用户名: 密码: 验证码:
GaAs(111)面量子阱材料的生长及其光电特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先详细介绍了分子束外延设备的原理和构造。采用原子力显微镜研究了InAs/GaAs量子点的生长特点。采用室温光荧光谱、低温光荧光谱对在GaAs (111)衬底上生长高Al组分的AlGaAs材料进行了研究。然后本文利用不同工艺条件下在GaAs(111)衬底上生长GaAs时反射高能电子衍射强度振荡呈现单双周期变化的特点,找到了一种在GaAs(111)衬底上生长高质量量子阱的可行方法,运用时间分辨Kerr旋转谱、室温荧光光谱、低温荧光光谱、原子力显微镜等测量手段研究了不同生长条件对量子阱内电子的自旋驰豫的影响。主要研究内容和结果如下:
     1.在GaAs (111)衬底上生长高Al组分的Al0.3Ga0.7As时,生长温度,生长速率和As2/Ga束流等效压强比对材料晶体质量和光学性能有重要的影响。本文采用分子束外延技术在GaAs (111)衬底上生长了一系列生长温度和As2/Ga束流等效压强比不同的样品,通过室温光荧光谱、低温光荧光谱对这些样品进行了分析,找到了在GaAs (111)衬底上生长高质量高Al组分的Al0.3Ga0.7As生长条件。
     2. GaAs (111)衬底上生长GaAs外延层时,不同生长条件下存在单层和双层两种生长模式,对应反射高能电子衍射RHEED强度振荡呈现出单双周期的变化。透射电子显微镜和室温光荧光谱测量结果表明:在双层生长模式下量子阱样品光学性能较差,而在单层生长模式下量子阱光学性能较好,但是界面会变粗糙。利用这一特点,我们采用反射高能电子衍射强度振荡技术,找到了一种在GaAs(111)衬底上生长高质量量子阱的可行方法。
     3.通过时间分辨Kerr旋转谱研究了界面生长中断对量子阱内电子自旋寿命τ的影响。研究表明在量子阱双转界面(AlGaAs上生长GaAs和GaAs上生长AlGaAs的界面)的中断比在反转界面(AlGaAs上生长GaAs的界面)的中断对自旋寿命有更大的影响。我们生长了一系列在双转界面上中断不同时间的量子阱样品。对样品进行了室温荧光的研究,室温荧光光谱结果显示量子阱的粗糙度随中断时间增加而减小。室温下时间分辨克尔旋转谱的测试表明合适的界面生长中断时间可以显著地提高自旋寿命。我们认为这主要是因为生长中断减少了界面粗糙度,抑制了D'yakonov-Perel'相互作用,从而提高了自旋寿命。
Firstly, the theory and fabrication of molecular beam epitaxy(MBE) are described in detail. The surface morphology of InAs/GaAs quantum dot was studied by using atomic force microscopy (AFM). A series of high Al composition AlGaAs films at GaAs (111) substrate grown by MBE were investigated by using room temperature photoluminescence spectra, low temperature photoluminescence spectra. Secondly, when the GaAs epitaxial layer grows on the GaAs (111) substrate, the single and double periods of RHEED intensity oscillation will be changed under different growth conditions. By means of RHEED oscillations, high quality quantum wells grown on GaAs (111) have been found under optimized growth conditions. The influence of different growth conditions on electron spin relaxation time in GaAs/AlGaAs (111) quantum wells (QWs) grown by MBE has been investigated by room temperature photoluminescence spectra, time-resolved Kerr rotation spectroscopy(TRKR), low photoluminescence spectra. The main content is as follows:
     1. The growth temperatures,the growth velocity and As2/Ga beam equivalent pressure ratios (BEP) have an important impact on the growth of high Al composition Al0.3Ga0.7As films at GaAs (111) substrate with high crystal quality and good optical property. In this report, we grown a series of samples with different growth temperatures and different BEP ratios on GaAs (111) substrates by molecular beam epitaxy. The samples were investigated by using room temperature photoluminescence spectra, low temperature photoluminescence spectra. Then, the optimized growth condition was found on the growth of Al0.3Ga0.7As films at GaAs (111) substrates.
     2. When the GaAs epitaxial layer grows on the GaAs (111) substrate, there are two growth modes (monolayer-by-monolayer and bilayer-by-bilayer) under different conditions that correspond to monolayer and bilayer RHEED (Reflection High Energy Electron Diffraction) oscillations. The measurements of transmission electron microscope and photoluminescence at room temperature showed that the quantum wells had very bad optical property under the bilayer-by-bilayer growth mode, while the quantum wells grown under the monolayer-by-monolayer growth mode had much better optical property with rough interfaces. By means of RHEED oscillations, high quality quantum wells grown on GaAs (111) have been found under optimized growth conditions.
