用户名: 密码: 验证码:
新型有机无机复合载药微囊的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用层层自组装法和原位凝聚法制备功能性载药微囊,并研究其缓释性能。层层自组装法制备的聚电解质中空微胶囊具有结构的易调控性、尺寸与壁厚的均一性等优点,通过引入功能性组份,可获得具有各种功能的微胶囊,因此层层组装聚电解质微胶囊作为药物缓释载体获得广泛的研究和应用开发,本文在组装过程中引入无机层状颗粒和磁性颗粒赋予微囊一定特殊功能。另外为改善层层自组装法繁复的制备过程,本文中又采用原位凝聚法简便快捷地制备聚电解质微胶囊。
     为改善微囊的释药性能、实现微囊的多功能化,本文在层层自组装过程中引入无机颗粒,成功合成了有机无机复合微囊。即以磺化处理过的PS微球为模板,通过层层自组装法制备了聚苯乙烯磺酸钠(PSS)和聚二烯二甲基氯化铵(PDDA)聚电解质微囊,并将无机锂藻土颗粒或Fe3O_4颗粒组装到微囊上,获得两种有机无机复合微囊,微囊直径在1-2μm之间,锂藻土和Fe3O_4颗粒在微囊上均匀分布。掺杂锂藻土的载药微囊负载盐酸阿霉素(DOX)的量为195.1μg/(mg微囊),且其释放50%药量时间相比于未组装锂藻土的载药微囊延长,说明层状锂藻土颗粒具有延缓药物释放的功能;而磁性微囊载药量为180.3μg/(mg微囊),在永久磁场中表现出明显的磁导向性,负载DOX的磁性微囊在交变磁场作用下表现出了磁响应性,可能由于磁热效应使得聚电解质膜结构发生变化,导致载药微囊出现了突释现象。
     为缓解药物释放前期的突释现象,采用具有粗糙表面和孔洞结构CaCO3微球作为模板,装载药物布洛芬(IBU)后再在载药微球表面组装聚电解质,制备核-壳型载药体系。研究发现,CaCO3微球负载IBU的载药量为28.487mg/g。合成的核-壳型载药体系具有一定的缓释特性,而将聚电解质与无机颗粒锂藻土同时组装到载药CaCO3上,能进一步改善该体系的缓释效果,组装有锂藻土的微球释放50%药量时间相比于未组装锂藻土的载药微球有所延长,证明了片层状的锂藻土具有延缓药物释放的功能。
     为改善层层自组装法繁复的制备过程,本文采用原位凝聚法一步合成载药微囊,即先制备掺杂PSS的CaCO3微球,并以此作为模板,组装一层强聚电解质PDDA,然后用EDTA除核,除核过程中PSS和PDDA发生凝聚形成微囊。通过Zeta电位分析发现微囊外层带负电,可以推测溶解的CaCO3中释放出来的PSS重新组装到微囊外围。通过在除核过程中添加PDDA可以实现微囊带电荷性质的反转,同时微囊厚度增加。以DOX为模型药物,考察微囊的载药性能,微囊载药量随着药物初始浓度和培养温度的升高而增加,当培养温度为37℃,药物初始浓度为100gg/ml时,药物负载量约为300μg/(mg微囊)。载药微囊的释药特性显示,CaCO3制备中PSS的用量对载药微囊缓释效果影响显著,PSS用量越大,缓释时间增长,当PSS用量为12g/L时其释放50%药量时间相比于PSS用量为4g/L时延长了4h。
In this paper, functional microcapsules loaded with drug was fabricated by the layer-by-layer self-assembly(LbL) or in-situ coacervation. The advantage of LbL assembly is that the structure, size, thickness and composition of the polyelectrolyte microcapsules are easy to be controlled. In this study, inorganic clay nanoparticles and magnetic particles were used in the LbL assembly to fabricate microcapsules with special functions. In another part of this study, in-situ coacervation was selected to prepare microcapsules in order to simplify the complicated preparation process of LbL assembly,.
