用户名: 密码: 验证码:
微流控芯片技术对禽流感病毒的快速检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了快速、准确的检测H5、H7与H9亚型禽流感病毒,本研究利用反向斑点杂交方法和微流控芯片方法对禽流感病毒进行检测,初步建立了H5、H7与H9亚型禽流感病毒微流控芯片的鉴别诊断方法,并对微流控芯片和反向斑点杂交的检测灵敏度进行了比较研究。
     本研究可分为三个部分:
     第一部分:H5、H7与H9亚型禽流感病毒HA基因的克隆与序列分析
     在H5与H9亚型禽流感病毒血凝素基因的保守区段内,选择设计2对引物,RT-PCR扩增后将目的片段连接到pGEM-T载体上,转化大肠杆菌感受态细胞,蓝白斑筛选,得到重组质粒pGEM-T-H5与pGEM-T-H9。重组质粒经限制性内切酶酶切、PCR及测序鉴定,结果证实试验用毒株分别为H5与H9亚型禽流感病毒。
     H7亚型禽流感病毒HA片段参照Genbank上已发表的序列A/chicken/Italy/1285/2000(H7N1) (Genbank登录号: CY015014)人工合成,片段长208 bp (973~1 180 bp),片段连接到pMD18-T载体上,重组质粒命名为pMD18-T-H7。
     第二部分:反向斑点杂交方法的建立
     在H5、H7与H9亚型禽流感病毒血凝素基因的保守区段内,选择合成寡核苷酸探针与生物素标记引物。将探针通过紫外交联的方法固定在带正电荷的尼龙膜上,生物素标记引物用以扩增特异性片段。建立了能够同时扩增H5、H7与H9亚型禽流感病毒HA片段的多重RT-PCR方法,扩增产物经热变性后与探针42℃进行杂交,杂交后进行显色。出现明显的蓝紫色斑点判定为阳性,无斑点判定为阴性。对反向斑点杂交进行优化,整个杂交过程在RT-PCR后2.5 h内便可完成。该方法对H5与H9亚型禽流感病毒RNA的最低检测量分别为10 pg与1 pg;H7亚型可检测到1 pg质粒DNA。与琼脂糖凝胶电泳相比较,该方法检测灵敏度提高了10倍左右。3种亚型之间没有出现交叉反应,杂交特异性好。
     使用Rheonix公司的Hyb室温杂交液,整个杂交在室温下即可完成,检测灵敏度与42℃条件下相当,且背景更浅。本试验建立的反向斑点杂交方法灵敏度高、特异性好,可以实现H5、H7与H9亚型禽流感病毒的鉴别诊断。
     第三部分:微流控芯片快速检测H5、H7与H9亚型禽流感病毒方法的建立
     在反向斑点杂交方法的基础上,建立了H5、H7与H9亚型禽流感病毒微流控芯片快速检测方法。微流控芯片将核酸提取、PCR反应、杂交集成在一起,实现了禽流感病毒的快速、准确、自动化检测。采用常规方法进行验证,证实该微流控芯片方法结果可靠。整个检测5 h内即可完成,H9亚型禽流感病毒RNA的最低检测量为1 pg,H5与H7亚型的最低检测量分别为10 pg与1 pg质粒DNA,检测灵敏度与反向斑点杂交方法相当。该方法检测效率高、试剂用量少、操作简便,不需要特殊仪器设备,易于在基层推广应用,可为我国禽流感的防控提供技术支持与保障。
The purpose of this study was to detect avian influenza virus (AIV) subtype H5, H7 and H9. The reverse dot blot hybridization assay and microfluidic chip method for identification of AIV subtype H5, H7 and H9 was established. The sensitivity of microfluidic chip method was compared with that of reverse dot blot hybridization assay.
     The study consists of three parts:
     Part I: Cloning and sequence analysis of HA gene of avian influenza virus subtype H5, H7 and H9
     Two pairs of primers were designed according to the hemagglutinin’s conserved sequenses of AIV subtype H5 and H9. The interested fragments were amplified and inserted into a vector pGEM-T. Ligation products were transformed into E.coli competent cells. Doubtful strains were distinguished by blue-white spot screening, and then identified by restrictive endonucleonase, PCR and sequencing. Sequencing results showed that the cloned HA genes were successfully identified for AIV subtype H5 and H9. The recombinant plasmids were named as pGEM-T-H5 and pGEM-T-H9, respectively.
