.
    [38]陈文峰.刺槐、黄檀、合欢根瘤菌的多相分类及系统发育研究[D].中国农业大学博士学位论文, 2002.
    [39] Andreas U., Zaspel I. Phylogenetic diversity of rhizobial strains nodulation Robinia pseudoacacia L. [J]. Microbiol, 2000, 146: 2997-3005.
    [40] De Lajudie P., Willems A., Nick G., et al. (1998). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp.nov [J]. Int. J. Syst. Bacteriol, 1998, 48: 369-382.
    [41]陈文新.根瘤菌分类研究进展.见:李阜棣等主编.生命科学和土壤科学中几个领域的研究进展[M].北京:农业出版社, 1993: 137-142.
    [42] Sneath P.H.A. Bacterial classification H. Numerical taxonomy [M]. In: Krieg N.R. and Holt J.G. (ed.), Bergeys Manual of systematic Bacteriology, 1984. Williams and Wilkins, Baltimore, MD, USA: 1-7.
    [43] Sneath P.H.A. Sokal R. Numerical taxonomy [M]. The principles and practice of numerical classification, W.H. Freeman and co., San Francisco, 1973.
    [44] Sneath, P.H.A. Bacterial classificationⅡ. Numerical Taxonomy [M]. In: George M Garrity(ed.),Bergeys Manual of systematic Bacteriology, 2001, VolumeⅠ2nd Edition. New York Springer Verlag: 39-42
    [45] Graham P. H. The application of computer technique to the taxonomy of the root-nodule bacteria of legumes [J]. Gen. Microbiol., 1964, 35: 511-517.
    [46] Sneath P.H.A., Sokal R.R. Numerical taxonomy: The principles and practice of numerical classification [M]. San Francisco (EUA). W.H. Freeman, 1973.
    [47] Noel K. D., Brill W. J. Diversity and dynamics of indigenous Rhizobium japonicum [J]. Appl. Environ. Microbiol., 1980, 40: 931-938.
    [48] Roberts G. P., Leps W. T., Sliver L. E., et al. Use of two-dimentional polyacrylamide gel electrophoresis identify and classify Rhizobium strains [J]. Appl. Environ. Microbiol., 1980, 39: 414-422.
    [49]许晓东,陈文新.天山根瘤菌(Rhizobium tianshanense)全细胞蛋白电泳和多位点酶电泳分析[J].微生物学通报, 1990, 23(3): 131-134.
    [50] Lajudie De P., Willems A., Pot B., et al. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., S. saheli sp.nov [J]. Int. J. Syst. Bacteriol., 1994, 44: 751-753.
    [51] Lajudie De P., Willems A., Nick G., et al. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp.nov [J]. Int. J. Syst. Evol. Microbiol., 1998, 48: 369-382.
    [52] Dupuy N., Willems A., Pot B., et al. Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida [J]. Int. J. Syst. Bacteriol., 1994, 44: 461-473.
    [53] Yan A. M., Wang E. T., Chen W. X., et al. Sinorhizobium meliloti associated with Medicago sativa and Melilotus Spp. in arid saline soils in Xinjiang, China [J]. Int. J. Syst. Evol. Microbiol., 2000, 50: 1887-1891.
    [54] Brain G.S. Multilocus sequence typing: molecular typing of bacterial pathcgens in an era of rapid DNA sequencing and the internet [J]. Current Opinion in Microbiolgy, 1999, 2: 312-316.
    [55] Jarvis B. D., Tighe W. Rapid identification of Rhizobium species based on cellular fatty acid analysis [J]. Plant & Soil, 1994, 161: 31-34.
    [56] Jarvis, B. D., Sivakumaran S., Tighe S. W., et al. Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition [J]. Plant & Soil, 1996, 184: 143-158.
    [57] Graham P. H., Sadowsky M. J., Tighe S. W., et al. Differences among strains Bradyrhizobium in fatty acid methyl-ester analysis [J]. Can.J. Microbiol., 1995, 41: 1038-1042.
    [58] Van Berkum P., Terefework Z., Paulin., et al. Discordant phylogenies within the rrn loci of Rhizobia [J]. J. Bacteriol., 2003, 185(10): 2988-2998.
    [59] Tighe S. W., De Lajudie P., Dipietro K., et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobaterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System [J]. Int. J. Syst. Evol. Microbiol., 2000, 50: 787-801.