     The organic-inorganic hybrid microcapsules were synthesized successfully by introduce inorganic particles during LbL assembly in order to improve the properties of the microcapsules. Two kinds of organic-inorganic hybrid microcapsules were made introducing laponite or Fe3O4 into microcapsules and using polystyrene(PS) microspheres as template. The laponite or Fe3O4 nanoparticles distributed uniformly in the wall of microcapsule. For the microcapsules doped with laponite, the amount of DOX loaded was 195.1μg/(mg microcapsules). The time of releasing 50% loaded DOX from microcapsules was extended compared to pure polyelectrolyte microcapsules, which means layered laponite particles could delay the drug release. For the microcapsules doped with Fe3O4, the amount of DOX loaded was 180.3μg/(mg microcapsules). The microcapsules showed significant magnetic orientation in the permanent magnetic field. The DOX loaded magnetic microcapsules showed magnetic response in the alternating magnetic field, in which the durg burst released probably because of magnetocaloric effect making the structure of polyelectrolyte membrane changed.
     For the purpose of improving the drug releasing property, core-shell drug carrier was prepared by using CaCO3 microspheres with rough surface and pore structure as templates. Ibuprofen(IBU) were loaded inside the pores of CaCO3, which were then coated with polyelectrolyte and laponite on the surface. The amount of IBU loaded in the CaCO3 was 28.487mg/g. The core-shell microspheres doped with laponite had better durg release effect compared to normal core-shell microspheres without inorganic particles.
     In-situ coacervation was used to simplify the preparation process of microcapsules, in which CaCO3 microspheres doped with PSS were using as templates. PDDA was then adsorbed on the templates, which followed by dissolving CaCO3 in EDTA. The microcapsules was obtained by coacervation of PDDA and PSS during the dissolvation of CaCO3. Zeta potential analysis showed that the outer layer of microcapsules is negatively charged. The more the PSS involved in the CaCO3, the thicker the membrane is. When the PDDA was added in the EDTA solution, the zeta potential of outer layer of microcapsules conversed to positive, which means the PDDA assembled on the outer layer of microcapsules. DOX loading amount of the positive microcapsules could be 300μg/(mg microcapsules) When the incubating temperature is 37℃and the initial concentration of drug is 100μg/ml. The drug release of the thicker microcapsules showed better sustained-release.
引文
[1]谢德平,陆国权.几种常见药物筛选的新技术.[J].现代中药研究与实践,2009,23(4):79~81
    [2]赵长生,顾忠伟,张倩等.生物医用高分子材料.[M].北京:化学工业出版社,2009.135~137
    [3]高志贤,李小强等.纳米生物医药.[M].北京:化学工业出版社,2007.168~174
    [4]Uurto I, Isotalo T, Salenius JP,et al. Tissue biocompatibility of new biodegradable drug-eluting stent materials.[J].J Mater Sci Mater Med,2007,18:1543~1547.