     Based on the published hemagglutinin genes of AIV subtype H7 A/chicken/Italy/1285/2000(H7N1) (Genbank NO.: CY015014) in Genbank, 208 bp (973~1 180 bp) fragments were artifical synthesized,and then inserted into a pMD18-T vector. The recombinant plasmid was named as pMD18-T-H7。
     PartⅡ: Development of reverse dot blot hybridization assay
     Oligonucleotide probes and biotinylated primers were designed according to the conserved sequenses of hemagglutinin (HA) genes. The oligonucleotide probes were immobilized onto the positively charged nylon membrane by Ultraviolet (UV) radiation. A multiple RT-PCR was established with biotinylated primers for the amplification of HA fragment. Taget DNA fragments were amplified and then hybridized with oligonucleotide probes on the membrane at 42℃. Color reaction was carried out after hybridization. The presence of clearly visible purple-blue spots on the membrane was considered to be a positive hybridization reaction. The conditions of this assay was optimized, the whole procedure could be completed within 2.5h post-RT-PCR processing. 10 pg RNA of H5 subtype could be detected by reverse dot blot hybridization assay, and the detection limit of H9 subtype was 1pg RNA. 1 pg plasmid DNA of H7 subtype could be detected. The detection sensitivity of RDB was 10-fold higher than agarose gel electrophoresis. No cross-hybridization was detectecd between subtype H5, H7 and H9.
     After using Rheonix’s RT Hyb hybridization solution, the hybridization could be done at room temperature, the detection sensitivity was equivalent with that of 42℃, and the background was lower. Reverse dot blot hybridization assay for identification of AIV subtype H5, H7 and H9 was specific and sensitive, which might become a rapid, effective method for identification of AIV.
     PartⅢ:Establishment of the microfluidic chip method for detection of avian influenza virus subtype H5, H7 and H9
     Based on reverse dot blot hybridization assay, the microfluidic chip method for identification of AIV subtype H5, H7 and H9 was established. Nucleic acid extration, PCR reaction and hybridization were integrated on one chip; AIV could be detected rapidly, accurately and automaticly. Verified by conventional methods, the results of microfluidic chip method were reliable. The whole procedure could be completed within 5 h; 1 pg RNA of H9 subtype could be detected by microfluidic chip method, the detection limit of H7 subtype was 1 pg plasmid DNA, and 10 pg plasmid DNA of H5 subtype could be detected. The detection sensitivity was equivalent with that of reverse dot blot hybridization.
     The microfluidic chip method used fewer reagents, worked without special equipments under a higher efficiency. This assay will provide simple and effective technical support for rapid discrimination of AIV subtype H5, H7 and H9.
引文
[1]陈忠诚.生物芯片技术[M].北京:化学工业出版社, 2005, 26–45, 194–226.
    [2]甘孟侯.禽流感[M].北京:中国农业出版社, 2002, 2–79.
    [3]郭元吉,李建国,程小雯,等.禽H9N2亚型流感病毒能感染人的发现[J].中华实验和临床病毒学杂志. 1999, 13(2): 105–108.
    [4]黄淑坚,龚中贵,陈秀玲,等. H5、H9亚型禽流感病毒快速鉴别诊断方法的建立[J].中国兽医学报. 2007, 27(4): 448–450.
    [5]李蓓蓓,薛强,李锦丰,等.新城疫病毒和禽流感病毒复合型胶体金免疫层析试纸条的制备[J].畜牧与兽医. 2009, 41(4): 33–37.
    [6]刘金华,殷学锋,方肇伦.螺旋通道微流控PCR芯片连续自动扩增DNA片段的研究[J].高等学校化学学报. 2004, 25(1): 30–34.
    [7]陆承平.高致病性禽流感病毒与流感病毒[J].中国病毒学. 2004, 19(2): 204–207.
