用户名: 密码: 验证码:
1.异种胰岛移植中巨噬细胞免疫排斥及调节的研究 2.GLUT1及Ang1与糖尿病视网膜病变关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     细胞移植是治疗很多疾病的有效治疗手段,异种细胞移植为供体短缺提供了良好的解决办法,但是,免疫排斥问题仍然是阻碍它走上临床的最大难题。与实体器官移植不同的是,针对细胞异种移植物的免疫排斥反应主要由细胞介导的排斥机制参与,CD4+T细胞在其中起效应细胞的作用。已有实验通过间接手段证实,巨噬细胞在异种移植的免疫反应中起效应细胞的作用,破坏移植物。早已有人提出,巨噬细胞可以浸润异种移植物,发挥特异性排斥的功能,但是缺乏直接的证据。我们以前的实验将胎猪胰岛细胞移植入NODSCID小鼠肾被膜下,然后用CD4+细胞重建,巨噬细胞被分离并转入未经过CD4+T细胞重建的、已接受猪胰岛异种移植的NODSCID受体身上,在无需CD4+T细胞再次活化的情况下,后者的异种移植物被特异性的排斥,为CD4+T细胞活化的巨噬细胞作为效应细胞排斥异种移植物提供了证据。
     目的
     本实验中,我们建立了混合移植的糖尿病小鼠模型,以寻找支持活化的巨噬细胞能够特异性的识别并排斥猪胰岛细胞的更直接的证据。
     方法
     1胰岛移植与巨噬细胞重建:STZ诱导的糖尿病NODSCID小鼠分别接受:Balb/c小鼠的胰岛移植(AlloTx组),混合移植(MixTx组)(左侧接受小鼠胰岛与NICC的混合移植物,右肾接受NICC异种重建后移植物)和NICC异种移植。用CD4+T细胞活化的巨噬细胞重建接受同种移植及混合移植的NODSCID,重建后第5周取出混合移植物,第8周处死所有小鼠。实验过程中检测血糖。
     2.对组织块进行形态学观察及胰岛素、F4/80巨噬细胞免疫组化染色,观察移植物。
     结果
     1.血糖变化AlloTx组和MixTx组,在胰岛移植后血糖明显下降,巨噬细胞重建后血糖仍然维持正常重建后第5周,MixTx组小鼠混合移植物被取出,血糖上升,明显高于AlloTx组小鼠。
     2.组织学观察H&E染色显示,AlloTx组小鼠肾被膜下可见完整的小鼠胰岛。在MixTx组小鼠的左肾组织,还可以见到完整的胰岛组织,但是在右肾,未见胰岛结构,可见大量的细胞浸润。在NICC对照组异源性胰岛组织清晰可见。
     3.免疫组化在AlloTx组,胰岛素染色可见棕色的阳性颗粒。在MixTx组,左肾可见清晰的胰岛素染色阳性,而在右肾,胰岛素几乎没有阳性颗粒,在NICC对照组可见大量的胰岛素阳性染色。巨噬细胞染色,在AlloTx组,仅可见少量阳性染色,在胰岛内部,看不到任何阳性颗粒,在MixTx组,左肾可见巨噬细胞浸润,但是没有侵蚀到胰岛内部。巨噬细胞在右肾被膜下大量浸润。
     结论
     1.本实验直接证明在猪异种胰岛抗原存在的情况下,用CD4+T细胞活化的巨噬细胞可以特异性的识别并排斥猪异种胰岛移植物。
     2.活化的巨噬细胞可以从外周自动聚集至移植物局部。
     3.这种特异性识别的具体作用机制需要进一步研究。
     研究背景
     异种胰岛移植是治疗1型糖尿病的有效手段,但移植物排斥仍是它的主要副作用。细胞异基因移植物易受细胞介导的免疫破坏,在早期的排斥反应中,非特异性免疫系统中的抗体和补体成分是介导排斥的主要因素,在急性和慢性细胞免疫排斥中,T细胞则是重要的反应细胞,它可以通过募集巨噬细胞发挥排斥作用。巨噬细胞既是早期非特异性反应细胞,在被CD4+T细胞活化后,又是主要的效应细胞。人们利用药物治疗以及基因调控供体动物的方法,有限抑制了超急性排斥甚至迟发性血管性排斥,延长了猪异种器官在非人类灵长类的存活时间,于是由特异性免疫系统介导的细胞排斥反应成为克服移植物排斥和增加移植物存活时间的亟待解决的问题。上世纪90年代,研究者们发现,占外周淋巴细胞总数5%—10%的CD4+CD25+调节性细胞(CD4+CD25+Regulatory T Cells,Tregs)可以制止器官特异性自身免疫性疾病的发病,维持同种异体移植的免疫耐受。在异种移植中,Porter等报道人Tregs可以抑制CD4+CD25—T细胞的增殖和细胞因子的产生,还可以明显抑制CD4+CD25—T细胞介导的对猪靶细胞的溶细胞作用。亦有证据显示人Tregs可以抑制树突状细胞的成熟和抗原递呈功能,可以激发直接抑制单核/巨噬细胞的作用进而影响非特异性和特异性免疫。然而,目前Tregs能否对异基因刺激的巨噬细胞产生抑制作用尚未见研究。
     目的
     我们以前的研究显示,体外扩增的Tregs可以抑制T细胞介导的针对猪异种抗原的免疫反应,在本实验中,我们利用扩增的Tregs,研究其对异种细胞激活的巨噬细胞是否具有抑制作用以及可能的机制
     方法
     新鲜Tregs、CD14+单核细胞、去CD4+细胞的PBMC细胞,均来自健康志愿者外周血单个核细胞(Peripheral blood mononuclear cells,PBMC),用含10%FCS,Anti-CD3/CD28 beads,IL2及Rapamycin的RPMI1640培养液体外扩增,培养2至3周的细胞用于下游实验。经射线照射的猪PBMC(PIG)作为异种抗原。
     实验中有3个培养体系:1.PBMC体系分PBMC、PBMC+PIG、PBMC+PIG+Tregs三组,Transwell用于第四组,将Tregs与PBMC+Pig细胞隔开培养。2.CD14+细胞体系分CD14+细胞、CD14+细胞+PIG、CD14+细胞+PIG+Tregs三组。3.去CD4+PBMC体系分去CD4+PBMC、去CD4+PBMC+PIG、去CD4+PBMC+PIG+Tregs三组。每组细胞的共培养比例均为1∶1∶1。
     48小时之后,收集细胞做标志分子及凋亡染色,做流式细胞术分析。
     结果
     1.在PBMC培养系统中,CD14+细胞的CD40、IL12及TNF,加入猪异种抗原之后,较PBMC单独培养组的明显增加,在与Tregs共培养组,表达下调,组间差别有统计学意义。在CD14+培养体系及在去CD4+PBMC体系中这些分子的表达在三组间没有差别。
     2.Transwell与PBMC+PIG组相比,CD40的表达在Transwell组没有下降,IL12和TNF-α在Transwell组有下降的趋势,但是统计分析显示没有明显的差异。
     3.细胞凋亡本实验比较了PBMC+PIG组和PBMC+PIG+Treg组的细胞凋亡情况,统计学显示两组间没有显著性差异。
     结论
     1.通过减少巨噬细胞表达活化标志分子而不是诱导巨噬细胞死亡,人Tregs可以抑制异种抗原引起的单核/巨噬细胞激活。
     2.在巨噬细胞激活的过程中,需要CD4+T细胞的参与,Tregs或许通过对CD4+T细胞的抑制来实现对巨噬细胞的调节。
     3.Tregs需要通过细胞接触实现对巨噬细胞的抑制。
     4.Tregs是否能够抑制巨噬细胞在猪异种移植免疫反应中的功能以及作用机制尚待阐明。
     研究背景
     糖代谢紊乱在糖尿病视网膜病变发生发展中起着重要的作用,而葡萄糖转运蛋白-1(GLUT1)作为调节葡萄糖进入细胞的主要载体,其基因表达及功能状态,有可能是决定视网膜是否受累的因素之一。关于GLUT1在糖尿病病程中的表达变化,目前尚有争议。高糖、缺氧、氧化应激、AngiotensinⅡ、VEGF等均参与调节GLUT1的表达。最近有研究表明,Akt(丝氨酸/苏氨酸蛋白激酶,又称PKB)的激活可调节GLUT1的表达。Angiopoietin(Ang)是最近新发现的血管调节因子,其中Ang1的作用有:参与新生血管生成;抑制炎症及渗出;抑制粘附与凋亡等。在糖尿病病程中,Ang1在视网膜有所表达,可能参与了糖尿病视网膜病变的发展。已有研究证实Ang1与其受体Tie2结合后可激活Akt。
     目的
     已知Ang1可通过Tie2受体调节Akt的活性,而Akt又可调节GLUT1活性,那么,GLUT1与Ang1在糖尿病视网膜中表达部位及数量究竟如何;在糖尿病视网膜病变中是否有一定的作用;Ang1能否通过Akt来调节GLUT1的表达,进而影响视网膜的糖代谢过程?本研究将检测糖尿病大鼠视网膜中Ang1与GLUT1的含量,为临床诊断治疗提供理论依据。
     材料与方法:
     健康雄性Wistar大鼠40只,体重180-220g。随机选出10只作为正常对照组(NC组),另外30只采用链脲佐菌素(STZ)溶液腹腔一次性注射建立糖尿病模型(成模20只),确定成模后随机分为2组:糖尿病血糖未控制组(DM1组)和糖尿病血糖控制组(DM2组),每组10只。利用腹腔内注射鱼精蛋白锌胰岛素(PZI)将2个糖尿病组大鼠血糖分别控制在>16.7mmol/L、和<14mmol/L两个水平。标准饲养3个月后取血测定糖化血红蛋白(HbAlc),并分离大鼠视网膜,利用免疫组化方法进行GLUT1蛋白的检测,用逆转录—聚合酶链式反应(RT-PCR)方法检测mRNA含量。统计学分析:所有数据均以均数±标准差((?)±SD)表示,采用SPSS11.0软件处理。样本间均数的比较采用t检验,变量间的关系采用直线相关分析。P<0.05表示有统计学意义。
     结果:
     1、实验期间DM1、DM2两组糖尿病大鼠体重明显低于NC组大鼠同期体重,而血糖和糖化血红蛋白(HbAlc)则显著高于NC组大鼠。
     2、免疫组化染色显示NC组大鼠视网膜中可见GLUT1阳性染色颗粒,DM1组、DM2组大鼠视网膜中GLUT1阳性染色颗粒明显增加,且DM1组比DM2组增加更明显。
     3、RT-PCR结果显示三组大鼠视网膜中均含Ang1及GLUT1 mRNA。与NC组相比,DM1组大鼠视网膜内Ang1及GLUT1 mRNA表达增加,DM2组大鼠较DM1组下降,差别均具有统计学意义(p<0.01)。
     结论:
     1、糖尿病高血糖状态下,大鼠视网膜中GLUT1蛋白表达较正常对照组增加,尤以血糖未控制组增加明显。糖尿病病程中,视网膜中GLUT1表达并未降低。
     2、糖尿病高血糖状态下,Wistar大鼠视网膜中Ang1及GLUT1mRNA含量较正常对照组增加。用胰岛素控制血糖后含量有所下降。
Background
    Cellular xenografts have been proposed as having therapeutic potential in several disease states.. However, rejection remains the major impediment to their use. Cellular xenografts are rejected predominantly by cell-mediated mechanisms. This response is initiated by CD4~+ T cells. Macrophages have been proposed as an important effector cell in this response, and several studies have provided indirect evidence supporting its role. Macrophages have been identified as the predominant cell within rejecting xenografts and were shown to be capable of destroying xenografts. Early studies proposed that xenografts were IFNiltrated by a macrophage specificly. But the direct evidence is lacking. Our previous study has shown that porcine antigen-primed and CD4+ T cell- activated macrophages (MO) are capable of specific recognition and rejection of porcine xenografts but not mouse allografts.