     3. The influence of interface growth interruption on electron spin life timeτin GaAs/AlGaAs (111) quantum wells (QWs) grown by solid source molecular beam epitaxy (SSMBE) has been investigated by room temperature photoluminescence spectra and time-resolved Kerr rotation spectroscopy (TRKR). The growth interruption at double interruption mode (GaAs-on-AlGaAs and AlGaAs-on-GaAs) interface had a more impact on electron spin life time in QWs than that at inverted (AlGaAs-on-GaAs) interface. Various interface interruption time were used in growing QWs. Interface roughness of these QWs samples was studied by room temperature photoluminescence spectra. The photoluminescence spectra indicated that interface roughness decreased as the interface growth interruption time increased. TRKR measurements at room temperature showed that the appropriate growth interruption could increase spin life time in GaAs/AlGaAs QWs drastically. This dramatic increase was explained by the suppression of the D'yakonov-Perel' interaction.
引文
[1] Baibich M N,Broto J M,Fert A.et a1.Giant magnetoresistance of(OO1)Fe/(001)Cr magnetic superlattices.Phys.Rev.Lett,1988, 61(21):2472-2475.
    [2] Wolf S A ,Awschalom D D,Buhrman R A,et a1.Spintronics:A spin—based electronics vision for the future.Science, 2001, 294:l488-1495.
    [3] Barnas J,Fuss A,Camley R E,et a1.Novel magnetoresistance effect in layered magnetic structures:Theory and experiment.Phys.Rev.B,1990,42:8ll0.
    [4] Prinz G A.Magnetoelectronics.Science,1998,282:l660-1663.
    [5]Parkin S S P , Mauri D . Spin engineering : Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium . Phys. Rev.B,1991,44:7131-7134.
    [6]Moodera J S,Kinder Lisa R,Wong Terrilyn M,et a1.Large Magnetoresistance at room temperature in thin film tunnel junctions.Phys.Rev.Lett.,1994,74:3273-3276.
    [7]Koh G H,Kim H J,Jeong W C.et a1.Fabrication of high performance 64 kbMRAM.J.of Magnetism and Magnetic Materials,2004,272-276:1941-l942.
    [8]Sarma S Das,Fabian Jaroslav,Hu Xuedong.et a1.Spin electronics and spin computation.Solid State communications,2001,119:207-215.
    [9]Ohno H, Matsukura F, Ohno Y. Semiconductor spin electronics. JSAP International, 2002, (5):4-13.
    [10]Ohno H.Making nonmagnetic semiconductors ferromagnetic.Science,1998, 281: 951-956.
    [11]Munekata H,Ohno H ,Von Molnar S,et a1 .Diluted magnetic III-V semiconductors. Phys. Rev. Lett,l989,63(17):1849-1852.
    [12]De Boeck J,Oersterholt R,Van Esch A,et a1.Nanometer-scale magnetic MnAs particles in GaAs grown by molecular beam epitaxy. Appl. Phys.Lett,1996,68(19):2744-2746.
    [13]Xu J L, Schilfgaarde M V, Samolyuk G D. Role of Disorder in Mn:GaAs, Cr:GaAs, and Cr:GaN. Phys. Rev. Lett, 2005, 94: 097201.
    [14]Dietl T, Ohno H, Matsukura F, et al. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science, 2000, 287: 1019-1022.
    [15]Mi W B, Bai H L, Liu H, et al. Microstructure, magnetic, and optical properties of sputtered Mn-doped ZnO films with high-temperature ferromagnetism. J. Appl. Phys, 2007, 101:023904.
    [16]Hu C M, Nitta J, Jensen A, et al. Spin polarized transport in a two-dimension electron gas with interdigital-ferromagnetic contacts.Phys. Rev. B,2001,63:125333.
    [17] Schmidit G, Ferrand D,Molenkamp L W ,et al.Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor.Phys.Rev.B,2000,62:R4790.
    [18] Alvarado S F,Renaud P.Observation of spin polarized electron tunneling from a ferromagnet into GaAs.Phys. Rev. Lett, 1992,68:1387.
    [19] Rashba E I.Theory of electrical spin injection:Tunnel contacts as a solution of the conductivity mismatch problem.Phys. Rev. B,2000,62:R16267.
    [20] Zhu H J.Room—temperature spin injection from Fe into GaAs.Phys. Rev. Lett,2001,87:016601.