    [60] Neol K. D., Brill W. J. Diverisity and dynamics of indigenous Rhizobium japonicum [J]. Appl. Environ. Microbiol., 1980, 40: 931-938.
    [61] Lindstrom K., Zahran H. H. Lipopolysaccharide patterns in rhizobia that nodulate leguminous trees [J]. FEMS Microbiol. Lett., 1993, 107: 327-330.
    [62] Santamaria M., Gutierrez N. A. M., Corzo J. Lipopolysaccharide profiles from nodules as markers of Bradyrhizobium strains nodulating wild legumes [J]. Appl. & Environ. Microbiol., 1998, 64(3): 902-906.
    [63] Ludwig W., Schleifer K. H. Bacterial Phylogeny Based on 16S and 23S rRNA Sequence Analysis [J]. FEMS Microbiol. Rev., 1994, 18 (1): 164-188.
    [64] Terefework Z., Nick G., Suomalainen S., et al. Phylogeny of Rhizobium Galega with respect to other Rhizobia and Agrobacteria [J]. Int. J. Syst. Bacteriol., 1998, 48 (1): 349 - 356.
    [65] Martens M., Delaere M., Coopman R., et al. Multilocus sequence analysis of Ensifer and related taxa [J]. Int. J. Syst. Evol. Microbiol., 2007, 57(3): 489-503.
    [66] Laguerre G., Mavingui P., Amarger M. N., et al. Typing of Rhizobia by PCR DNA Fingerprinting and PCR Restriction Fragment Length Polymorphism Analysis of Chromosomal and Symbiotic Gene Regions: application to Rhizobium leguminosarum and its different biovars [J]. Appl. Environ. Microbiol., 1996, 62 (2): 2029-2036.
    [67] Selenska P. S., Evguenieva H. E., Radeva G., et al. Characteristics of Rhizobium‘hedysari’by RFLP Analysis of PCR Amplified rDNA and by Genomic PCR Fingerprinting [J]. J. Appl. Bacteriol., 1996, 80 (1): 517-528.
    [68] Jensen M. A., Webster J. A., Straus N. Rapid Identification of Bacteria on the Basis of Polymerase Chain Reaction Amplified Ribosomal DNA Spacer Polymorphisms [J]. Appl. Environ. Microbiol., 1993, 59 (2): 945-952.
    [69] Gill S., Belles J. Identification of Variability of Ribosomal DNA Spacer from Pseudomonas Soil Isolates [J]. Can. J. Microbiol., 1994, 40 (1): 541-547.
    [70] Williams J. G., Kubelik A. R., Rafalski J. A., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic. Acids Res., 1990, 18: 6531-6535.
    [71] Mathis J. N., McMiilin D. E. Detection of Genetic Variation in Bradyrhizobium japonicum USDA 110 Variants Using DNA Fingerprints Generated with GC Rich Arbitrary PCR Primers [J]. Plant and Soil, 1996, 186 (1): 81-85.
    [72] Caetano-Anolles G., Bassam B. J., Gresshoff P. M. DNA Amplification Fingerprinting Using Very Short Arbitrary Oligonucleotide Primers [J]. Biotechnology, 1991, 9 (1): 553-557.
    [73] Carelli M., Stefano G., Silvia F., et al. Genetic Diversity and Dynamics of Sinorhizobium meliloti Population Nodulating Different Alfaf a Cultivars in Italian Soils [J]. Appl. Environ. Microbiol., 2000, 66 (5): 5099-5103.
    [74] Sikora S., Redzepovic S., Pejic I., et al. Genetic Diversity of Bradyrhizobium japonicum Field Population Revealed by RAPD Fingerprinting [J]. J. Appl. Microbiol., 1997, 82 (1): 527-531.
    [75] Niemann S., Publer A., Selbitschka W., et al. Evaluation of the Resolving Power of Three Different DNA Fingerprinting Methods to Discriminate Among Isolates of a Natural Rhizobium meliloti Population [J]. J. Appl. Microbiol., 1997, 82 (1): 477-484.
    [76] Aguis F., Sanguinetti C., Monza J. Strain specific Fingerprints of Rhizobium loti Generated by PCR with Arbitrary and Repetitive Sequences [J]. FEMS Microbiol. Lett., 1997, 24 (1): 87-92.
    [77] Paffetti D., Scotti C., Gnocchi S., et al. Genetic Diversity of an Italian Rhizobium meliloti Population from Different Medicagosaliva Varieties [J]. Appl. Environ. Microbiol., 1996, 62 (3): 2279-2285.