    Aims:
    In this experiment, we aim to find direct evidence to support the specificity of the macrophage response.
    Methods
    NODSCID mice were induced diabetic by STZ. AlloTx group of mice received moue islet allotransplantation from normal Balb/c mice. Mice from MixTx group were transplanted with mouse islets and NICC admix grafts in the left kidney and NICC grafts in the right kidney. Only normoglycemic mice were undergoing the subsequent macrophage challenge. Normal NODSCID mice, transplanted with NICC, were reconstituted with CD4+ T cells isolated from Balb/c mice and macrophages were separated and injected into normoglycemic NODSCID. 5 weeks after macrophage transfer, left nephrectomy was performed on MixTx mice. Diabetic NODSCID transplanted with NICC alone without macrophage transfer were used as parallel controls. All mice were sacrificed 8 weeks post macrophage transfer
    H&E staining and immunohistochemistry were done to analyze graft survival.
    Results
    The blood glucose went down to normal after transplantation and kept controlled after macrophage transfer. At week 5, in MixTx group, after left nephrectomy the BG increased obviously compared with AlloTx group, which indicated xenografts have been rejected specifically and it was allografts which kept secreting insulin controlling BG. Histology shows intact mouse islets on kidneys from mouse-islet transplanted mice and the left kidy from MixTx mice. But there was little islet left in the right kidney. Immunohistochemistry of Insulin shows insulin-secreting from mouse islet, admix graft and NICC alone graft but little from the right kidney of mixTx mice. Anti-F4/80 staining shows a dense macrophage IFNiltrate surrounding but not IFNiltrating the mouse islets, and the NICC xenografts in right kidneys were completely destroyed.
    Conclusions
    1. In this study, we showed porcine antigen-primed and CD4+ T cell-activated MO are capable of specifically rejecting porcine islet xenografts after adoptive transfer.
    2. Macrophages recruit from peripheral to local grafts automatically.
    3. The involved mechanism remains to be investigated. Background
    Islet xenotransplantation is considered to have therapeutic potential in type 1 diabetes, but rejection remains the major obstacle to clinical use. Cellular xenogeneic tissue is subject to vigorous cell mediated destruction. While antibody and components of the innate immune system are primary mediators of earlier rejection responses, T cells have been identified as important mediators of acute and chronic cellular xenorejection, which appears to lead to rejection via the recruitment of macrophages. Macrophages are both the dominant early innate responding cells and the major effector cells after activation by CD4+ T cells. A number of approaches including treatment of recipients and genetic manipulations of source animals, have extended survival of porcine organs in non-human primates beyond hyperacute and even delayed vascular rejection, with limited success, and cellular rejection by the adaptive immune system is likely to emerge as a significant immunological barrier as the more rapid types of graft rejection are overcome and graft survival time increases. In the late 1990s, Sakaguchi et al. and other investigators showed that CD4+CD25+ T cells(5%-10% of peripheral lymphocytes) are able to prevent organ-specific autoimmune disease and maintain allotransplantation tolerance. In xenotransplantation, Porter et al reported that human CD4+CD25+ T cells can suppress the proliferation and cytokine production by CD4+CD25- T cells induced in responses to porcine cells. They can also dramatically inhibit the CD4+CD25- T cell-mediated cytolytic response against porcine target cells. There were also evidence to show that human CD4+CD25+ T cells can restrain the maturation and antigen-presenting function of dendritic cells and exert direct suppressive effects on monocytes/macrophages, thereby affecting subsequent innate and adaptive immune responses. However whether Tregs are capable of suppressing macrophages in response to xenogeneic antigen still need to be addressed.
    Aims
    Our previous study has shown that expanded Tregs are capable of suppressing in vitro T cell-mediated anti-porcine xenoresponses. In this study we aimed to investigate the suppressive effect of expanded Tregs on macrophage activation in the porcine xenoimmune response.
    Methods
    Peripheral blood mononuclear cells (PBMC) were separated from healthy donors by density gradiant centrifugation and CD4+CD25+ cells were isolated from PBMC using MACS separation system. Fresh Tregs were expanded in vitro in RPMI 1640, plus 10%FCS, Anti-CD3/CD28 beads, IL-2 and Rapamycin. Cells in week 2 and week 3 were used in subsequent co-culture experiment. CD14+ monocytes were isolated by anti-human CD14 antibody-coated microbeads. Non-CD4 PBMC were obtained by depleting CD4+ cells from PBMC. Porcine PBMC (PIG) were used in our experiment as xenoantigen. They were in-activited by irradiation before added into culture system.