    [8]邵雪君,吴士良.基于尼龙膜的点杂交条件的建立及优化[J].实用医技杂志. 2006, 13(4):509-511. 2004, 25(1): 30–34.
    [9]徐耀先,周晓峰,刘立德,等.分子病毒学[M].武汉湖北科学技术出版社. 2000, 277–287.
    [10]杨帆.禽流感检测技术研究进展[J].重庆工学院学报:自然科学版. 2007,21(1): 128–131.
    [11]于康震,付朝阳,崔尚金,等.我国禽流感防制研究进展[J].中国兽医学报. 2001, 21 (1): 103–104.
    [12]张素霞,王昕,陈雪峰,等. H5N1亚型禽流感病毒血凝素裂解位点对应碱性氨基酸mRNA核苷酸的二级结构分析[J].科学通报. 2008, 53(2): 203–209.
    [13] Alexander D. J. A review of avian influenza in different bird species [J]. Veterinary Microbiology. 2000, 74: 3–13.
    [14] Alexander D. J. Report on avian influenza in the eastern hemisphere during 1997–2002 [J]. Avian Dis. 2003, 47: 792–797.
    [15] Alice A., Edler M. D. Certificate in Tropical Medicine. Avian flu (H5N1):its epidemiology, prevention, and implications for anesthesiology [J]. J. Clin. Anesth. 2006, 18: 1–4.
    [16] Anderson B., Sims K., Regnery R., et al. Detection of Rochalimaea henselae DNA in specimens from cat scratch disease patients by PCR [J]. J. Clin. Microbiol. 1994, 32: 942–948.
    [17] Belgrader P., Young S., Yuan B., et al. A Bettery-Powered Notebook Thermal Cycler for Rapid Multiplex Real-Time PCR Analysis [J]. Anal. Chem. 2001, 73: 286–289.
    [18] Brown T. J., Anthony R. M. The addition of low numbers of 3’thymine bases can be used to improve the hybridization signal of oligonucletides for use within arrays on nylon supports [J]. Journal of Microbiological Methods. 2000, 42: 203–207.
    [19] Cameron K. R., Gregory V., Banks J., et al. H9N2 subtype influenza viruses in poultry in Pakistan are closely related to the H9N2 viruses responsible for human infection in Hong Kong [J]. Virology. 2000, 278: 36–41.
    [20] Capua I., Alexander D. J. The challenge of avian influenza to the veterinary community [J]. Avian Pathol. 2006, 35: 189–205.
    [21] Chaharaein B., Omar A. R., Aini I., et al. Reverse transcriptase polymerase chain reaction-enzyme linked immunosorbent assay for rapid detection of avian influenza virus subtype H9N2 [J]. Arch. Virol. 2006, 151(12): 2447–2459.
    [22] Chaharaein B., Omar A. R., Aini I., et al. Detection of H5, H7 and H9 subtypes of avian influenza viruses by multiplex reverse transcription-polymerase chain reaction [J]. Microbiological Research. 2009, 164(2): 174–179.
    [23] Choi Y. K., Ozaki H., Webby R. J., et al. Continuing evolution of H9N2 influenza viruses in Southeastern China [J]. Journal of Virology. 2004, 78: 8609–8614.
    [24] Collins R. A., Ko L. S., So K. L., et al. Detection of highly pathogenic andlow pathogenic avian influenza subtype H5 (Eurasian lineage) using NASBA [J]. J. Virol. Methods. 2002, 103: 213–225.
    [25] Collins R. A., Ko L. S., So K. L., et al. A NASBA method to detect high- and low-pathogenicity H5 avian influenza viruses [J]. Avian Dis. 2003, 47: 1069–1074.
    [26] Davison S., Galligan D., Eckert T. E., et al. Economic analysis of an outbreak of avian influenza, 1997-1998 [J]. J. Am. Vet. Med. Assoc. 1999, 214 (8): 1164–1167.
    [27] Dawson E. D., Moore C. L., Dankbar D. M., et al. Identification of A/H5N1 influenza viruses using a single gene diagnostic microarray [J]. Anal. Chem. 2007, 79: 378–384.