    [78] Fouly H. M., Wilkinson H. T., Domier L. L., et al. Use of Random Amplified Polymorphic DNA forIdentification of Gaeumannomyces Species [J]. Soil Biol. Biochem., 1996, 28 (1): 703-710.
    [79] Sellstedt A., Wullings B., Nystrom U., et al. Identification of Casuarma Frankia Strains by Use of Polymerase Chain Reaction with Arbitrary Primers [J]. FEMS Microbiol. Lett., 1992, 93 (1): 1-6.
    [80] Willems A., Doignon-Bourcier F., Coopman R., et al. AFLP fingerprint analysis of Bradyrhizobium strains isolated from Faidherbia albida and Aeschynomene species [J]. Syst.Appl. Microbiol., 2000, 23(1): 137-147.
    [81] Duim B., Wassenaar T. M., Rigter A., et al. High-resolution genotyping of Campylobacter strains isolated from poultry and humans with AFLP fingerprinting [J]. Appl. Environ. Microbiol., 1999, 65: 2369-2375.
    [82] Terefework Z., Kaijalainen S., Lindstrom K. AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis [J]. J. Biotechnol., 2001, 91(2-3):169-180.
    [83] Higgins C.F., Ferro-luzzi Ames G., Barnes W. M., et al. A novel intercistronic regulartory element of prokaryotic operons [J]. Nature, 1982, 298: 760-762.
    [84] Stern M. J., Ferro-Luzzi Ames G., Smith N. H., et al. Repetitive extragenic palindromic sequences: A major component of the bacterial genome [J]. Cell, 1984, 37: 1015-1026.
    [85] Hulton C. S. J., Higgins D. F., Sharp P.M. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salminella typhimurium and other enterobacteria [J]. Mol. Microbiol., 1991, 5: 825-834.
    [86] Sharples G. J., Lioyd R. G. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes [J]. Nucleic. Acids Res., 1990, 18: 6503-6508.
    [87] Cruz-Sanchez J. M., Velzquez E., Mateos P. F., et al. Enhancement of resolution of low molecular weight RNA profiles by staircase electrophoresis [J]. Electrophroesis, 1997, 18: 1909-1911.
    [88] Velazquez E., Cruz-sanchez J. M., Mateos P. F., et al. Analysis of Stable Low-molecular-weight RNA Profiles of Members of the Family Rhizobiaceae [J]. Appl. & Environ. Microboil., 1998, 64: 1555-1559.
    [89] Young J. P. W., Downer H. L., Eardly B. D. Phylogeny of the phototrophic Rhizobium strain BTAil by polymerase chain reaction based sequencing of a 16S rRNA gene segment [J]. J. Bacteriol., 1991, 173: 2271-2277.
    [90] Sullivan J. T., Eardly B. D., Van Berkum P., et al. Four unnamed species of non-symbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus [J]. Appl. Environ. Microbiol., 1996, 62 (8): 2818-2825.
    [91] Young J. P. W., Haukka K. E. Diversity and phylogeny of rhizobia [J]. New Phytol., 1996, 133: 87-94.
    [92] Sullivan J. T., Partrick H. N., Lowther W. L., et al. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment [J]. Natl. Acad. Sci., 1995, 92: 8985-8989.
    [93] Estrella M. J., Munoz S., Soto M. J., et al. Genetic Diversity and Host Range of Rhizobia Nodulating Lotus tenuis in Typical Soils of the Salado River Basin (Argentina) [J]. Appl. Environ. Microbiol., 2009, 75: 1088-1098.
    [94] Peng G. X., Tan Z. Y., Wang E. T., et al. Identification of isolates from soybean nodules in Xinjiang Region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense fromSinorhizobium fredii [J]. Int. J. Syst. Evol. Microbiol., 2002, 52 (2): 457-462.
    [95] Fox G. E., Wisotzkey J. D., Jurtshuk P. How close is close: 16S sequence identity may not be sufficient to quarantee species identity [J]. Int. J. Syst. Bacteriol., 1992, 42: 166-170.
    [96] Clayton R. A., Sutton G., Hinkle P. S., et al. Intraspecific variation in small subunit rRNA sequences in Genbank: Why single sequences may not adequately represent prokaryotic taxa [J]. Int. J. Syst. Bacteriol., 1995, 45: 595-599.
    [97] Gaunt M. W., Turner S. L., Rigottier-Gois E. L., et al. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia [J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51: 2037–2048.