    Generally, three kinds of co-culture system were used in this experiment. There were four groups in PBMC system: PBMCalone, PBMC+PIG, PBMC+PIG+Tregs at 1:1:1 ratio. In the fourth group, cell culture inserts were used to separate Tregs from PBMC and pig cells. CD14+ cells or Non-CD4 PBMC were co-cultured alone, with pig cells, or with Pig cells and Tregs.
    After 48 hrs co-culture, all the cells were collected and the variety of markers and apoptosis/death on macrophages was analyzed by flow cytometry.
    Results
    1. The expression of CD40, IL12 and TNF in PBMC+PIG group on CD14+ cells increased compared with PBMC. Tregs could down-regulate their expression. There was no difference of their expression among groups in CD14 and non-CD4 PBMC couture systems.
    2. The exppression of CD40 in transwell group was similar with that of PBMC+PIG group. The expression of IL12 and TNF slightly decreased in transwell group but there was no significant difference between them.
    3. The proportion of macrophages undergoing apoptosis didn' t increase compared with other groups.
    Conclusions
    1. Human Tregs are able to suppress monocyte/macrophage activation in xenoimmune response in vitro via reducing proportion of macrophages co-expressing their activation markers but not killing them.
    2. CD4+ T cells are required for macrophage activation in response to porcine-antigen stimulation, and modulation of this macrophage activation by Tregs may be via their suppressive effect on CD4+ T cells.
    3. Cell-to-cell contact pathway is involved in the suppression of Tregs on macrophage activation.
    4. Whether human Tregs are able to inhibit macrophage function in anti-porcine xenoimmune response and the mechanism involved remains to be investigated. Background
    Glucose is an essential metabolic substrate for retinal metabolism, and its
    transport from blood to retina is tightly coupled with retinal glucose utilization. The disorder of glucose metabolism plays an essential role in the occurance and development of diabetic retinopathy. Glucose entry into the endothelial cells of the inner BRB is mediated by a saturable, facilitated transport process involving GLUT1, a member of a family of sodium-independent glucose transporter proteins. The expression of GLUT1 is regulated by many factors. It is reported that Akt mediates a step in the activation of GLUT1 gene expression. Ang1 is an angiogenic growth factor , playing an essential role in retinal vascularization. Studies have suggested that Ang1 could regulate Akt pathway through phosphorylation of Ser473 and Thr308 in Akt. But whether Ang1 could regulate the expression of GLUT1 in the retina of diabetic rats via the regulation of Akt is still unknown.
    Aims
    Our study aimed to use diabetic rats to explore expression of GLUT1 and the content of Ang1 and Glut1 mRNA in diabetic retina.
    Methods
    A total of 40 healthy male Wistar rats weighting 180-220g were used, 10 rats were randomly chosen to be normal control group (group NC), the rest 30 rats were induced to be diabetes mellitus by STZ which was injected into the abdomens and only 20 rats became diabetes finally. After the diabetic model was successfully established, the 20 rats were randomly divided into 2 groups: diabetic group without blood glucose control (group DM1), diabetic rats treated with insulin (group DM2). The DM2 group were treated with protamine zinc insulin (PZI)) to control their blood glucose levels to<14mmol/L. After three months the HbA1c of three groups were measured, then all rats were decapitated and their retinas were dissected. The immunhistochemistry method was used to measure the expression GLUT1 and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the content of mRNA.
    Datas were analysed using the Statistical Package of the SPSS 11.0. Discriptive data were given as means±SD. Continuous variables were tested by analysis of t-test and the relations between the variables were tested by linear correlation. The p-values are two-tailed and a p-value of less than 0.05 being considered to be significant.
    Results
    1. During the experiment the weights of DM1 and DM2 groups were lower than the control group, but the blood glucose and HbA1c were much higher than the control group.
    2. Immunohistochemistry method showed that the positive stained granules of GLUT1 protein in BRB were found in NC group. In DM1 and DM2 group the positive stained granules of GLUT1 protein increased markedly, especially in DM1 group. The differences were significant (P<0.05).
    3. Compared with NC group, the Ang1 and Glut1 mRNA content in DM1 group increased and decreased in DM2 group. The differences were significant.
    Conclusions
    1. GLUT1 protein expression was increased in the diabetic rat retina. After we controlled the blood glucose level using insulin, the expressions of GLUT1 protein was reduced. The upregulation of GLUT1 expression was probably the absence of defensive reaction of the retina, which could avoid excessive glucose entering the cell and leading to the damnification of the cell.
    2. The mRNA expression of Ang1 and Glut1 was increased in the diabetic rat retina. Insulin treatment could down-regulate the expression.
引文
1. Ring H.Aubert RE.Hcrman WH. Global burden of diabetes, 1995-2025 :prevalence ,numberical estimates and protections. Diabetes Care, 1998,21:1414
    2. Williams, P. W. Notes on diabetes treated with extract and by grafts of sheep's pancreas. Br. Med. J. 1894,2:1303
    3. Lillehei, R. C., Idezuki, Y., Kelly, W. D., Najarian, J. S.,Merkel, F. K. and Goetz, F. C. Transplantation of the intestine and pancreas. Transplant. Proc. 1969,1: 230
    4. Lillehei, R. C, Idezuki, Y., Uchida, H. et al. Pancreatic allotransplantation in the dog and in man. Br. J. Surg. 1969, 56: 699
    5. Ballinger, W. F. and Lacy, P. E. Transplantation of intact pancreatic islets in rats. Surgery 1972,72: 175-186
    6. Scharp, D. W., Lacy, P. E., Santiago, J. V. et al.Insulin independence after islet transplantation into type I diabetic patient. Diabetes 1990, 39: 515
    7. Shapiro, A. M, Lakey, J. R., Ryan, E. A. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000, 343: 230
    8. Merani S., Shapiro, A. M. Current status of pancreatic islet transplantation. Clinical Science 2006,110: 611
    9. Griffiths, Paul D Xenotransplantation: one trotter forward, one claw back. Lancet, 2000,356(9235): 1049
    10. Yoon KH, Quickel RR, Tatarkiewicz K, et al. Differentiation and expansion of beta cell mass in porcine neonatal pancreatic cell clusters transplanted into nude mice. Cell Transplant. 1999, 8:673
    11. Schulz, O. et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity, 2000, 13: 453
    12. Bonner-Weir S, Taneja M, Weir GC, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci U S A. 2000, 97:7999
    13. Friedman T, Smith RN, Colvin RB, Iacomini J. A critical role for human CD4+ T-cells in rejection of porcine islet cell xenografts. Diabetes. 1999,48:2340
    14. Schuurman HJ, Cheng J, Lam T. Related Articles, Pathology of xenograft rejection: a commentary. Xenotransplantation. 2003,10:293
    15. Watts A, Foley A, Awwad M et al. Plasma perfusion by apheresis through a Gal immunoaffinity column successfully depletes anti-Gal antibody: experience with 320 aphereses in baboons. Xenotransplantation 2000, 7: 181
    16. Badet L, Titus TT, McShane P et al. Transplantation of mouse pancreatic islets into primates - in vivo and in vitro evaluation. Transplantation 2001, 72: 1867.
    17. Pino-Chavez G. Differentiating acute humoral from acute cellular rejection histopathologically. Graft 2001, 4: 60.
    18. Sebille F, Dorling A, Lechler RI. The cellular rejection of xenografts--recent insights. Xenotransplantation. 2003,10:4
    19. Yi S, Hawthorne WJ, Lehnert AM, et al T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts. J Immunol. 2003, 170:2750-8.
    20. Chandra AP, Ouyang L, Yi S, et al. Chemokine and toll-like receptor signaling in macrophage mediated islet xenograft rejection. Xenotransplantation. 2007, 14:48-59.