    [28] Di Trani L., Bedini B., Donatelli I., et al. A sensitive one-step realtime PCR for detection of avian influenza viruses using a MGB probe and an internal positive control [J]. BMC Infect Dis. 2006, 6(87): 1–8.
    [29] Dybkaer K., Munch K., Handberg K. J., et al. Application and evaluation of RT-PCR-ELISA for the nucleoprotein and RT-PCR for detection of low-pathogenic H5 and H7 subtypes of avian influenza virus [J]. J. Vet. Diagn. Invest. 2004, 16: 51–56.
    [30] Farid F., Chehab, Jeff Wall. Detection of multiple cystic fibrosis mutations by reverse dot blot hybridization: a technology for carrier screening [J]. Hum. Gene. 1992, 89: 163–168.
    [31] Fouchier R. A., Munster V., Wallensten A., et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls [J]. Journal of Virology, 2005, 79: 2814–2822.
    [32] Guan Y., Shortridge K. F., Krauss S., et al. Molecular characterization of H9N2 influenza viruses: were they the donors of the“internal”genes of H5N1 viruses in Hong Kong [J]. Proc. Natl. Acad. Sci. 1999, 89 (16): 9363–7.
    [33] Gyarmati, Péter, Conze Tim, Zohari Siamak, et al. Simultaneous genotyping of all hemagglutinin and neuraminidase subtypes of avianinfluenza viruses by use of padlock probes [J]. J. Clin. Microbiol. 2008, 46(5): 1747–51.
    [34] Higuchi R., Fockler C., Dollinger G., et al. Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions [J]. Nature Biotechnology. 1993, 11: 1026–1030.
    [35] Kessler N., Ferraris O., Palmer K., et al. Use of the DNA Flow-Thru Chip, a three-dimensional biochip, for typing and subtyping of influenza viruses [J]. J. Clin. Microbiol. 2004, 42: 2173–2185.
    [36] Khandurina J., Jacobson S. C., Waters L. C., et al. Microfabricated porous membrane structure for sample concentration and electrophoretic analysis [J]. Anal. Chem. 1999, 71: 1815–1819.
    [37] Koopmans M., Wilbrink B., Conyn M., et al. Transmission of H7N7 avian influenza A virus to human being during a large outbreak in commercial poultry farm in the Netherlands [J]. Lancet. 2004, 363(9409): 587–593.
    [38] Kopp M. U., Mello A. J., Manz A. Chemical amplification: continuous-flow PCR on a chip [J]. Science. 1998, 280(5366): 1046–1048.
    [39] Lau L. T., Banks J., Aherne R., et al. Nucleic acid sequence-based amplification methods to detect avian influenza virus [J]. Biochem. Biophys. Res. Commun. 2004, 313: 336–342.
    [40] Lee C. W., Song C. S., Lee Y. J., et al. Sequence analysis of the hemagglutinin gene of H9N2 Korean avian influenza viruses and assessment of the pathogenic potential of isolate MS96 [J]. Avian Dis. 2000, 44: 527– 535.
    [41] Lee C. W., Suarez D. L. Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus [J]. J. Virol. Methods. 2004, 119: 151–158.
    [42] Lee M. S., Chang P. C., Shien J. H., et al. Identification and subtyping of avian influenza viruses by reverse transcription-PCR [J]. J. Virol. Methods. 2001, 97: 13–22.
    [43] Li J., Chen S., Evans D. H. Typing and subtyping influenza virus using DNA microarrays and multiplex reverse transcriptase PCR [J]. J. Clin. Microbiol. 2001, 39: 696–704.
    [44] Li K. S., Xu K. M., Peiris J. S. M., et al. Characterization of H9 subtype influenza viruses from the ducks of Southern China: a candidate for the next influenza pandemic in humans [J]? Journal of Virology. 2003, 77: 6988–6994.
    [45] Li P. Q., Zhang J., Muller C. P., et al. Development of a multiplex real-time polymerase chain reaction for the detection of influenza virus type A including H5 and H9 subtypes [J]. Diagnostic Microbiology and Infectious Disease. 2008, 61(2): 192-197.