    [21] Hu C M,Matsuyanma T.Spin injection across a heterojunctions:a ballistic picture.Phys. Rev.Lett,2001,87(6):066803.
    [22] Jansen R.The spin-valve transistor:fabrication, characterization,and physics.J. Appl. Phys,2001,89:7431.
    [23]Fiederling R,Reuscher G,Ossau W,et al.Injection and detection of a spin polarized current in a light-emitting diode.Nature,1999,402:787.
    [24]Ohno Y,Young D K,Beschoten B,et al.Electrical spin injection in a ferromagnetic semiconductor heterostructure.Nature,2000,402:790.
    [25] Hagele D,Oestreich M,Ruhle W W, et al.Spin transport in GaAs.Appl. Phys. Lett,1998,73:1580.
    [26]Sogawa T,Ando H,Ando S.Spin-transport dynamics of optically spin-polarized electrons in GaAs quantum wires.Phys. Rev. B,2000,61:5535.
    [27] Zutic I, Fabian J, Sarma S D. Spintronics: Fundamentals and applications. Rev. Mod. Phys, 2004, 76, 323-410.
    [28] Yafet Y. Calculation of the g factor of metallic sodium. Phys. Rev,1952, 85(3):478.
    [29] Elliott R J. Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys. Rev, 1954, 96(2):266.
    [30] Fishman G, Lampel G. Spin relaxation of photoelectrons in p-type gallium arsenide. Phys. Rev. B, 1977, 16(2):820.
    [31] Awschalom D D, Loss D, Samarth N. Semiconductor Spintronics and Quantum Computation. Berlin :Springer, 2002. 107-142.
    [32]孙丰伟,邓莉,寿倩,等.量子阱中电子自旋注入及弛豫的飞秒光谱研究.物理学报,2004,53(9):3196-3199.
    [33] Henini M, Karimov O Z, John G H, et al. Gated spin relaxation in (110)-oriented quantum wells. Physica E, 2004, 23: 309-314.
    [34] Kato Y K, Myers R C, Gossard A C, et al. Observation of the Spin Hall Effect inSemiconductors. Science, 2004, 306: 1910-1913.
    [35] Silov A Y, Blajnov P A, Wolter J H, et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett, 2004, 85(24): 5929-5931.
    [36] Dong J. W, Chen L. C, Palmstrom C. J, et al. Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs. Appl. Phys. Lett, 1999, 75(10): 1443-1445.
    [37] Watts S. M, Wirth S, Molnar S. von, et al. Evidence for two-band magnetotransport in half-metallic chromium dioxide. Phys. Rev. B, 2000, 61(14): 9621-9628.
    [38] Jedema F. J, Filip A. T, Wees B. J. van. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 2001, 410: 345-348.
    [39] Versluijs J. J, Bari M. A, Coey J. M. D. Magnetoresistance of Half-Metallic Oxide Nanocontacts. Phys. Rev. Lett, 2001, 87(2): 026601.
    [40] Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett, 1996, 69(3): 363-365.
    [41] Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408: 944-946.
    [42] Loss Daniel, DiVincenzo David P. Quantum computation with quantum dots. Phys. Rev. A, 1998, 57(1): 120-126.
    [1]周均铭.《晶体生长科学与技术》(第二版).张克从编,科学出版社,1997.
    [2] Robin F. C. Farrow, Molecular Beam Epitaxy: Applications to Key Materials, Noyes Publications, 1998.
    [3]吴自勤,王兵.《薄膜生长》,科学出版社,2001.
    [4]冯端,师昌绪,刘治国.《材料科学导论》,化学工业出版社,2002.
    [5]杨树人,王宗昌,王兢.《半导体材料》,科学出版社,2004.
    [6] Cho A.Y. Recent developments in molecular beam epitaxy (MBE). J. Vac. Sci. Technol, 1971, 16: 275.
    [7] Dobson P. J, et al. Current understanding and applications of the RHEED intensity oscillation technique. J. Crystal Growth, 1987, 81: 1.
    [8] Bauer E. Reflection Electron Diffraction, in Techniques of Metals Research, Vol. 2,edited by Bunshah R. F, Wiley-Interscience, New York 1968, Chap. 15.
    [9] Neave J. H, et al. Dynamics of film growth of GaAs by MBE from RHEED observations, Appl. Phys. A , 1983, 31: 1.
    [10] Van Hove J. M, et al. Damped oscillations in reflection high energy electron diffraction during GaAs MBE. J. Vac. Sci. Technol. B, 1983, 13: 741.
    [11]周均铭,黄绮.分子束外延材料从基础研究到产业化.物理, 2000, 29: 451.