    21. Yi S, Wang Y, Chandra AP, et al. Requirement of MyD88 for macrophage-mediated islet xenograft rejection after adoptive transfer. Transplantation. 2007, 83:615-23.
    22. Simeonovic CJ. Xenogeneic islet transplantation. Xenotransplantation. 1999, 6:1-5.
    23. Karlsson-Parra A, Ridderstad A, Wallgren AC, etal Xenograft rejection of porcine islet-like cell clusters in normal and natural killer cell-depleted mice.Transplantation. 1996, 61:1313-20.
    24. BrentL, Brown J, Medawar PB. Skin transplantation immunity in relation to hypersensitivity. Lancet 1958, 2: 561.
    25. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000,18: 767.
    26. Dalton DK, Pitts-Meek S, Keshav S, et al. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993, 259: 1739.
    27. Vabulas RM, Ahmad-Nejad P, Ghose S, et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002, 277: 15107.
    28. Zhai Y, Shen XD, O'Connell R, et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion IFNlammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol 2004,173: 7115.
    29. Medzhitov R, Janeway CA, Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997, 9: 4.
    30. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992, 176: 287.
    31. Doyle AG, Herbein G, Montaner LJ et al. Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. Eur J Immunol 1994, 24: 1441.
    32. Anderson CF, Mosser DM. Cutting edge: biasing immune responses by directing antigen to macrophage Fc gamma receptors. J Immunol 2002,168: 3697.
    33. Tridandapani S, Siefker K, Teillaud J-L, et al. Regulated expression and inhibitory function of Fcgamma RIIb in human monocytic cells. J Biol Chem 2002, 277: 5082.
    34. Yada A, Ebihara S, Matsumura K, et al. Accelerated antigen presentation and elicitation of humoral response in vivo by Fc[gamma]RIIBand Fc[gamma]RI/III-mediated immune complex uptake. Cell Immunol 2003, 225: 21.
    35. Grimm PC, McKenna R, Nickerson P, et al. Clinical rejection is distinguished from subclinical rejection by increased IFNiltration by a population of activated macrophages. J Am Soc Nephrol 1999, 10: 1582.
    36. Hancock WW, Thomson NM, Atkins RC. Composition of interstitial cellular IFNiltrate identified by monoclonal antibodies in renal biopsies of rejecting human renal allografts. Transplantation 1983,35: 458.
    37. Grandaliano G, Gesualdo L, Ranieri E, et al. Monocyte chemotactic peptide-1 expression and monocyte IFNiltration in acute renal transplant rejection. Transplantation 1997, 63:414.
    38. Pattison J, Nelson PJ, Huie P, et al. RANTES chemokine expression in cell-mediated transplant rejection of the kidney. Lancet 1994, 343:209.
    39. Grau V, Gemsa D, Steiniger B, Garn H. Chemokine expression during acute rejection of rat kidneys. Scand J Immunol 2000, 51: 435.
    40. Lan HY, Yang N, Brown FG, et al. Macrophage migration inhibitory factor expression in human renal allograft rejection. Transplantation 1998, 66: 1465.
    41. Lee I, Wang L, Wells AD, et al. Blocking the monocyte chemoattractant protein-1/CCR2 chemokine pathway induces permanent survival of islet allografts through a programmed death-1 ligand-1-dependent mechanism. J Immunol 2003,171: 6929.
    42. Jose MD, David JR, Atkins RC, Chadban SJ. Blockade of macrophage migration inhibitory factor does not prevent acute renal allograft rejection. Am J Transplant 2003, 3: 1099.
    43. Demir Y, Chen Y, Metz C, et al. Cardiac allograft rejection in the absence of macrophage migration inhibitory factor. Transplantation 2003; 76: 244.
    44. Scriba A, Grau V, Steiniger B. Phenotype of rat monocytes during acute kidney allograft rejection: increased expression of NKR-P1 and reduction of CD43. Scand J Immunol 1998; 47: 332.
    45. Erwig LP, Rees AJ. Macrophage activation and programming and its role for macrophage function in glomerular IFNlammation. Kidney Blood Press Res 1999; 22:21.
    46. Schenkel AR, Mamdouh Z, Chen X, et al. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 2002; 3: 143.
    47. Jose MD, Le Meur Y, Atkins RC, Chadban SJ. Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am J Transplant 2003; 3: 294.
    48. Randolph GJ, Sanchez-Schmitz G, LiebmanRM, Schakel K. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 2002; 196: 517.
    49. Chomarat P, Dantin C, Bennett L, et al. TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 2003; 171: 2262.
    50. Underhill DM, Bassetti M, Rudensky A, Aderem A. Dynamic interactions of macrophages with T cells during antigen presentation. J Exp Med 1999; 190: 1909.
    51. Le Meur Y, Jose MD, Mu W, et al. Macrophage colony-stimulating factor expression and macrophage accumulation in renal allograft rejection. Transplantation 2002; 73: 1318.
    52. Okamura H, Tsutsui H, Kashiwamura S, et al. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol 1998; 70: 281.
    53. Teppo AM, Honkanen E, Ahonen J, Gronhagen-Riska C. Does increased urinary interleukin-1 receptor antagonist/interleukin-1beta ratio indicate good prognosis in renal transplant recipients? Transplantation 1998; 66: 1009.
    54. Timoshanko JR, Sedgwick JD, Holdsworth SR, Tipping PG Intrinsic renal cells are the major source of tumor necrosis factor contributing to renal injury in murine crescentic glomerulonephritis. J AmSoc Nephrol 2003; 14: 1785.
    55. Kutukculer N, Shenton BK, Clark K, et al. Renal allograft rejection: the temporal relationship and predictive value of plasma TNF (alpha and beta), IFN-gamma and soluble ICAM-1. Transpl Int 1995; 8: 45.
    56. Abdallah AN, Billes MA, Attia Y, et al. Evaluation of plasma levels of tumour necrosis factor alpha and interleukin-6 as rejection markers in a cohort of 142 heart-grafted patients followed by endomyocardial biopsy. Eur Heart J 1997; 18: 1024.
    57. Wyburn K, Wu H, Yin J, et al. Macrophage-derived interleukin-18 in experimental renal allograft rejection. Nephrol Dial Transplant 2005; 20: 699.
    58. Halloran PF, Autenried P, Ramassar V, et al. Local T cell responses induce widespread MHC expression. Evidence that IFN-gamma induces its own expression in remote sites. J Immunol 1992; 148: 3837.
    59. Diamond AS, Gill RG An essential contribution by IFN-gamma to CD8_ T cell-mediated rejection of pancreatic islet allografts. J Immunol 2000; 165:247.
    60. Ring GH, Saleem S, Dai Z, et al. Interferon-gamma is necessary for initiating the acute rejection of major histocompatibility complex class II-disparate skin allografts. Transplantation 1999; 67: 1362.
    61. Saleem S, Konieczny BT, Lowry RP, et al. Acute rejection of vascularized heart allografts in the absence of IFNgamma. Transplantation1996; 62: 1908.
    62. Halloran PF, Miller LW, Urmson J, et al. IFN-gamma alters the pathology of graft rejection: protection from early necrosis. J Immunol 2001, 166: 7072.
    63. Holan V, Krulova M, Zajicova A, Pindjakova J. Nitric oxide as a regulatory and effector molecule in the immune system. Mol Immunol 2002, 38: 989.
    64. Worrall NK, Lazenby WD, Misko TP, et al. Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J Exp Med 1995; 181: 63.
    65. Roza AM, Cooper M, Pieper G, et al.NOX100, a nitric oxide scavenger, enhances cardiac allograft survival and promotes long-term graft acceptance. Transplantation 2000; 69: 227.
    66. Pearsall NN, Weiser RS. The macrophage in allograft immunity. I. Effects of silica as a specific macrophage toxin. J Reticuloendothel Soc 1968, 5: 107.
    67. Unanue ER. Properties and some uses of anti-macrophage antibodies.Nature 1968, 218:36.
    68. Grone HJ, Weber C, Weber KS, et al. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. Faseb J 1999; 13: 13 71.
    69. Gao W, Topham PS, King JA, et al. Targeting of the chemokine receptor CCR1 suppresses development of acute and chronic cardiac allograft rejection. J Clin Invest 2000; 105:35.