    [46] Lih-Chiann Wang, Pan C. H., Serveringhaus l. l., et al. Simultaneous detection and differentiation of Newcastle disease and avian influenza viruses using oligonucleotide microarrays [J]. Veterinary Microbiology. 2008, 127(3-4): 217–226.
    [47] Lin J. H., Ching-Ping, Tseng, et al. Rapid differentiation of influenza A virus subtypes and genetic screening for virus variants by high-resolution melting analysis [J]. J. Clin. Microbiol. 2008, 46(3): 1090–1097.
    [48] Lin Y. P., Shaw M., Gregory V., et al. Avian-to-human transmission of H9N2 subtype influenza viruses: relationship between H9N2 and H5N1 human isolates [J]. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97: 9654–9658.
    [49] Lingappa J. R., Lawrence W., West-Keefe S., et al. Diagnosis of community-acquired pertussis infection: comparison of both culture and fluorescent-antibody assays with PCR detection using electrophoresis or dot blot hybridization [J]. J. Clin. Microbiol. 2002, 40: 2908–2912.
    [50] Manz A., Graber N., Widmer H. M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing [J]. Sensors and Actuators B: Chemical. 1990, 1: 244–248.
    [51] Monne, Ormelli S., Salviato A., et al. Development and validation of aone-step real-time PCR assay for simultaneous detection of subtype H5, H7 and H9 avian influenza viruses [J]. J. Clin. Microbiol. 2008, 46(5): 1769–1773.
    [52] Monteiro L., Cabrita J., Megraud F. Evaluation of performances of three DNA enzyme immunoassays for detection of Helicobacter pylori PCR products from biopsy specimens [J]. J. Clin. Microbiol. 1997, 35: 2931–2936.
    [53] Munch M., Nielsen L. P., Handberg K. J., et al. Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA [J]. Arch. Virol. 2001, 146: 87–97.
    [54] Naeem K., Ullah A., Manvell R. J., et al. Avian influenza A subtype H9N2 in poultry in Pakistan [J]. Vet. Rec. 1999, 145(19): 560.
    [55] Ng E. K., Cheng P. K. C., Ng A. Y. Y., et al. Influenza A H5N1 detection [J]. Emerg Infect Dis. 2005, 8: 1303–5.
    [56] Ng L. F., Barr I., Nguyen T., et al. Specific detection of H5N1 avian influenza A virus in field specimens by a one-step RT-PCR assay [J]. BMC Infect Dis. 2006, 6(40): 1–6.
    [57] Nguyen D. C., Uyeki T. M., Jadhao S., et al. Isolation and characterization of avian influenza viruses, including highly pathogenic H5N1, from poultry in live bird markets in Hanoi, Vietnam, in 2001 [J]. Journal of Virology. 2005, 79: 4201–4212.
    [58] Nili H., Asasi K. Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran [J]. Avian Pathol. 2002, 31: 247–252.
    [59] Normile D. North Korea collaborates to fight bird flu [J]. Science. 2005, 308: 175.
    [60] Offringa D. P., Tyson-Medlock V., Ye Z., et al. A comprehensive systematic approach to identification of influenza A virus genotype using RT-PCR and RFLP [J]. J. Virol. Methods. 2000, 88: 15–24.
    [61] OIE. Highly pathogenic avian influenza. In: Manual of Standards forDiagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees). 2004, Chapter2.1.14: 258–269.
    [62] Ou Z. Y., Liu N., Chen C. J., et al. Rapid and accurate genotyping of YMDD motif variants in the hepatitis B virus genome by an improved reverse dot blot method [J]. J. Chin. Microbiol. 2005, 43(11): 5685–5689.
    [63] Pachucki C. T. Rapid Tests for Influenza [J]. Curr. Infect Dis. Rep. 2005, 7: 187–192.
    [64] Panigrahy B., Senne D. A., Pedersen J. C. Avian influenza virus subtypes inside and outside the live bird markets, 1993–2000: a spatial and temporal relationship [J]. Avian Disease. 2002, 46: 298–307.
