用户名: 密码: 验证码:
蒙新湖泊大型水生植物与大型底栖动物调查及金鱼藻与环棱螺的互作关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年7月20日至9月22日,参加了“中国湖泊水质、水量和生物资源调查”专项(2006FY110600)中的蒙新高原片区湖泊的调查,专项主要调查面积大于10km2的湖泊。调查了12个主要湖泊(内蒙古自治区4个,新疆维吾尔族自治区7个,陕西省1个)的大型水生植物和大型底栖无脊椎动物。同时通过实验室模拟试验研究了金鱼藻和梨形环棱螺的互作关系。
     (1)11个湖泊有水生植物分布,阜康天池没有分布,种类丰富度总体较低。鉴定出8科12种,其中挺水植物3科4种、沉水植物4科7种、浮叶植物1科1种。鸟梁素海的种类最丰富,有9种;乌伦古湖和吉力湖分别有8种;岱海有7种;博斯腾湖、哈素海分别有3种;柴窝堡和达里诺尔分别有2种;赛里木湖、喀纳斯湖、红碱淖都只有1种。水生植物以挺水植物芦苇和沉水植物蓖齿眼子菜分布最广
     相似性分析显示,蒙新高原湖泊水生植物种类相似性总体上较低。水生植物在湖内分布不均匀,乌梁素海和哈素海全湖都有水生植物分布,其它湖泊仅在个别湖湾有分布。水生植被是维持水生生物多样性的重要环境条件,对水生植物空间分布异质性较高的湖泊,保护水生植被密集的湖湾对保护整个湖泊的生物资源有重要意义。
     (2)11个湖泊采集到底栖动物,阜康天池未采集到,共74个采样点,15个未采集到,获得底栖动物10443头。鉴定出4门8纲26科64种(属)。其中节肢动物门昆虫纲18科52种,甲壳纲3科3种,蛛形纲1种;软体动物门腹足纲2科3种,双壳纲1科1种;环节动物门寡毛纲1科2种,蛭纲1科1种;扁形动物门涡虫纲1种。与文献记载的相比,部分湖泊底栖动物正面临多样性丧失的威胁。
     底栖动物群落相似性在湖泊之间以及各湖泊沿岸带之间都较低;在乌伦古湖、吉力湖、柴窝堡湖、岱海和达里诺尔的各敞水区之间较高,在其它湖泊敞水区之间较低。底栖动物在蒙新高原湖泊内的分布大致可以分为3个湖区,沿岸带水生植物区、敞水区和强劲湖流区。沿岸带水生植物区底栖动物发现57种,优势种有4种(萝卜螺Radix sp.、小划蝽Sigara substriata、湖泊钩虾3ammarus lacustris和水丝蚓Limnodrilus sp.);敞水区发生26种,优势种有1种(摇蚊Chironomous sp.),强劲湖流区几乎没有底栖动物,前两者多样性差异极显著(p<0.01)。水生植物区可以分为四种生境类型,Ⅰ型生境中底栖动物发现种类最多(57种),Ⅱ型次之(16种),Ⅲ型最少(10种),Ⅳ型无底栖动物分布(p/a stress=0.01, fourth root stress=0.09).
     总体上,各湖泊底栖动物群落相似性低,要保护蒙新高原湖泊的底栖动物,应对每个湖泊的底栖动物进行适当保护。水生植物有利于底栖动物的栖息繁衍,应加强保护沿岸带水生植物区,尤其是沉水植物区。在调查湖泊底栖动物时,应在水生植物区,尤其是沿岸浅滩的沉水植物区(水深<0.6m),加采底栖动物样点。
     (3)研究了金鱼藻、梨形环棱螺及其组合对着生物、TN、TP等指标的影响。结果显示,金鱼藻对着生物干重和Chla的增长率为295.62%(p<0.01)和32.31%(p<0.05),环棱螺对二者的去除率为65.69%(p<0.05)和46.19%(p<0.01),组合对二者的去除率为70.07%(p<0.05)和70.16%(p<0.01)。试验过程中,金鱼藻、环棱螺及其组合对TN的平均去除率分别为35.18%、15.27%和20.48%,对NO3--N为22.34%、18.33%和10.66%,对NH4+-N为37.88%、13.98%和25.72%,对TP为53.12%、8.38%和41.97%。金鱼藻与环棱螺在脱氮除磷时表现出正、负相互作用,负交互作用一定程度地促进了氮磷浓度的升高,但仍有较强的去除作用。综合水体景观质量和富营养化控制,同时利用沉水植物和螺类有利于水体的生态修复。
From July 20th to September 22th in 2008, we participated the project, "The investigation on water quantity, water quality and biosource of lakes in China (2006FY110600) ", and we were responsible for the investigation on the area of Inner Mongolia-Xinjiang Plateau Macrophytes and benthic macroinvertebrates of 12 lakes (4 in Inner Mongolia Autonomous Region,7 in Xinjiang Uygur Autonomous Region and 1 in Shanxi Province) were investigated using semi-quantitative method. The investigation aimed on water quantity, water quality and biosource of China(2006FY110600). It aimed on lakes of more than 10km2. The interactions between Ceratophyllum demersum and Bellamya purificata were also studied by simulated experiments.