    70. Gao W, Faia KL, Csizmadia V, et al. Beneficial effects of targeting CCR5 in allograft recipients. Transplantation 2001; 72: 1199.
    71. Jose MD, Ikezumi Y, van Rooijen N, et al. Macrophages act as effectors of tissue damage in acute renal allograft rejection. Transplantation 2003; 76: 1015.
    72. Nankivell BJ, Borrows RJ, Fung CL-S, et al. The natural history of chronic allograft nephropathy. N Engl J Med 2003; 349: 2326.
    73. Herrero-Fresneda I, Torras J, Cruzado JM, et al. Do alloreactivity and prolonged cold ischemia cause different elementary lesions in chronic allograft nephropathy? Am J Pathol 2003;162:127.
    74. Shimizu A, Yamada K, Sachs DH, Colvin RB. Mechanisms of chronic renal allograft rejection. II. Progressive allograft glomerulopathy in miniature swine. Lab Invest 2002; 82: 673.
    75. Azuma H, Nadeau KC, Ishibashi M, Tilney NL. Prevention of functional, structural, and molecular changes of chronic rejection of rat renal allografts by a specific macrophage inhibitor. Transplantation 1995; 60: 1577.
    76. Yang J, Reutzel-Selke A, Steier C, et al. Targeting of macrophage activity by adenovirus-mediated intragraft overexpression of TNFRp55-Ig, IL- 12p40, and vIL-10 ameliorates adenovirus-mediated chronic graft injury, whereas stimulation of macrophages by overexpression of IFNgamma accelerates chronic graft injury in a rat renal allograft model. J Am Soc Nephrol 2003; 14: 214.
    77. Fink, J. S., J. M. Schumacher, S. L. Ellias, E. P. Palmer, M. Sain-Hilaire, K. Shannon, R. Penn, P. Starr, C. VanHorne, H. S. Kott, et al Porcine xenografts in Parkinson's disease and Huntington's disease patients: preliminary results. Cell Transplant 2000.9:273.
    78. Bjorklund, A., O. LindvallCell replacement therapies for central nervous system disorders. Nat. Neurosci. . 2000. 3:537.
    79. Groth, C. G., O. Korsgren, A. Tibell, J. Tollemar, E. Moller, J. Bolinder, J. Ostman, F. P. Reinholt, C. Hellerstrom, A. Andersson. Transplantation of porcine fetal pancreas to diabetic patients. Lancet1994. 344:1402.
    80. Elliott, R. B., L. Escobar, O. Garkavenko, M. C. Croxson, B. A. Schroeder, M. McGregor, G Ferguson, N. Beckman, S. Ferguson. No evidence of IFNection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell Transplant 2000.9:895.
    81. Pierson, R. N., III, H. J. Winn, P. S. Russell, H. Auchincloss, Jr. Xenogeneic skin graft rejection is especially dependent on CD4+ T cells. J. Exp. Med. . 1989.170:991.
    82. Morris, C. F., C. J. Simeonovic, M. C. Fung, J. D. Wilson, A. J. Hapel. Intragraft expression of cytokine transcripts during pig proislet xenograft rejection and tolerance in mice. J. Immunol. 1995.154:2470.
    83. Loudovaris, T., T. E. Mandel, B. Charlton. CD4+ T-cell mediated destruction of xenografts within cell-impermeable membranes in the absence of CD8+ T cells and B cells. Transplantation 1996. 61:1678.
    84. Auchincloss, H., Jr., D. H. Sachs. Xenogeneic transplantation. Annu. Rev. Immunol. 1998. 16:433.
    85. Simenonovic, C. J., M. J. Townsend, G Karupiah, J. D. Wilson, J. C. Zarb, D. A. Mann, I. G Young. Analysis of the Thl/Th2 paradigm in transplantation: interferon-y deficiency converts Th1-type proislet allograft rejection to a Th2-type xenograft-like response. Cell Transplant 1999. 8:365.
    86. Simeonovic, C. J., M. J. Townsend, C. F. Morris, A. J. Hapel, M. C. Fung, D. A. Mann, I. G Young, J. D. Wilson. Immune mechanisms associated with the rejection of fetal murine proislet allografts and pig proislet xenografts: comparison of intragrafts cytokine mRNA profiles. Transplantation1999. 67:963.
    87. Fox, A., M. Koulmanda, T. E. Mandel, N. van Rooijen, L. C. Harrison. Evidence that macrophages are required for T-cell IFNiltration and rejection of fetal pig pancreas xenografts in nonobese diabetic mice. Transplantation 1998.66:1407.
    88. Wu, G, O. Korsgren, J. Zhang, Z. Song, N. van Rooijen, A. Tibell. Pig islet xenograft rejection is markedly delayed in macrophage-depleted mice: a study in streptozotocin diabetic animals. Xenotransplantation 2000.7:214.
    89. Fox, A., J. Mountford, A. Braakhuis, L. C. Harrison. Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection. J. Immunol. 2001.166:2133.
    90. Wu, G., O. Korsgren, N. van Rooijen, L. Wennberg, A. Tibell. The effect of macrophage depletion on delayed xenograft rejection: studies in the guinea pig-to-C6-deficient rat heart transplantation model. Xenotransplantation 1999.6:262.
    91. Xu, H., S. R. Gundry, W. W. Hancock, G. Matsumiya, C. W. Zuppan, T. Morimoto, J. Slater, L. L. Bailey. Prolonged discordant xenograft survival and delayed xenograft rejection in a pig-to-baboon orthotopic cardiac xenograft model. J. Thorac. Cardiovasc. Surg. 1999.117:1233
    92. Sandberg, J. O., B. Benda, N. Lycke, O. Korsgren. Xenograft rejection of porcine islet-like cell clusters in normal, interferon-γ, and interferon-γ receptor deficient mice. Transplantation 1997. 63:1446.
    93. Wallgren, A. C, A. Karlsson-Parra, O. Korsgren. The main IFNiltrating cell in xenograft rejection is a CD4+ macrophage and not a T lymphocyte. Transplantation1995. 60:594.
    94. Yi, S., X. Feng, W. J. Hawthorne, A. T. Patel, S. N. Walters, P. J. O'Connell. CD4+ T cells initiate pancreatic islet xenograft rejection via an interferon-γ dependent recruitment of macrophages and natural killer cells. Transplantation 2002.73:437
    95. Shounan Yi, Li Ouyang, Hong Ha,1 Jennifer M. O'Hara, Abhilash P. Chandra, Satoshi Akima, Wayne Hawthorne, Anita T. Patel, Rebecca Stokes, Philip J. O'Connell1, Involvement of CCR5 Signaling in Macrophage Recruitment to Porcine Islet Xenografts, Transplantation 2005;80: 1468
    96. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000; 406: 782.
    97. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675.
    98. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197
    99. Beutler B, Jiang Z, Georgel P, et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu Rev Immunol 2006; 24: 353.
    100.Schmitz F, Mages J, Heit A, et al. Transcriptional activation induced in macrophages by Toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling. Eu J Immunol 2004; 34: 2863.
    101.Shi S, Nathan C, Chnappinger D, et al. MyD88 primes macrophages for full-scale activation by interferon-[gamma] yet mediates few responses to mycobacterium tuberculosis. J Exp Med 2003; 198: 987.
    102.Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2: 947.
    103.Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001; 1: 135.
    104.Kentaro Ide, Hui Wang, Hiroyuki Tahara, Jianxiang Liu, Xiaoying Wang, Toshimasa Asahara, Megan Sykes,Yong-Guang Yang, and Hideki Ohdan. Role for CD47-SIRPa signaling in xenograft rejection by macrophages PNAS 2007;104;5062
    105.Hui Wang, Jon VerHalen, Maria Lucia Madariaga, Shuanglin Xiang,Shumei Wang, Ping Lan, Per-Arne Oldenborg,Megan Sykes,and Yong-Guang Yang. Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. BLOOD, 15 JANUARY 2007,109:836
    106.Rothstein DM, Sayegh MH. T-cell costimulatory pathways in allograft rejection and tolerance. Immunol Rev 2003; 196: 85.
    107.Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349.