    [65] Payungporn S., Chutinimitkul S., Chaisingh A., et al. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection [J]. J. Virol. Methods 2006, 131: 143–147.
    [66] Peiris J. S., Guan Y., Markwell D., et al. Cocirculation of avian H9N2 and contemporary“human”H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment [J]? J. Virol. 2001, 75: 9679–9686.
    [67] Perdue M. L., Swayne D. E. Public health risk from avian influenza viruses [J]. Avian Dis. 2005, 49: 317–27.
    [68] Perk S., Panshin A., Shihmanter E., et al. Ecology and molecular epidemiology of H9N2 avian influenza viruses isolated in Israel during 2000–2004 epizootic [J]. Dev. Biol. 2006, 124: 201–209.
    [69] Safaeian M., Herrero R., Hildesheim A., et al. Comparison of the SPF10/LiPA System to the HC2 Assay for Detection of Carcinogenic HPV Genotypes among 5683 Young Women in Guanacaste, Costa Rica [J]. J. Clin. Microbiol. 2007, 45: 1447–1454.
    [70] Saiki R. K., Bugawan T. L., Horn G. T., et al. Analysis of enzymetically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes [J]. Nature. 1986, 324(6093): 163–166.
    [71] Saiki R. K., Chang C. A., Levenson C. H., et al. Diagnosis of sickle cellanemia and beta-thalassemia with enzymatically amplified DNA andnonradioactive allele-specific oligonucleotide probes [J]. N. Engl. J. Med.1988, 319(9): 537–541.
    [72] Saiki R. K., Scharf S., Faloona F., et al. Enzymatic amplification ofbeta-globin genomic sequences and restriction site analysis for diagnosisof sickle cell anemia [J]. Science. 1985, 230(4732): 1350–1354.
    [73] Saiki R. K., Walsh P. S., Levenson C. H., et al. Genetic analysis ofamplified DNA with immobilized sequence-specificoligonucleotideprobes [J]. Proc. Natl. Acad. Sci. 1989, 86: 6230–6234.
    [74] Sander A., Penno S. Semiquantitative species-specific detection ofBartonella henselae and Bartonella quintana by PCR-enzymeimmunoassay [J]. J. Clin. Microbiol. 1999, 37: 3097–3101.
    [75] Schweiger B., Zadow I., Heckler R., et al. Application of a fluorogenicPCR assay for typing and subtyping of influenza viruses in respiratorysamples [J]. J. Clin. Microbiol. 2000, 38: 1552–1558.
    [76] Sene D. A., Panigraphy B., Kawaoka Y., et al. Survey of hemagglutinin(HA) cleavage site sequence of H5 and H7 avian influenza viruses: aminoacid sequence at the HA cleavage site as a maker of pathogenicitypotential [J]. Avian Disease. 1996, 40: 425–437.
    [77] Sengupta S., Onodera K., Lai A., et al. Molecular Detection andIdentification of Influenza Viruses by Oligonucleotide MicroarrayHybridization [J]. J. Clin. Microbiol. Oct 2003, 41: 4542–4550.
    [78] Shortridge K. F. Pandemic influenza: a zoonosis? Seminars in respiratoryinfections [J]. 1992, 7: 11–25.
    [79] Spackman E., Senne D. A., Bulaga L. L., et al. Development of real-timeRT-PCR for the detection of avian influenza virus [J]. Avian Dis. 2003a,47: 1079–1082.
    [80] Spackman E., Senne D. A., Bulaga L. L., et al. Development of multiplexreal-time RT-PCR as a diagnostic tool for avian influenza [J]. Avian Dis.2003b, 47: 1087–1090.
    [81] Spackman E., Senne D. A., Myers T. J., et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes [J]. J. Clin. Microbiol. 2002, 40: 3256–3260.
    [82] Starick E., R?mer-Oberd?rfer A., Werner O. Type- and subtypespecific RT-PCR assays for avian influenza Aviruses (AIV) [J]. J. Vet. Med. B Infect Dis. Vet. Public Health. 2000, 47: 295–301.