    [1] Ohno Y, Terauchi R, Adachi T, Matsukura F, Ohno H, Spin relaxation in GaAs(110) quantum wells. Phys. Rev. Lett. 1999,83:4196
    [2] Ohno Y, Terauchi R, Adachi T, Matsukura F, Ohno H, Electron spin relaxation beyond D'yakonov-Perel' interaction in GaAs/AlGaAs quantum wells. Physica E,2000, 6:817
    [3] Henini M, Karimov O Z, John G H, Harley R T, Airey R J. Gated spin relaxation in (1 1 0)-oriented quantum wells. Physcica E, 2004, 23: 309-314.
    [4] Kikkawa J. M, Smorchkova I. P, Samarth N, et al. Room-Temperature Spin Memory in Two-Dimensional Electron Gases. Science, 1997,277: 1284-1287.
    [5] Sanada H, Matsuzaka S, Morita K, et al. Gate Control of Dynamic Nuclear Polarization in GaAs Quantum Wells. Phys. Rev. Lett. 2005, 94: 097601.
    [6] Bobel F. G,Moiler H, Wowchak A, et al. Pyrometric interferometry for real time molecular beam epitaxy process monitoring. J. Vac Sci Technol B, 1994, 12: 1207.
    [7] Sφrensen C. B, Gislason H, Hvam J. M. MBE growth of two-dimensional electron gases on (110) GaAs. J. Crystal Growth, 1997, 175: 1097.
    [8] Holmes D. M, Tok E. S, Sudijono J. L,et al. Surface evolution in GaAs (110) homoepitaxy; from microscopic to macroscopic morphology. J. Crystal Growth, 1998, 192(1-2): 33-46.
    [9] Holmes D. M, Belk J. G, Sudijono J. L, et al. Differences between As2 and As4 in the homoepitaxial growth of GaAs(110) by molecular beam epitaxy. Appl. Phys. Lett. 1995, 67: 2848.
    [10] Kohrbruck R, Munnix S, Bimber D, et al. Influence of the As:Ga flux ratio on growth rate, interface quality, and impurity incorporation in AlGaAs/GaAs quantum wells grown by molecular beam epitaxy. Appl. Phys. Lett. 1989, 54(7): 623-625.
    [11] Krispin P, Hey R, Kostial H, et al. Growth mode-related generation of electron traps at the inverted AlAs/GaAs interface. J. Appl. Phys, 1998, 83(3): 1496-1498.
    [12] Morkoc H, Drummond T J, Fischer R, et al. Moderate mobility enhancement in single period AlxGa1–x As/GaAs heterojunctions with GaAs on top. J. Appl. Phys, 1982, 53(4): 3321-3323.
    [13] Shang Xunzhong , Wang Wenchong , Wu Shudong, et al. Effects of indium doping on the properties of AlAs/GaAs quantum wells and invertedAlGaAs/GaAs two-dimensional electron gas. Semicond. Sci. Technol, 19(3): 519-522.
    [14] Leosson K, Jensen J R, Langbein W,et al. Exciton localization and interface roughness in growth-interrupted GaAs/AlAs quantum wells. Phys. Rev. B, 2000, 61(15): 10322-10329.
    [15] K?hrbruck R, Munnix S, Bimberg D, et al. Inequivalence of normal and inverted interfaces of molecular-beam epitaxy grown AlGaAs/GaAs quantum wells. J. Vac. Sci. Technol. B,1990, 8(4):798-804.
    [16] Bimberg D, Mars D E, Miller J N, et al. Structural changes of the interface,enhanced interface incorporation of acceptors,and luminescence efficiency degradation in GaAs quantum wells grown by molecular beam epitaxy upon growth interruption. J. Vac. Sci. Technol. B, 1986, 4(4): 1014-1021.
    [17] Krispin P, Hey R, Kostial H. Intrinsic origin and composition dependence of deep-level defects at the inverted GaAs/AlxGa1-xAs interface grown by molecular-beam epitaxy. J. Appl. Phys, 1995, 77(11): 5773-5781.
    [18] Tok E S, Neave J H, Fahy M R, et al. Influence of arsenic incorporation on surface morphology and Si doping in GaAs(110) homoepitaxy. Microelectronics Journal, 1997, 28(8-10):833.
    [19] Lombez L, Braun P F, Carrère H, et al. Spin dynamics in dilute nitride semiconductors at room temperature. Appl. Phys. Lett, 2005, 87 :252115.
    [20] Paillard M, Marie X, Renucci P, et al. Spin relaxation quenching in semiconductor quantum dots. Phys. Rev. Lett, 2001, 86(8) :1634.