    108.Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 1991; 147: 2461
    109.Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991; 174: 561
    110.Trambley J, Bingaman AW, Lin A, et al. GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J Clin Invest 1999; 104: 1715.
    111.Newell KA, He G, Guo Z, et al. Cutting edge: blockade of the CD28/B7 costimulatory pathway inhibits intestinal allograft rejection mediated by CD4+ but not CD8+ T cells. J Immunol 1999; 163: 2358.
    112.Yamada A, Salama AD, Sayegh MH. The role of novel T cell costimulatory pathways in autoimmunity and transplantation. J Am Soc Nephrol 2002; 13: 559.
    113.Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002; 2: 116.
    114.Zheng XG, Turka LA. Blocking T-cell costimulation to prevent transplant rejection. Transplant Proc , 1998 ; 30 :2146
    115.Greene JL , Leytze GM , Emswiler J , et al . Covalent dimerization of CD28/ CTLA-4 and oligomerization of CD80/ CD86 regulate T cell costimulatory interactions. J Biol Chem , 1996 ; 271 :26762
    116.McAdam AJ, Chang TT, Lumelsky AE, et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 2000; 165: 5035.
    117.Beier KC, Hutloff A, Dittrich AM, et al. Induction, binding specificity and function of human ICOS. Eur J Immunol 2000; 30: 3707.
    118.Sayegh MH, Akalin E, Hancock WW, et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Thl cytokines but spares Th2. J Exp Med 1995; 181: 1869.
    119.Lin H, Boiling SF, Linsley PS, et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J Exp Med 1993; 178: 1801.
    120.Yamada A, Kishimoto K, Dong VM, et al. CD28-independent costimulation of T cells in alloimmune responses. J Immunol 2001; 167: 140.
    
    121.Szot GL, Zhou P, Sharpe AH, et al. Absence of host B7 expression is sufficient for long-term murine vascularized heart allograft survival. Transplantation 2000; 69: 904.
    122.Stamper CC, Zhang Y, Tobin JF, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 2001; 410: 608.
    123.Lenschow DJ, Zeng Y, Hathcock KS, et al. Inhibition of transplant rejection following treatment with anti-B7-2 and anti-B7-1 antibodies. Transplantation 1995; 60: 1171.
    124.Judge TA, Wu Z, Zheng XG, et al. The role of CD80, CD86, and CTLA4 in alloimmune responses and the induction of long-term allograft survival. J Immunol 1999; 162:1947
    125.Kirk AD, Tadaki DK, Celniker A, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation 2001; 72: 377.
    126.Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci U S A 1997; 94: 8789.
    127.Birsan T, Hausen B, Higgins JP, et al. Treatment with humanized monoclonal antibodies against CD80 and CD86 combined with sirolimus prolongs renal allograft survival in cynomolgus monkeys. Transplantation 2003; 75: 2106.
    128.Adams AB, Shirasugi N, Durham MM, et al. Calcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates. Diabetes 2002;51:265.
    129.Mahnke K, Schmitt E, Bonifaz L, et al. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol 2002; 80: 477.
    130.Sho M, Sandner SE, Najafian N, et al. New insights into the interactions between T-cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg 2002; 236: 667.
    131.Hancock WW, Sayegh MH, Zheng XG, et al. Costimulatory function and expression of CD40 ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection. Proc Natl Acad Sci U S A 1996; 93: 13967.
    132.Kirk AD, Burkly LC, Batty DS, et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999; 5: 686.
    133. Kenyon NS, Chatzipetrou M, Masetti M, et al. Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154. Proc Natl Acad Sci U S A 1999; 96: 8132.
    134. Kenyon NS, Fernandez LA, Lehmann R, et al. Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154. Diabetes 1999; 48: 1473.
    135. Coyle AJ, Gutierrez-Ramos JC. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat Immunol 2001; 2: 203.
    136. Stuber E, Neurath M, Calderhead D, et al. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 1995; 2: 507.
    137. Ohshima Y, Tanaka Y, Tozawa H, et al. Expression and function of OX40 ligand on human dendritic cells. J Immunol 1997; 159: 3838.
    138. Yuan X, Salama AD, Dong V, et al. The role of the CD134-CD134 ligand costimulatory pathway in alloimmune responses in vivo. J Immunol 2003; 170: 2949.
    139. Vu MD, Amanullah F, Li Y, et al. Different costimulatory and growth factor requirements for CD4+ and CD8+ T cell-mediated rejection. J Immunol 2004; 173: 214.
    140. Cannons JL, Lau P, Ghumman B, et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol 2001; 167: 1313.
    141. Trinchieri G. Interleukin-12: a prolFNlammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995; 13: 251
    142.昝云红,代长柏.白细胞介素12研究进展.国外医学分子生物学分册,1996,18:7679.
    143. Szabo SJ, Dighe AS, Gubler U, Murphy KM. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Thl) and Th2 cells. J Exp Med. 1997,185:817
    144.Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995,155:1151
    145.Hall BM, Pearce NW, Gurley KE, Dorsch SE: Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4 suppressor cell and its mechanisms of action. J Exp Med 171, 141:1990.
    146.Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR, Morris PJ, Powrie F, Wood KJ: IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 2001,166:3789
    147.Taylor PA, Noelle RJ, Blazar BR: CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 2001,193:1311
    148.Gregori S, Casorati M, Amuchastegui S, et al. Regulatory T cells induced by 1-alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 2001,167:1945
    149.Sanchez-Fueyo A, Weber M, Domenig C, et al. Tracking the immunoregulatory mechanisms active during allograft tolerance. J Immunol 2002,168: 2274
    150.Hayday A, Tigelaar R: Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol 2003, 3:233
    151.Piccirillo CA, Shevach EM: Control of CD8+T cell activation by CD4+CD25+immunoregulatory cells. J Immunol 2001, 167:1137
    152.Ng WF, Duggan PJ, Ponchel F, Matarese G, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 2001, 98:2736,.
    153.Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001, 193:1285
    154.Dieckmann D, Plottner H, Berchtold S, et al.Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001, 193:1303,.
    155.Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+)T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001,193:1295
    156.Modigliani Y, Coutinho A, Pereira P, et al. Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur J Immunol 1996, 26:1807
    157.Sakaguchi S: Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005, 6:345
    158.Ghiringhelli F, Puig PE, Roux S, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 2005.202:919.
    159.Peng Y, Laouar Y, Li MO, et al. TGFbeta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci 2004, 101:4572
    160.Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998, 188:287
    161.Nakamura K, Kitani A, Strober W: Cell contact dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001, 194:629
    162.Mellor AL, Munn DH: IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004, 4:762
    163.Jiang S, Camara N, Lomabardi G, Lechler RI: Induction of allopeptide-specific human CD4+CD25+ regulatory T cells ex vivo. Blood 2003, 102:2180
    164.Masteller EL, Warner MR, Tang Q, et al. Expansion of functional endogenous antigen-specific CD4+ CD25+ regulatory T cells from nonobese diabetic mice. J Immunol 2005, 175:3053
    165.Benlagha K, Kyin T, Beavis A, et al. A thymic precursor to the NK T cell lineage. Science 2002,296:553
    166.Pellicci DG, Hammond KJ, Uldrich AP, et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage. J Exp Med 2002,195:835
    167.Van Kaer L: a-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 2005, 5:31
    168.Hong S, Wilson MT, Serizawa I, etal: The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001, 7:1052
    169.Sharif S, Arreaza GA, Zucker P, etal: Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 2001, 7:1057
    170.Miyamoto K, Miyake S, Yamamura T: A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001, 413: 531,.
    171 .Singh AK, Wilson MT, Hong S, et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 2001, 194:1801
    172.Zeng D, Lee MK, Tung J, et al. A role for CD1 in the pathogenesis of lupus in NZB/NZW mice. J Immunol 2000 164:5000
    173.Groux H, O'Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997, 389:737
    174.Levings MK, Sangregorio R, Galbiati F, et al. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol 2001,166:5530
    175.Barrat FJ, Cua DJ, Boonstra A, etal: In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 2002, 195:603
    176.Liu Z, Tugulea S, Cortesini R, Suciu-Foca N: Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28+ T cells. Int Immunol 1998,10:775
    177.Lee BP, Chen W, Shi H, et al. CXCR5/CXCL13 interaction is important for doublenegative regulatory T cell homing to cardiac allografts. J Immunol 2006, 176:5276.