    [5]Li JK,Wang N,Wu XS.Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery.[J].J Control. Release,1998,56(1-3):117~126
    [6]Crowley MM,Schroeder B,McGinity JW,et al. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion.[J].Int. J Pharm.,2004,269(2):509~522
    [7]Prasertmanakit, S; Praphairaksit, N; Chiangthong, W, et al. Ethyl cellulose microcapsules for protecting and controlled release of folic acid.[J].Aaps Pharmscitech.2009,10(4):1104~1112
    [8]张阳德.纳米药物学.[M].北京:化学工业出版社,2006.17~18
    [9]李玉宝,顾宁,魏于全等.纳米生物医药材料.[M].北京:化学工业出版社,2004.83~86
    [10]Zambaux MF,Bonneaux F,Gref R,et al.Preparation and characterization of protein C-loaded PL A nanoparticles. [J].J Control. Release,1999,60(2-3):179~188
    [11]Dunne M,Corrigan OI,Ramtoola Z.Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. [J].Biomaterials,2000,21 (16):1659~1668
    [12]Sinha VR,Singla AK,Wadhawan S,et al. Chitosan microspheres as a potential carrier for drugs.[J].Int. J Pharm.,2004,274(1-2):1-33
    [13]Barenholz Y.Liposome application:problems and prospects. [J].Curr. Opin.Colloid In.,2001,6(1):66~77
    [14]Schwendener RA,Fiebig HH,Berger MR,et al.Evaluation of incorporation characteristics of mitoxantrone into unilamellar lipo somes and analysis of their pharmacok inetic properties, acute toxicity and antitumor efficacy.[J].Cancer Chemoth. Pharm.,1991,27(6):429~439
    [15]Vladimir P Torchilin.Structure and design of polymeric surfactant-based drug delivery systems.[J].J Control. Release,2001,73:137~172
    [16]X Zhang, H M Burt,D Von Hoff,et al.An investigation of the antitumor activity and biodistribution of polymeric micellar paclitaxel.[J]Cancer Chemother. Pharmacol.1997,40:81~86
    [17]N. Malik,R.Wiwattanapatapee,R. Klopsch, et al.Relationship between structure and biocompatibility in vitro,and preliminary studies on the biodistribution of I-125-labelled polyamidoamine dendrimers in vivo.[J].J Control. Release,2000,65:133~148
    [18]杨华,叶玲,唐静成等.甲氨蝶呤-G4.0聚酰胺胺树状大分子体外释放初探.[J].沈阳药科大学学报,2005,22(3):168~170
    [19]叶玲,江晓舟,杨华等.聚酰胺-胺(PAMAM)树状大分子对甲氨蝶呤的包合及缓释研究.[J].高等学校化学学报,2005,26(2):353~355
    [20]赵佩瑾,贾方.四环素的微囊化及性能指标的评价.[J].中国医药导刊,2008,10(8):1284~1287
    [21]Adachi S,Imaoka H,Ashida H,et al.Preparation of microcapsules of W/O/W emulsions containing a polysaccharide in the outer aqueous phase by spray-drying.[J].Eur. J Lipid. Sci. Tech.,2004,106(4):225~231
    [22]武锦,周艺峰,陈静等.微乳液聚合法制备天然除虫菊酯纳米胶囊.[J].高分子材料科学与工程,2008,24(2):35~38
    [23]田云,卢向阳,何小解,易克,黄成江.微胶囊制备技术及其应用研究.[J].科学技术与工程,2005,5(1),44~47
    [24]Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites.[J].Science,1997,277:1232~1237
    [25]Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating.[J].Science,1998,282:1111~1116
    [26]Donath E,Sukhorukov GB,Mohwald H.,et al.Novel hollow polymer shells by colloid-templated assembly of Polyeleetrolytes.[J].Angew. Chem. Int. Ed.1998,37:2201-2205
    [27]Jeremy J.Harris,Paul M.DeRose,Merlin L.Bruening.synthesis of passivating, nylon-like coatings through cross-Linking of ultrathin polyelectrolyte films. [J].J Am. Chem. Soc.,1999,121:1978~1979
    [28]Zhang YJ,Yang SG,Guan Y, et al.Fabrication of stable hollow capsules by covalent layer-by-layer self-assembly. [J].Macromolecules,2003,36(11):4238~4240
    [29]Feng ZQ,Wang ZP,Gao CY,et al.Direct covalent assembly to fabricate microcapsules with ultrathin walls and high mechanical strength.[J].Adv. Mater.2007,19:3687~3691