     (1)A total of 12 species,8 families of macrophytes were indentified through our investigation, among them were 4 emergent macrophytes(Phragmites communis, Typha sp., Cyperus rotundus and Scirpus validus),7 submerged macrophytes (Potamogeton pectinatus, Potarnogeton malatanus, Myriophyllum spicatum, Potamogeton perfoliatus, Najas sp., Ceratophyllum demersum and Potamogeton crispus) and 1 floating-leaved plant (Nymphoides peltatum). The common species among 12 lakes were Phragmites australis and Potamogeton pectinatus Nymphoides peltatum only occurred in the adjacent drainage estuary of Wuliangsu lake.
     Species similarity analysis showed that in Inner Mongolia-Xinjiang Plataeu benthic macroinvertebrate was low among lakes, meanwhile the space distribution were uneven. Macrophytes distributed in all lake subareas of Wuliangsu and Hasu. A large area of aquatic plant distributed in lakes of Dai, Wulungu, Jili and Boston, but respectively concentrated in lake-bays of southeastern, southern, northern and southern. In lakes of Sailimu, Kanas, Chaiwopu, Hongjian and Dali, Macrophytes sporadicly distributed in individual lake-bays. Aquatic plants were important environmental conditions for biodiversity protection. It is important to protect lake bays with rich aquatic plants for maintaining whole lakes aquatic biosource.
     (2) Benthic macroinvertebrates were found in 11 lakes except for Tianchi from 74 sampling sites, among them 15 sites had no zoobenthos. Through out this investigation, 10443 individuals were collected in all. A total of sixty four species (genus) were found, which belonging to four phylums, eight classes and twenty six families. Among them anthropoda had 3 classess, including 52 species 18 families in insecta,3 species 3 families in Crustacea,1 species in Arachnida. Mollusca had two classes, including 2 families 3 species in Gastropoda,1 species in to Bivalvia. Annelida had two classes, including 2 species 1 family in Oligochaeta,1 species in Hirudinea,1 species in Turbellaria. Historical data showed that Inner Mongolia-Xinjiang Plataeu was suffering from the lost of macrobenthos diversity in some lakes.
     Benthic community similarity was very low among based on the data from the whole lake and coastal areas respectively. However, the similarity was high among lakes of Wulungu, Jili, Chaiwopu, Dai and Dali based on the data from open water areas, while other lakes were low. Lakes usually be approximately divided into 3 subareas (coastal aquatic plant area, open water area, and strong lake current area) in Inner Mongolia-Xinjiang Plataeu. Our investigation found 57 species in coastal aquatic plant area, among which 4 dominant species(Radix sp., Sigara substriata, Gammarus lacustris, Limnodrilus sp.); 26 species in open water, among which 1 dominant species(Chironomous sp.), however no macrobenthos was found in strong lake current. The diverstiy was significantly different between former two areas (p<0.01). Aquatic plant areas could be divided into four habitat types, typeⅠhad the most number of macrobenthos species(57 species), typeⅡhad fewer (16 species), typeⅢhad the fewest(10 species), type IV had no (p/a stress=0.01, fourth root stress=0.09).
     Benthic macroinvertebrates community of each lake in Inner Mongolia-Xinjiang Plateau was relatively independent. Aquatic plants were helpful for benthic macroinvertebrates protection and the protection of aquatic plant areas especially the submerged macrophyte is better for the whole lake bidoversity protection. while investigating macrobenthos in lakes, It was necessary to collect samples in coastal submerged macrophyte areas(depth<0.6m).