    178.Platt JL, Bach FH. The barrier to xenotransplantation. Transplantation 1991; 52: 937
    179.Brouard S, Gagne K, Blancho G, Soulillou JP. T cell response in xenorecognition and xenografts: a review. Hum Immunol 1999, 60: 455
    180.Gordon EJ, Markees TG, Phillips NE et al. Prolonged survival of rat islet and skin xenografts in mice treated with donor splenocytes and anti-CD 154 monoclonal antibody. Diabetes 1998; 47: 1199
    181.d'Apice AJ. Seventh Congress of the International Xenotransplantation Association, Glasgow, 2003: "In vivo" highlights. Xenotransplantation 2004; 11: 228
    182.Dorling A. Clinical xenotransplantation: pigs might fly? Am J Transplant 2002; 2:695
    183.Pietra BA, Gill RG Immunobiology of cardiac allograft and xenograft transplantation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2001; 4: 123
    184.Cynthia M. Porter and Eda T. Bloom. Human CD4+CD25+ Regulatory T Cells Suppress Anti-Porcine Xenogeneic Responses. American Journal of Transplantation 2005, 5: 2052
    185.Namita Misra, Jagadeesh Bayry, Se'bastien Lacroix-Desmazes, et al. Human CD4+CD25+T Cells Restrain the Maturation and Antigen-Presenting Function of Dendritic Cells. The Journal of Immunology, 2004, 172:4676
    186.Leonie S. Taams, Jocea M.R. van Amelsfort, Machteld M. Tiemessen, et al. Modulation of Monocyte/Macrophage Function by Human CD4+CD25+ Regulatory T Cells. Human Immunology 2005, 66:222
    187. Sachs DH, Bach FH. Immunology of xenograft rejection. Hum Immunol 1990, 28: 245.
    188.Koulmanda M, McKenzie IFC, Sandrin MS, Mandel TE. Fetal pig islet xenografts in NOD Lt mice: the effect of peritransplant anti-CD4 monoclonal antibody and graft immunomodification on graft survival, and lack of expression of Gal (α1-3) Gal on endocrine cells. Xenotransplantation 1995,2: 295.
    189.Wecker H, Winn HJ, Auchincloss Jr H. CD4+T cells, without CD8 + or Blymphocytes, can reject xenogeneic skin grafts. Xenotransplantation 1994,1:8.
    190.Ghiringhelli F, Menard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta dependent manner. J Exp Med 2005,202:1075,.
    191 .Zhao DM, Thornton AM, Dipaolo RJ, Shevach EM: Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 2006,107:3925
    192.Gondek DC, Lu LF, Quezada SA, et al. Contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 2005 174:1783
    193.Macatonia, S. E. et al. Dendritic cells produce IL-12 and direct the development of TH1 cells from naive CD4+ T cells. J. Immunol. 1995, 154, 5071
    194.Grossman WJ, Verbsky JW, Barchet W, et al. Human T regulatory cells can use the perform pathway to cause autologous target cell death. Immunity 2004, 21:589
    195.Nakamura K,Kitani A ,Fuss I. et al . TGF2β1 plays an important role in the mechanism of CD4 +CD25 + regulatory T cell activity in both humans and mice[J]. J. Immunol ,2004 ,172 (2) :8342842.
    196.Takahashi T , Tagami T , Yamazaki S , et al . Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte2associated antigen 4. J Exp Med, 2000,192 (2) :3032310.
    197.Asseman C ,Mauze S ,Leach MW,et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med ,1999 ,190(7) :99521004.
    198.Seddon B, Mason D. Regulatory T cells in the control of autoimmunity :the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+CD45RC2 cells and CD4+CD8 (2) thymocytes. J Exp Med ,1999 ,189(2) :2792288.
    1 Malone J I , Morrison A D , Pavan P , et al. Prevalence and significance of retinopathy in subjects with diabetes of less than 5 years duration screened for the diabetes control and complications trial [J] . Diabetes Care , 2001 , 24 : 522 -526
    2 Nakajima M , Cooney M J , Alexander H T , et al. Normalization of retinal vascular permeability in experimental diabetes with genistein [J] . Invest Ophthalmol Vis Sci ,2001,42:2110-2114
    3 Xiang H D.The morbitity of chronic complication of Chinese patiens with DM within 1991 - 2000 [J] . Diabetes Research and Clinical Practice , 2000 , 56 (suppl): 84.
    4 Cbung HS , Harri S , Halter P , et al. Regional differentes in retinal vas cular reactivity [J]. Invest Ophthalmol Vis Sci ,1999 ,40 : 2448 - 2453.
    5 Masakazu M et al. The effect of high glucose and aldose reductase inhibitor (FK366) on myoinosito 1 up take in cultured bovine pericyte. Diabetes, 1998; 47 (suppl1):A379
    6 Danis RR et al. Insulin-like grow th factor I in retinal microangiopathy in the pig eye. Ophthalmology, 1997; 104:1661.
    7 U sha Chak ravarthy et al. Constitutive nitric oxide synthase expression in retinal vascular endothelial cell is suppressed by high glucose and advanced glycation end products. Diabetes, 1998; 47: 945
    8 Hammes HP et al. The relationsh ip of glycaem ic level to advanced glycation end product accumulation and retinal patho logy in the spontaneous diabetic hamster. Diabetologia, 1998; 41: 165
    9 King GL ,Shiba T .Oliver J ,et al . Cellutar and molecular abnormalities in the vascular endothelium of diabetes mellitua. Annu Rev Med ,1994 ,45 :175
    10 Paques M, Massin P ,Gaudric A. Growth factors and diabetic retinopathy[J] . Diabetes Metab ,1997 ,23 (2): 125 - 130.
    11 Mueckler M. Facilitative glucose transporters.[J]. Eur J Biochem, 1994, 219(3): 713.
    12 Bell GI, Kayano T, Buse JB, et al. Molecular biology of mammalian glucose transporters.[J]. Diabetes Care, 1990, 13(3): 198-208.
    13 Rogers S, Macheda ML, Docherty SE, et al. Identification of a novel glucose transporter like protein GLUT12. Am J Phydiol. Endocdnal Metab, 2002, 282: 733-8.
    14 Wu X, Freeze HH. GLUT14, a duplicon of GLUT3 is specifically expressed in testis as alternative splice forms. Genomics,2002, 80: 553-7.
    15 Cornford EM, Hyman S, Cornford ME, et al. Down-regulation of blood-brain glucose transport in the hyperglycemic nonobese diabetic mouse. Neurochem Res, 1995, 20(7): 869-73.
    16 Thorens B, Charron M J, Lodish HF. Molecular physiology of glucose transporters.[J]. Diabetes Care, 1990, 13(3): 209-218.
    17 Mueckler M, Caruso C, Baldwin SA, et al. Sequence and structure of a human glucose transporter. [J]. Science, 1985, 229(4717): 941-945.
    18 李颖健,刘志红,章精等.人肾小球系膜细胞葡萄糖转运蛋白的研究.细胞生物学杂志,1999,21:1856.
    19 Heilig CW, Brosius FC, Henry DN. Glucose transporters of the glomerulus and the placations for diabetic nephropathy.[J]. Kidney Int, 1997, 52: S91-99.
    20 Giovanni E. Mann, David L. Yudilevich, and Luis Sobrevia. Regulation of Amino Acid and Glucose Transporters in Endothelial and Smooth Muscle Cells Physiol Rev, Jan 2003; 83: 183-252.
    21 Kumagai AK, Vinores SA, Pardridge WM,et al. Pathological upregulation of inner-retinal barrier GLUT1 glucose transporter expression in diabetes mellitus. Brain Res, 1996, 706: 313-7
    22 Badr GA, Tang J, Ismail-Beigi F, et al. Diabetes Downregulates GLUT1 Expression in the Retina and Its Microvessels but Not in the Cerebral Cortex or Its Microvessels. Diabetes, 2000, 49: 1016-21.