    [30]刘亚军,朱以华,张素秋等.单分散三聚氰胺甲醛微球的制备.[J].功能高分子学报,2007,17(1):113~118
    [31]Dong WF, Ferri JK, Adalsteinsson T, et al. Influence of shell structure on stability,integrity,and mesh size of polyelectrolyte capsules, mechanism and strategy for improved preparation.[J].Chemistry of Materials,2005,17:2603~2611
    [32]Gao CY,Moya S,Liehtenfeld H,Mohwald H,et al.The decomposition process of melamine formaldehyde cores:the key step in the fabrieation of ultrathin polyelectrolyte multilayer capsules.macromol.[J].Mater.Eng.,2001,286:355~361
    [33]王秋雨,钦传光,张秋禹,赵雯,张瑞洁,李阳.自组装磁性聚苯乙烯微球固定化木瓜蛋白酶.[J].应用化学,26(5):557~561
    [34]Shenoy DB,Antipov AA,Mohwald H.et al.Layer-by-layer engineering of biocompatible,decomposable core-shell structures. [J].Biomaeromolecules,2003,4:265~272
    [35]Itoh Y, Matsusaki M, Kida T, et al. Preparation of biodegradable hollow nanocapsules by silica template method. [J].Chemistry Letters,2004,33:1552~1553
    [36]Qinghe Zhao, Shuang Zhang, Weijun Tong, et al. Polyelectrolyte microcapsules templated on poly(styrene sulfonate)-doped CaCO3 particles for loading and sustained release of daunorubicin and doxorubicin. [J].Eur. Polym. J,2006,42(12):3341~3351
    [37]Antipov AA, Sukhorukov GB, Leporatti S, et al. Polyelectrolyte multilayer capsule permeability control. [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2002,198:535~541
    [38]Antipov AA, Shchukin D, Fedutik Y, et al. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. [J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,224:175~183
    [39]Gittins DI, Caruso F. Tailoring the polyelectrolyte coating of metal nanoparticles. [J].J Phys. Chem. B,2001,105:6846~6852
    [40]Gittins DI, Caruso F. Multilayered polymer nanocapsules derived from gold nanoparticle templates. [J].Adv.Mater.,2000,12:1947~1948
    [41]Mayya KS, Gittins DI, Dibaj AM, et al. Nanotubles prepared by templating sacrificial nickel nanorods. [J].Nano Letters,2001,1:727~730
    [42]Alexander N. Zelikin, Alisa L. Becker,Frank Caruso,et al.A general approach for DNA encapsulation in degradable polymer microcapsules.[J].Acs. Nano.,2007,1(1):63~69
    [43]Wang TX,Colfen H,Antonietti M.Nonclassical crystallization:mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive.[J].J Am. Chem. Soc.,2005,127(10):3246~3247
    [44]Radt B, Smith TA, Caruso F.Optically addressable nanostructured capsules.[J].Advanced Materials,2004,16:2184~2189
    [45]Neu B, Voigt A, Mitlohner R, Leporatti S, et al. Biological cells as templates for hollow microcapsules.[J].J Microcapsule,2001,18:385~395
    [46]Berven C.A.,Clarke L.,Mooster J.L.,Wybourne M.N.,Hutchison J.E. Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers. [J]. Adv.Mater.,2001,13:109~113
    [47]Rhodes K.H.,Davis S.A.,Caruso F.,Zhang B.,Mann S.Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks.[J].Chem.Mater.,2000,12:2832~2834
    [48]Radtkenko IL,Sukhorukov GB, Mohwald H,et al.Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal partieles stability of the multilayers and eneaPsulation of macromolecules into polyeleetrolyte capsules.[J].Colloid Interface Sci.2000,230:272~280
    [49]Steven Keller,Stacy Johnson, Thomas Mallouk.Photoinduced charge separation in multilayer thin films grown by sequential adsorption of polyelectrolytes.[J].J Am. Chem. Soc,1995,117:12879~12880
    [50]Bizdoaca EL, Spasova M, Farle M, et al. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell.[J].J Magn. Magn. Mater.,2002,240:44~46