     (3) Influences of Ceratophyllum demersum, Bellamya purificata and there combined treatments on periphyton, TN, TP, and other indexes were studied. The results showed that, for periphyton and Chla, C. demersum increased them 295.62%(p<0.01) and 32.31%(p<0.05) respectively, B.purificata decreased them 65.69%(p<0.05) and 46.19%(p<0.01), the combined treatment decreased them70.07%(p>0.05) and 70.16%(p<0.01). Average removal rates for TN, effects of C. Demersum, B.purificata and the combined treatments were 35.18%,15.27% and 20.48% respectively. For NO3--N, they were 22.34%,18.33% and 10.66%. For NH4+-N, they were 37.88%,13.98% and 25.72%. For TP, they were 53.12%,8.38% and 41.97%. While removing nitrogen and phosphorus, C. Demersum and B.purificata showed interactions of antagonism and synergism. Antagonism in combined treatment increased nitrogen and phosphorus concentration a little, but still had high removing effects for nitrogen and phosphorus. Considering visual quality and eutrophication, it was helpful to water biorestoration, while using submerged macrophytes and snails together.
引文
1. Asaeda T, Nam L H, Hietz P, et al. Seasonal fluctuations in live and dead biomass of Phraglnites australis as described by a growth and decomposition model:implications of duration of aerobic conditions for litter mineralization and sedimentation[J]. Aquatic Botany,2002,73(3):223-239
    2. Barko J W, James W F. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In:Jeppesen E, Sφndergaard M, Christoffersen K. (Eds.), The Structing Role of Submerged Macrophytes in Lakes[M]. Springer, New York,1998,:197-217
    3. Bayley S E, Prather C M. Do wetland lakes exhibit alternative stable states? Submersed Aquatic vegetation and chlorophyll in western boreal shallow lakes[J]. Limnol. oceanogr,2003,48(6):2335-2345
    4. Carpenter S R, Lodge D M. Effects of submersed macrophytes on ecosystem processes[J]. Aquatic Botany,1986,26:341-370
    5. Bronmark C. Interactions between Macrophytes, Epiphytes and Herbivores:An Experimental Approach[J]. Oikos,1985,45(1):26-30.
    6. Clarke K R, Gorley K R. Primer v6.0:User Manual/Tutorial[M]. Plymouth:Primer-E Ltd.2006.
    7. Committee on Restoration of Aquatic Ecosystem, Commission on Geosciencees, Environment, and Resources. Restoration of Aquatic Ecosystems:Science, Technology, and Public Policy[M]. Washington D C:National Academy Press,1992
    8. Cummnis K W. Trophic relations of aquatic insects[J].Annu. Rev. Entomol.,1973,18: 183-206
    9. Cummnis K W, Klug M J. Feedings ecology of stream invertebrates[J]. Ann. Rev. Ecol. Syst,1979,10:147-172
    10. Forel F A,1892. Lac Leman:Monographie Limnologique. Rouge Lausanne//王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998
    11. Gary L. Fahnenstiel, Gregory A. Lang. Effects of Zebra Mussel (Dreissena polymorpha) Colonization on Water Quality Parameters in Saginaw Bay, Lake Huron[J]. Great Lakes Res,1995,21(4):43-48
    12. Garye Belovsky, Daniel B. Botkin, Todda. Crowl, et al. Ten Suggestions to strengthen the science of ecology[J]. BioScience,2004,54(4):345-351
    13. Horp Pila J, Nunninen L. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (Southern Finland)[J]. Water Research,2003,37:4468-4474
    14. Jeppesen E, Jensen J P, Keistensen P, et al. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2:threshold levels, long-term stability and conclusions[J]. Hydrobiologia,1990,200/201:219-228
    15. Jackson L J. Macrophyte-dominated and turbid states of shallow lakes:evidence from Alberta lakes[J]. Ecosystems,2003,6:213-223
    16. Jones, R C. et al. Phytoplankton as a factor in the decline of the submersed macrophyte Myriophyllum spicatum L. in Lake Wingra, Wisconsin, USA[J]. Hydrobiologia,1983,107:213-219.
    17. Ken M. Fritz, Jack W. Feminella.2006.Differential reponse of stream periphyton and invertebrate grazers to habitat modification by the emergent macrophyte Justicia americana. Marine and Freshwater Research.57(2):207-214
    18. Koner S. Loss of submerged macrophytes in shallow lakes in North-Eastern Germany[J]:International Review of Hydrobiology,2002,87:375-384
    19. L enat D R. Abiotic index for the southeastern United States:derivation and list of tolerance values, with criteria for assigning waterquality rating. J. N. Am. Benthol. Soc.,1993,12:279-290.