    23 Fernandes R, Carvalho AL, Kumagai A, et al. Downregulation of retinal GLUT1 in diabetes by ubiquitinylation. Mol Vis, 2004, 10: 618-28.
    24 Knott RM, Robertson M, Muckersie E, et al. Regulation of glucose transport- er (GLUTl and GLUT3)in human retinal endothelial cells. Biochem J,1996, 318 ( pt 1 ) :313-317.
    25 Roy S. Distribution and expression of GLUTl in the retina of the galatose fed rat. Invest Ophthalmol Vis Sci,1996,37:S970.
    26 Brownlee M, Kooney A. Aminoguanicline prevents diabet ic induced arterial wall protein cross-linking. Science, 1996; 232: 1629.
    27 Takagi H, King GL, Aiello LP ,et al. Hypoxia upregulates glucose transport activity through an adenosine-mediated increase of GLUTl expression in retinal capillary endothelial cells. Diabetes, 1998,47: 1480 - 88.
    28 Seagroves TN, Hadsell D, McManaman J, et al. HIF1 is a critical regulator of secretory differentiation and activation, but not vascular expansion, in the mouse mammary gland. Development, 2003, 130: 1713 -1724.
    29 Chen C, Pore N, Behrooz A,et al. Regulation of glutl mRNA by Hypoxia-inducible Factor-1. J. Biol. Chem., 2001,276 (12) : 9519-9525.
    30 Barthel A, Okino ST, Liao J,et al. Regulation of GLUT1 Gene Transcription by the Serine/Threonine Kinase Akt1. J Biol Chem, ,1999, 274 (29) :20281-20286.
    31 Weigert C, Brodbeck K, Frank C, et al. Evidence for a Novel TGF-β1 Independent Mechanism of Fibronectin Production in Mesangial Cells Overexpre-ssing Glucose Transporters. Diabetes, 2003, 52: 527 - 535.
    32 Zhou J, Terasaki T, Hosoya K,et al. Increased JNK-interacting Protein 1 (JIP-1) and Oxidative Stress in Response to GLUTl Overexpression in Rat Retinal Endothelial Cells. Invest Ophthalmol Vis Sci, 2003,44:3906-B609
    33 Davis S , Aldrich TH , Jones PF , et al. Isolation of angiopoietin - 1 , a ligand for the tie2 receptor by secretion - trap expression cloning . Cell, 1996 , 87(7) :1161 -1169.
    34 Talior I, Yarkoni M, Bashan N, et al. Increased glucose uptake promotes oxidative stress and PKC- activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab, 2003, 285: 295 - 302.
    35 Miele C, Rochford J, Filippa N,et al. Insulin and Insulin-like Growth Factor-I Induce Vascular Endothelial Growth Factor mRNA Expression via Different Signaling Pathways. J. Biol. Chem, 2000,275(28): 21695-21702.
    36 Sone H, Deo BK, Kumagai AK, et al. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells . Invest Ophthalmol Vis Sci, 2000,41(7): 1876-84.
    37 Hammes HP, Lin J, Wagner P, et al.Angiopoietin-2 Causes Pericyte Dropout in the Normal Retina Evidence for Involvement in Diabetic Retinopathy. Diabetes, 2004,53: 1104-1110.
    38 Hykin P, Smith G, Nalovina O, et al. Angiopoietin-1 promotes pericyte survival and activation.Invest Ophthalmol Vis Sci 2004;45: E-Abstract 1889.
    39 Ohashi H, Takagi H, Koyama S, et al. Alterations in expression of angiopoi- etins and the Tie-2 receptor in the retina of streptozotocin induced diabetic rats. Molecular Vision 2004; 10:608-617.
    40 Loughna S and Sato TN. Angiopoietin and Tie signaling pathways in vascular development. Matrix Biology, 2001,20 :319-325.
    41 Nambu H, Nambu R, Oshima Y, et al. Angiopoietin 1 inhibits ocular neova-scularization and breakdown of the blood-retinal barrier . Gene Ther, 2004, 11(10): 865-873.
    42 Papapetropoulos A, Fulton D, et al. Angiopoietin-1 Inhibits Endothelial Cell Apoptosis via the Akt/Survivin Pathway. J. Bio. Chem, 2000,275: 9102-05.
    43 Kim I, Kim HG, So JN , et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/ Akt signal transduction path- way . Circ Res, 2000 , 86 (1) : 24- 29.
    44 Giebel SJ, Das A, McGuire PG, et al. Upregulation of Extracelluar Proteinases and Angiopoietin 2 during Blood-Retinal-Barrier Alteration in the Diabetic Rat Model. Invest Ophthalmol Vis Sci, 2003,44: 3903-3908.
    45 Procopio WN , Paul IP , Lee WMF , et al. Angiopoietin - 1 and - 2 coiled coil domains mediate distinct homo - oligomerization patterns , but fibrinogen - like domains mediate ligand activity . J Biol Chem , 1999 ,274(42): 30196 - 30201.
    46 Takagi H, Koyama S, Seike H, et al.Potential Role of the Angiopoietin/Tie2 System in Ischemia-Induced Retinal Neovascularization. Inves Ophtha Vis Sci.,2003,44:393-402.
    47 Procopio WN, Paul IP, Lee WMF, et al. Angiopoietin-1 and -2 coiled coil domains mediate distinct homooligomerization patterns, but fibrinogen - like domains mediate ligand activity. J Biol Chem, 1999,274(42):30196 - 30201.
    1. Malone J I, Morrison A D , Pavan P , et al. Prevalence and significance of retinopathy in subjects with diabetes of less than 5 years duration screened for the diabetes control and complications trial. Diabetes Care , 2001 ,24 : 522 -526
    2. Nakajima M , Cooney M J , Alexander H T , et al. Normalization of retinal vascular permeability in experimental diabetes with genistein. Invest Ophthalmol Vis Sci ,2001, 42: 2110-2114
    3. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin -1, a ligand for the tie2 receptor by secretion - trap expression cloning. Cell, 1996, 87(7) :1161 - 1169.
    4. Mueckler M, Caruso C, Baldwin SA, et al. Sequence and structure of a human glucose transporter. Science, 1985, 229(4717):941-945.
    5. Kumagai AK, Vinores SA, Pardridge WM,et al. Pathological upregulation of inner-retinal barrier GLUT1 glucose transporter expression in diabetes mellitus. Brain Res, 1996,706:313-7
    6. Giovanni E. Mann, David L. Yudilevich, and Luis Sobrevia. Regulation of Amino Acid and Glucose Transporters in Endothelial and Smooth Muscle. Cells Physiol Rev, Jan 2003; 83: 183-252.
    7. Badr GA, Tang J, Ismail-Beigi F, et al. Diabetes Downregulates GLUT1 Expression in the Retina and Its Microvessels but Not in the Cerebral Cortex or Its Microvessels. Diabetes, 2000,49: 1016-21.
    8. Procopio WN, Paul IP, Lee WMF, et al. Angiopoietin-1 and -2 coiled coil domains mediate distinct homooligomerization patterns, but fibrinogen - like domains mediate ligand activity. J Biol Chem, 1999, 274(42):30196 - 30201.
    9. Talior I, Yarkoni M, Bashan N, et al. Increased glucose uptake promotes oxidative stress and PKC- activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab, 2003,285: 295 - 302.
    10. Talior I, Yarkoni M, Bashan N, et al. Increased glucose uptake promotes oxidative stress and PKC- activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab, 2003,285: 295 - 302.
    11. Sone H, Deo BK, Kumagai AK, et al. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells. Invest Ophthalmol Vis Sci, 2000, 41 (7): 1876-84.
    12. Murata T, Nakagawa K, Khalil A, et al. The relation between expression of vascular endothelial growth factor and breakdown of the blood retinal barrier in diabetic rat retinas[J].Lab Invest, 1996,74(4) : 819-825.
    13. Dong E, Dong Y, Shi F, et al. The evaluation of diabetic retinopathy of STZ-induced diabetic rats. Ophthalmol Research(Chinese), 2004, 22 (2), 124-127.
    (Please refer to the text for tables and figures.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700