    [98] Turner S. L., Young J. P. The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications-The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications [J]. Mol. Biol. Evol., 2000, 17 (2): 309-319.
    [99] Gaunt M. W., Turner S. L., Rigottier Gois L., et al. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia [J]. Int. J. Syst. Evol. Microbiol., 2001, 51 (6): 2037-2048.
    [100] Terefework Z., Nick G., Suomalainen S., et al. Phylogeny of Rhizobium galegae with respect to other rhizobiua and agrobacteria [J]. Int. J. Syst. Bacteriol., 1998, 48: 349-356.
    [101] Mesfin Tesfaye, Brian Holl F. Group specific differentiation of Rhizobium from clover species by PCR amplification of 23S rDNA sequences [J]. Can. J. Microbiol., 1998, 44: 1102-1105.
    [102] Mesfin Tesfaye, Pertersen D. J., Brian Holl F. Comparison of partial 23S rDNA sequences from Rhizobium species [J]. Can. J. Microbiol., 1997, 43: 526-533.
    [103] Demezas D. H., Reardon T. B., Watson J. M., et al. Rhizobium leguminosarum bv. trifolii strains revealed by allozyme and restriction fragment length polymorphism analysis [J]. Appl. Environ. Microbiol., 1991, 57: 3489-3495.
    [104] Kaijalainen S., Lindstrom K. Restriction fragment length polymorphism analysis of Rhziobium galegae strains [J]. J. Bacteriol., 1989, 171(10): 5561-5566.
    [105] Rome S., Brunel B., Norman P., et al. Evidence that two genomic species of Rhizobium are associated with Medicago truncatula [J]. Arch. Microbiol., 1996, 165: 285-288.
    [106] Sessitsch A., Ramirez-Saad H., Hardarson G., et al. Classification of Austian rhizobia and the Mexican isolate FL27 obtained from Phaseolus vulgaris as Rhizobium gallicum [J]. Int. J. Syst. Bacteriol., 1997, 47: 1097-1101.
    [107] Thomas P. M., Golly K. F., Virginia R. A., et al. Cloning of nod gene regions from mesquite rhizobia and bradyrhizobia and nucleotide sequence of the nodD gene from mesquite rhizobia [J]. Appl. Environ. Microbiol., 1995, 61: 3422-3429.
    [108] Young J. P. W., Haukka K. Diversity and phylogeny of rhizobia [J]. New Phytol., 1996, 133: 87-94.
    [109] Haukka K., Lindstrom K., Young J. P. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America [J]. Appl. Environ. Microbiol., 1998, 64(2): 419-426.
    [110] Laguerre G., Nour S. M., Macheret V., et al . Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts [J]. Microbiology, 2001, 147 (4): 981-993.
    [111] Kondorosi E., BuiréM., Cren M., et al. Involvement of the syrM and nodD3 genes of Rhizobium meliloti in nod gene activation and in optimal nodulation of the plant host [J]. Molecular Microbiology, 1991, 5 (12) : 3035-3048.
    [112] Laguerre G., Nour S. M., Macheret V., et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts [J]. Microbiology, 2001, 147: 893–981.
    [113] Chen W. F., Guan S. H., Zhao C. T., et al. Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges [J]. FEMS Microbiol. Lett., 2008, 283: 203–209.
    [114] Ueda T., Suga Y., Yahiro N., et al. Phylogeny of Symplasmids of rhizobia by PCR-based sequencing of a nodC segment [J]. J.Bacteriol., 1995, 177: 468–472.
    [115] Kalita M., Stepkowski T., Lotocka B., et al. Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia [J]. Arch. Microbiol., 2006, 186: 87–97.
    [116] Moschetti G., Peluso A., Protopapa A., et al. Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae [J]. Syst. Appl. Microbiol., 2005, 28: 619–631.
    [117] Sarita S., Sharma P.K., Priefer U.B., et al. Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates [J]. FEMS Microbiol. Ecol., 2005, 54: 1–11.
    [118] Donate-Correa J., Leon-Barrios M., Hernandez M., et al. Different Mesorhizobium species sharing the same symbiotic genes nodulate the shrub legume Anagyris latifolia [J]. Syst. Appl. Microbiol., 2007, 30: 615–623.
    [119] Perret X., Staehelin C., Broughton W. J. Molecular basis of symbiotic promiscuity [J]. Microbiol. Mol. Biol. Rev., 2000, 64: 180–201.