    20. Lauridsen T L, Peder J. Response of submerged macrophytes in Danish lakes to nutrient loading reductions and biomanipulation[J]. Hydrobiologia,2003, 506:641-649
    21. Lau S S S, Lane S N. Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake:the effect of low macrophyte abundance[J]: WaterResearch,2002,36(14):3593-3601
    22. Likens G E. Primary production of inland aquatic systems. Primary productivity of the biosphere[M]. New York:Springer-Verlag,1976:185-202
    23. Lodge, DM. et al. Distribution of freshwater snails:spatial scale and the relative importance of physicochemical and biotic factors[J]. Am Malacol Bull,1987, 5:73-84
    24. Lugthart J.G and Wallace J.B. Effects of disturbance on benthic functional structure and production in mountain streams[J]. Journal of the North American Benthol. Soc,
    1992,11(2):138-164
    25. Maxted J R, Barbour M T, Gerritsen J, et al. Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. J. N. Am. Benthol. Soc., 2000,19 (1):128-144.
    26. Mjelde M, Faafeng B A. Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude[J]. Freshwater Biology,1997,37(2): 355-365
    27. Morse J C, Yang L-F, Tian L-X. Aquatic Insects of China Useful for Monitoring Water Quality. Nanjing:Hohai University Press,1994
    28. Obemdorfer R Y, J. V. McArthur J R Barnes, J. Dixon. The effect of invertebrate predators on leaf litter processing in an alpine stream[J]. Ecology,1984,65: 1325-1331.
    29. Paola Lombardo, G Dennis Cooke. Ceratophyllum demersum-phosphorus interactions in nutrient enriched aquaria[J]. Hydrobiologia,2003,497:79-90
    30. Phillips G L, Eminson D, Moss B. A mechanism to account for macrophyte decline in progressively eutrophicated waters[J]. Aquatic Botany,1978,4:103-125
    31. Shrader-Frechette K S, McCoy E D. Method in Ecology:Strategies for Conservation[M]. Cambridge (United Kingdom):Cambridge University Press,1993.
    32. Sculthorpe C D.The Biology of Aquatic Vascular Plants[M]. New York:Martin's Press,1967:610-631
    33. Stevenson R J, Max L Bothwell, Rex L Lowe, et al. Algal ecology. Freshwater benthic system[M]. San Diego:Academic Press,1996
    34. Strand J A, Weisner S E. Dynamics of submerged macrophyte Populations in response to bio-manipulation[J]. Freshwater Biology,2001,46:1397-1408
    35. Van Vierssen W. The influence of human activities on the functioning of macrophyte-dominate aquatic ecosystems in the coastal area of Western Europe[M]. Int Symp Aquat Macrophytes, Nijmegen, The Netherlands,1983,273-281.
    36. Vermaat, J E. Periphyton removal by freshwater micrograzers. In:van. Vierssen, et al. Lake Veluwe, a macrophyte-dominated system under eutrophication stress[M]. Dordrecht(The Netherlands):Kluwer Academic Publishers,1994,213-249.