    [83] Stone B., Burrows J., Schepetiuk S., et al. Rapid detection and simultaneous subtype differentiation of influenza A viruses by real time PCR [J]. J. Virol. Methods. 2004, 117: 103–112.
    [84] Subbarao K., Katz J. Avian influenza viruses infecting humans [J]. Cell. 2000, 57: 1770–1784.
    [85] Subbarao K., Klimov A., Katz J., et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness [J]. Science. 1998, 279: 393–396.
    [86] Sutcharitchan P., Saiki R., Huisman T. H., et al. Reverse dot-blot detection of the African-American beta-thalassemia mutations [J]. Blood. 1995, 86: 1580–1585.
    [87] Townsend M. B., Dawson E. D., Mehlmann M., et al. Experimental evaluation of the FluChip diagnostic microarray for influenza virus surveillance [J]. J. Clin. Microbiol. 2006, 44: 2863–2871.
    [88] Tran T. H., Nguyen T. L., Nguyen T. D., et al. Avian influenza A (H5N1) in 10 patients in Vietnam [J]. New England Journal Medicine. 2004, 350, 1179–1188.
    [89] Van deusen R. A., Hinshaw V. S., Senne D. A., et al. Micro Neuraminidase-Inhibition Assay for Classification of Influenza A Virus Neuraminidases [J]. Avian Diseases. 1983, 27(3): 745–750.
    [90] Waters L. C., Jacobson S. C., Kroutchinina N., et al. Multiple Sample PCR Amplification and Electrophoretic Analysis on a Microchip [J]. Anal. Chem. 1998, 70: 5172–5176.
    [91] Webster R. G. H5N1 outbreaks and enzootic influenza [J]. Emerging Infectious Diseases. 2006, 12: 3–8.
    [92] Webster R. G., Reay P. A., Laver W. G. Protection against lethal influenza with neuraminidase [J]. Virology. 1988, 164: 230–237.
    [93] Webster R. G., Rott R. Influenza virus pathogenicity the pivotal role of hemagglutinin [J]. Cell. 1987, 50: 665–666.
    [94] Wood G. W., McCauley J. W., Bashiruddin J. B., et al. Deduced amino acid sequences at the hemagglutinin cleavage site of avian influenza A virus of H5 and H7 subtypes [J]. Archive of virology. 1993, 130: 209–213.
    [95] Wu X. Q., Zhang J. X., Chao L. X., et al. Identification of Rifampin-Resistant Genotypes in Mycobacterium tuberculosis by PCR-Reverse Dot Blot Hybridization [J]. Mol. Biotechnol. 2009, 41(1): 1–7.
    [96] Xueqing Han, Xiangmei Lin, Bohua Liu, et al. Simultaneously subtyping of all influenza A viruses using DNA microarrays [J]. Journal of Virological Methods. 2008, 152(1-2): 117–121.
    [97] Xueqiong Wu, Junxian Zhang, Jianqin Liang, et al. Comparison of three methods for rapid identification of mycobacterial clinical isolates to the species level [J]. J. Clin. Microbiol. 2007, 45(6): 1898–903.
    [98] Yueh-Chwen Hsu, Tzu-Jung Yeh, Ya-Chun Chang. A new combination of RT-PCR and reverse dot blot hybridization for rapid detection and identification of potyviruses [J]. Journal of Virological Methods. 2005, 128(1-2): 54–60.
    [99] Zambon M., Hays J., Webster A., et al. Diagnosis of Influenza in the Community: Relationship of Clinical Diagnosis to Confirmed Virological, Serologic, or Molecular Detection of Influenza [J]. Arch. Intern. Med. 2001, 161 (17): 2116–2122.
    [100] Zhang Y., Coyne M. Y., Will S. G., et al. Single base mutational analysis of cancer and genetic diseases using membrane bound modified oligonucleotides [J]. Nucleic Acids Res. 1991, 19: 3929–3933.
    [101] Zhixun Xie, Yaoshan Pang, Jiabo Liu, et al. A multiplex RT-PCR for detection of type A influenza virus and differentiation of avian H5, H7, and H9 hemagglutinin subtypes [J]. Molecular and Cellular Probes. 2006, 20(3-4): 245–249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700