    [120] Rincon A., Arenal F., Gonzalez I., et al. Diversity of rhizobial bacteria isolated from nodules of the gypsophyte Ononis tridentata L. growing in Spanishsoils [J]. Microb. Ecol., 2007: 223–233.
    [130] Giraud E., Moulin L., Vallenet D., et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia [J]. Science, 2007, 316 : 1307–1312.
    [131]刘杰,陈文新.我国中东部地区紫穗槐、紫荆、紫藤根瘤菌数值分类及16S rDNA PCR-RFLP研究[J].中国农业科学, 2003, 36(1): 17-25.
    [132] Gurtler V., Stanisich V. A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region [J]. Microbiology, 1996, 142: 3-16.
    [133] Chou C. H., Chiang Y. C., Chiang T. Y. Within-and between-individual length heterogeneity of rDNA-IGS in Miscanthus sinensis var. glaber (Poaceae) phylogenetic analyses [J]. Genome, 1999, 42(6): 1088-1093.
    [134] WEI G. H., ZHU M. E., CHEN W. X. Analysis on 16S rDNA sequence of rhizobia isolated from Kummerowla sp. [J]. Acta. Microbiological Sinica., 2001, 41(1): 113-116.
    [135] XIN Y. H., CHEN W. X. 16S rDNA sequence analysis of representative strains of two rhizobial new groups isolated form Astragalus Spp. [J]. Acta. Microbiological Sinica., 2002, 42(5): 521-525.
    [136] Young J. P. W. Bacterial evolution and the nature of species [J]. In Advances in Molecular Ecology, 1998: 119-131. Editedby G. R. Carvalho. Amsterdam: IOS Press.
    [137] Eisen J. A. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecA and 16S rRNAs from the same species [J]. J. Mol. Evol., 1995, 41, 1105-1123.
    [138]路敏琦,李俊,姜昕等.我国蚕豆根瘤菌的多样性和系统发育研究[J].应用与环境生物学报, 2007, 13 (1): 73-77.
    [139] Wei G., Chen W., Zhu W., et al. Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts [J]. FEMS Microbiol. Ecol., 2009: 1–9.
    [140]李俊,葛诫,杨苏声.根瘤菌结瘤基因研究的新进展[J].微生物学杂志, 1999, l9 (4): 31-34.
    [141] Martinez-Romero E., Segovia L., Mercante F.M., et al. Rhizobium tropici, a novel species nodulating Phaseolus vulgar is bean and Leucaena sp. trees [J]. Int. J. Syst. Bacteriol., 1991, 41: 417-426.
    [142] Lindstrom K., Zahran H. H. Lipopolysaccharide patterns in rhizobia that nodulate leguminous trees [J]. FEMS Microbiol. Lett., 1993, 107: 327-330.
    [143] Hennecke H., Kaluza K., Thony B., et al. Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria [J]. Arch. Microbiol., 1985, 142: 342-348.
    [144] Haukka K., Lindstrom K., Young J. P. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America [J]. Appl. Environ. Microbiol., 1998, 64(2): 419-26.
    [145] Early B. D., Wang F.S., Van Berkum P. Corresponding 16S rRNA gene segments on Rhizobiaceae and Aeromonas yield discordant phylogenies [J]. Plant Soil, 1996, 186: 69-74.
    [146] Debell′e F., Moulin L., Mangin B., et al. Nod genes and Nod signals and the evolution of the rhizobium legume symbiosis [J]. Acta. Biochim. Pol., 2001, 48: 359–365.
    [147] Laguerre G., Nour S. M., Macheret V., et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts [J]. Microbiology, 2001, 147: 981–993.
    [148] Raymond J., Siefert J. L., Staples C. R., The natural history of nitrogen fixation [J]. Mol. Biol. Evol., 2004 21: 541–554.
    [149] Galibert F., Finan T. M., Long S. R., et al. The composite genome of the legume symbiont Sinorhizobium meliloti [J]. Science, 2001, 293: 668–672.
    [150] Kaneko T., Nakamura Y., Sato S., et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 [J]. DNA Res., 2002, 9: 189–197.
    [151] Gonz′alez V., Bustos P., Ram′irez-Romero M. A., et al. The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments [J]. Genome Biol., 2003, 4 (6): R36.
    [152] Young J. P., Crossman L. C., Johnston A.W., et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components [J]. Genome Biol., 2006, 7(4): R34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700