    37. Wallace J B. Recovery of lotic macroinvertebrate communities from disturbance. Environmental Management,1990,14(5):605-620
    38. Wallace J B, T F Cuffney, B S Goldowitz, et al. Long-term studies of the influence of invertebrate manipulation and drought on particlulate organic matter export from headwater streams. Verh. Internat. Verein. Limnol,1991,24:1676-1680
    39. Wallace J B, Grubaugh J W, While M R. Influence of coarse woody debris on stream habitat and invertebrate biodiversity. In:McMinn J W, Crossley D A Jr eds. Biodiversity and Coarse Woody Debris in Southern Forests. Proceedings of the Workshop on Coarse Woody Debris in Southern Forests:Effects on Biodiversity. USDA Forest Services, Southern Research Station General Technical Report GTR-SE-094, Asheville, North Carolina.1996:119-129
    40. Watt KEF. Dynamics of Populations:A Synthesis.Wageningen (Netherlands):Centre for Agricultural Publishing and Documentation,1971:568-580
    41.白秀玲,谷孝鸿,张钰.太湖螺类的实验生态学研究.以环棱螺为例[J].湖泊科学,2006,18(6):649-654
    42.蔡如星.浙江动物志[M].杭州:浙江科学技术出版社,1991
    43.陈开宁,周万平,鲍传和等.浮游植物对湖泊水体生态重建的响应.以太湖五里湖大型围隔示范工程为例[J].湖泊科学,2007,19(4):359-366
    44.陈其羽.黑龙江的底栖动物及水利枢纽建成后的预报[J].水生生物学集刊,1959,2:147-156
    45.陈亚瞿,徐兆礼.南黄海、东海鲐鲹鱼索饵场浮游动物生态特征[J].应用生态学报,1990,1(4):327-332
    46.程南宁,朱伟,张俊.重污染水体中沉水植物的繁殖及移栽技术探讨[J].水资源保护,2004,6:8-11,69
    47.大连水产学院.淡水生物学[M].农业出版社,1982
    48.格日乐图.哈素海、岱海、黄旗海湿地鸟类的调查研究[J].内蒙古师范大学学报(自然科学(汉文)版),2004,33(3):294-299
    49.谷孝鸿,张圣照,白秀玲等.东太湖水生植物群落结构的演变及沼泽化[J].生态学报,2005,25(7):1541-1548
    50.何俊,谷孝鸿,刘国锋.东太湖水生植物及其与环境的相互作用[J].湖泊科学,2008,20(6):790-795
    51.何志辉,谢祚浑,雷衍之等.乌梁素海水化学和水生生物学初步调查[J].大连水产学院学报,1984,1:41-56
    52.厚福祥,邓芳.内蒙古乌梁素海生态恢复工程试验研究[J].内蒙古大学学报(自然科学版),2006,37(1):105-110
    53.胡汝骥,姜逢清,王亚俊等.亚洲中部干旱区的湖泊[J].干旱区研究,2005,22(4):424-430
    54.胡汝骥,姜逢清,王亚俊等.论中国干旱区湖泊研究的重要意义[J].干旱区研究,2007,24(2):137-140
    55.简永兴,李仁东,王建波等.鄱阳湖滩地水生植物多样性调查及滩地植被的遥感研究[J].植物生态学报,2001,25(5):581-587
    56.蓝学恒,白和平,李民.岱海底栖动物生态结构的演变及对渔业环境的影响[J].内蒙古农业科技,2000,5:29-30
    57.蓝学恒,张翔宇,张帆等.岱海生物群落结构的演变及其对渔业发展的影响[J].湖泊科学,2001,13(2):180-186
    58.李强,杨莲芳,吴璟等.西苕溪EPT昆虫群落分析与环境因子的典范对应分析[J].生态学报,2006,26(11):3817-3825
    59.李尚志,唐永琼.利用水生植物对污染水体进行生态修复[J].深圳大学学报(理工版),2005(3):272-276
    60.李伟,钟扬.水生植被研究的理论和方法[M].武汉:华中师范大学出版社,1992,237-277
    61.李文朝,杨沁心.乌伦古湖水生植被研究[J].海洋与湖沼,1993,24(1):100-108
    62.林连升,廖为民,袁新华等.三种沉水植物对富营养化池塘水质的改良效果[J].金陵科技学院学报,2006,22(2):69-74
    63.刘佳,刘永立,叶庆富等.水生植物对水体中氮、磷的吸收与抑藻效应的研究[J].核农学报,2007,21(4):393-396
    64.刘月英.中国经济动物志(淡水软体动物)[M].北京:科学出版社,1979
    65.卢晓明,金承翔,黄民生等.底栖软体动物净化富营养化河水实验研究[J].环境科学与技术,2007,30(7):7-10
    66.栾雅文,刘龙翔,郭砺等.哈素海底栖动物资源现状的调查研究[J].内蒙古大学学报(自然科学版),1999,30(6):722-732
    67.吕爱华.用底栖动物评价底质[J].干旱环境监测,1993,7(3):160-164
    68.马剑敏,成水平,贺锋等.武汉月湖水生植被重建的实践与启示[J].水生生物学报,2009,33(2):222-229
    69.裴新国,阎晓燕.博斯腾湖生态环境的演变[J].干旱区研究,1992,9(4):57-62
    70.彭映辉,简永兴,李仁东.鄱阳湖平原湖泊水生植物群落的多样性[J].中南林学院学报,2003,23(4):22-27
    71.濮培民,胡维平等.净化湖泊饮用水源的物理-生态工程实验研究[J].湖泊科学,
    1997,9(2):159-167
    72.尚士友,杜健民,李旭英等.乌梁素海富营养化及其防治研究[J].内蒙古农业大学学报,2003,24(4):7-12.