    [51]Antipov AA, Sukhorukov GB, Fedutik YA, et al. Fabrication of a novel type of metallized colloids and hollow capsules.[J].Langmuir,2002,18:6687~6693
    [52]Jiwei Cui,Dawei Fan,Jingcheng Hao.Magnetic{Mo72Fe30}-embedded hybrid nanocapsules.[J].J Colloid Interf. Sci.,2009,330:488-492
    [53]Weijun Tong,Wenfei Dong,H Mohwald.Charge-controlled permeability of polyelectrolyte microcapsules.[J].J.Phys.Chem.B,2005,109:13159~13165
    [54]Caruso F,Trau D, Mohwald H,Renneberg R.Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules.[J].Langmuir,2000,16:1485~1488
    [55]Qiu XP, Donath E, Mohwald H. Permeability of ibuprofen in various polyelectrolyte multilayers. [J].Macromol. Mater. Eng,2001,286:591~597
    [56]Qiu XP, Leporatti S, Donath E, et al. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. [J].Langmuir,2001,17: 5375~5380
    [57]Ai H, Jones SA, de Villiers MM, et al. Nano-encapsulation of furosemide microcrystals for controlled drug release.[J].J Control. Release,2003,86:59~68
    [58]Ye SQ, Wang CY, Liu XX, et al. Deposition temperature effect on release rate of indomethacin microcrystals from microcapsules of layer-by-layer assembled chitosan and alginate multilayer films.[J].J Control. Release,2005,106:319~328
    [59]Wang CY, He CY, Tong Z, et al. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery.[J].Int. J Pharm.,2006,308:160~167
    [60]Yu AM,Wang YJ, Caruso F,et al.Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules.[J].Adv. Mater.,2005,17:1737~1741
    [61]Georgieva R,Moya S,Baumler H,et al. Permeability and conductivity of Red Blood Cell Templated Polyelectrolyte Capsules Coated with Supplementary Layers.[J].Langmuir,2004,20:1895~1900
    [62]熊丽君,胡小波,童真等.超拉伸聚合物锂藻土纳米复合水凝胶.[J].化学进展,2008,20(4):464~468
    [63]Lubbe, AS, Bergemann, C, Riess, H, et al.Clinical experiences with magnetic drag targeting: A phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors.[J].Cancer Research,1996,56(20):4686~4693
    [64]Ma M,Wu Y,Zhou,H,et al.Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field.[J]. J Magn. Magn. Mater.,2004,268(1-2):33~39
    [65]姚善泾,梅乐和.一种新型生物微胶囊体系及其在生物质固定化过程中的应用.[J].膜科学与技术,1999,19(1):19~23
    [66]Herrera N N,Letoffe J M,Putaux J L,et al.Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. [J].Langmuir,2004,20:1564~1571
    [67]C.Aguzzi, P.Cerezo, C.Viseras, C.Caramella. Use of clays as drug delivery systems: Possibities and limitations. [J].Applied clay science,2007,36:22~36
    [68]范婷,陈建定,黄广建.分散聚合法制备单分散聚苯乙烯微球.[J].功能高分子学报,2007,19-20(2):172~177
    [69]Zhen Li,Qiao Sun,Mingyuan Gao.Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone:mechanism leading to Fe3O4.[J].Angew.Chem.Int.Ed.,2005,44:123~126
    [70]梁灿彬,秦光戎,梁竹健等.电磁学.[M].北京:高等教育出版社,2004.295~303
    [71]Volodkin DV,Larionova NI,Sukhorukov GB.Protein encapsulation via porous CaCO3 microcapsules templating.[J].Biomacromolecules 2004,5:1962~1972
    [72]Hua Tang,Jaguo Yu,Dickon H.L.Ng.PSSS-controlled synthesis of CaCO3 superstructures. [J].Cryst.Res.Technol.2007,42(9):856~861
    [73]李静,靳玲,李瑞海.一种高效原油破乳剂的组成结构剖析.[J].油田化学,2007,24(2):143~145
    [74]Khopade AJ,Caruso F. Stepwise self-assembled poly(amidoamine) dendrimer and poly(styrenesulfonate) microcapsules as sustained delivery vehicles.[J]. Biomacromolecules,3(6): 1154~1162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700