    73.宋福,乔建荣,陈艳卿等.常见沉水植物对草海水体(含底泥)总氮去除速率的研究[J].环境科学研究,1997,10(4):47-50
    74.孙儒泳,牛翠娟,喽安如等.基础生态学[M].北京:高等教育出版社,2002
    75.唐萍,吴国荣,陆长梅等.太湖水域几种高等水生植物的克藻效应[J].农村生态环境,2001,7(3):42-44,47
    76.万志刚,沈颂东,顾福根等.几种水生维管束植物对水中氮、磷吸收率的比较[J].淡水渔业,2004,34(5):6-8
    77.王润,孙占东,高前兆.2002年前后博斯腾湖水位变化及其对中亚气候变化的响应[J].冰川冻土,2006,28(3):324-329
    78.王洪道.中国湖泊水量分析与评价[J].海洋与湖沼,1987,18(1):12-21
    79.王洪道.我国湖泊近期变化的初步分析[J].海洋与湖沼,1990,21(6):522-528
    80.王丽珍,刘永定,肖帮定.滇池非封闭围隔水体底栖动物的监测调查[J].水利渔业,2004,24(1):49-51
    81.王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998
    82.魏阳春,濮培民.太湖铜锈环棱螺对氮磷的降解作用[J].长江流域资源与环境,1999,8(1):89-93
    83.武国正,李畅游.内蒙古乌梁素海浮游动物与底栖动物调查[J].湖泊科学,2008,20(4):538-543
    84.吴天惠.新疆福海底栖动物的研究[J].水生生物学报,1991,15(4):303-313
    85.谢志才,张君倩,陈静等.东洞庭湖保护区大型底栖动物空间分布格局及水质评价[J].湖泊科学,2007,19(3):289-298
    86.许设科,段超礼,王爱民.柴窝堡湖渔业生物学基础调查[J].新疆大学学报(自然科学版),1985,3:88
    87.徐新伟,于丹,刘春花.椭圆萝卜螺对两种沉水植物生长的影响[J].水生生物学报,2002,26(6):719-721
    88.徐兆礼,沈新强,马胜伟.春、夏季长江口邻近水域浮游动物优势种的生态特征[J].海洋科学,2005,29(12)):13-19
    89.徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系[J].生态学杂志,1989,8(4):13-15
    90.颜素珠.中国高等水生植物图说[M].北京:科学出版社,1983
    91.闫晓燕.博斯腾湖底栖动物现存量的变化及评价[J].新疆环境保护,1994,16(3):17-20,35
    92.杨文荣,郭焱,蔡林钢等.赛里木湖饵料生物及渔业现状的研究[J].水产学杂志,2000,13(1):1-10
    93.叶尚明,苏德学,刘栓等.新疆乌伦古湖水生生物资源调查研究[J],水利渔业,2004,24(2):51-53
    94.于瑞宏,刘廷玺,许有鹏等.人类活动对乌梁素海湿地环境演变的影响分析[J].湖泊科学,2007,19(4):465-472.
    95.张玉,王洪滨,何江等.内蒙古达里诺尔湖水质现状调查[J].水产科学,2008,27(12):671-673
    96.赵斌,蔡庆华,刘瑞秋等.岱海水质咸化过程中若干生态因子的变化[J].水生生物学报,2000,24(5):502-508
    97.赵龙,单秀琴,达伟等.新疆博斯腾湖水量的演变[J].河南水利与南水北调,2009,2:15-16
    98.赵晓霞.底栖动物在哈素海水质评价中的应用[J].干旱环境监测,1991,5(2):93-98
    99.郑乐怡,归鸿.昆虫分类[M].南京:南京师范大学出版社,1999
    100.中国科学院武汉植物研究所.中国水生维管束植物图谱[M].武汉:湖北人民出版社,1983
    101.周风帆,王新光,丁树荣.利用凤眼莲(Eichlornis crassipes)净化水中重金属放射性核素60钴、65锌、137铯的研究[J].中国环境科学,1989,9(1):26-30
    102.朱苗骏,柏如法,张彤晴等.不同密度铜锈环棱螺对水体环境影响效果的研究[J].淡水渔业,2004,34(6):31-33
    103.祖国掌,管远亮,侯冠军等.围栏养蟹利用与女山湖沉水植物资源保护[J].湖泊科学,1999,11(1):91-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700