    [21] Dareys B, Marie X, Amand T, et al. Spin dynamics of exciton states in GaAS/AlGaAs multiple quantum wells. Superlattices and Microstructures, 1993, 13(3):35
    [22] Dyakonov M. I, Perel V. I. Optical Orientation, edited by F. Meier and B. P. Zakharchenya (Elsevier, Amsterdam, 1984), Chap. 2, pp. 11–71.
    [1 ] W. Yeo, R. Dimitrov, W. J. Schaff, and L. F. Eastman .The effect of As4 pressure on material qualities of AlGaAs?GaAs heterostructures grown on .111.B GaAs substrates, Appl. Phys. Lett. 77 (2000) 17
    [2] E. Kapon, M.C. Tamargo and D.M. Hwang, Appl. Phys. Lett. 50 (1987) 347.
    [3] J.S. Weiner, G. Danan, A. Pinczuk, J. Valladares, L.N. Pfeiffer and K. West, Phys. Rev. Lett. 63 (1989) 1641.
    [4] R. Ntitzel and K. Ploog, J. Vac. Sci. Technol A. 10 (1992) 617.
    [5] D.L. Smith and C. Mailhiot, Rev. Mod. Phys. 62 (1990) 173.
    [6] T. Kayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto and T. Hijikata, Phys. Rev. Lett. 60 (1988) 349.
    [7] Bobel F G,Moiler H J Vac Sci.Teehno1 B.12 (1994) 120
    [8] Albert China) and K. Lee . Appl. Phys. Lett. 68(1996)24.
    [9] Liu Lin.Sheng Hu Su Wang Wen.Xin . Acta Phys.Sin 56 (2007) 3355(in chinese) [刘林生刘肃王文新等2007物理学报56 3355]
    [10]Shang Xunzhong , Wang Wenchong , Wu Shudong, et al. Effects of indium doping on the properties of AlAs/GaAs quantum wells and inverted AlGaAs/GaAs two-dimensional electron gas. Semicond. Sci. Technol, 19(2006) 519-522.
    [11] Leosson K, Jensen J R, Langbein W,et al. Exciton localization and interface roughness in growth-interrupted GaAs/AlAs quantum wells. Phys. Rev. B, 61(2000) 10322-10329.
    [12]K?hrbruck R, Munnix S, Bimberg D, et al. Inequivalence of normal and inverted interfaces of molecular-beam epitaxy grown AlGaAs/GaAs quantum wells. J. Vac. Sci. Technol. B 8(1990) 798-804.
    [1] L Esaki and R. Tsu. Superlattice and negative differential conductivity in semiconductors [J]. IBM J. Res. Dev.1970, 14(1): 61-&
    [2] K. K. Likharev. Single-electron devices and their applications [J]. IEEE. 1999 87(4): 606-632
    [3] N. S. Averkiev and L. E. Golub Giant spin relaxation anisotropy in zinc-blende heterostructures [J]. Phys. Rev. B. 1999, 60(23): 15582-15584
    [4] A. A. Kiselev and K. W. Kim. Suppression of Dyakonov-Perel spin relaxation in 2D channels of finite width [J]. Phys Status Solidi B. 2000, 221(1): 491-494
    [5] G. Dresselhaus. Spin-orbit coupling effects in zinc blende structures [J] Phys. Rev. 1955, 100(1): 580-586
    [6] Y. A. Bychkov and E.I.Rashba. Oscillatory effects and the magnetic-susceptibility of carriers in inversion-layers [J]. J Phys. C. 1984, 17(33): 6039-6045
    [7] Henini M, Karimov O Z, John G H, et al. Gated spin relaxation in (110)-oriented quantum wells [J]. Physica E. 2004, 23(3-4): 309-314
    [8] X. Cartoixà,D Z Y Ting, Y C. Chang Suppression of the D’yakonov-Perel’spin-relaxation mechanism for all spin components in [111] zincblende quantum wells [J]. Phys. Rev. B. 2005, 71(1): 045313(5)
    [9] C. P. Weber, J. Orenstein, B. Andrei Bernevig et al. Nondiffusive Spin Dynamics in a Two-Dimensional Electron Gas [J]. Phys. Rev Lett. 2007, 98(7): 076604(4)
    [10] Albert Chin and K. Lee. High quality Al(Ga)As/GaAs/Al(Ga)As quantum wells grown on (111)A GaAs substrates [J]. Applied Phys. Lett. 1996, 68(24): 3437-3439
    [11] B. Liu, H. Zhao, J. Wang, L. Liu, W. Wang, D. Chen. Electron density dependence of in-plane spin relaxation anisotropy in GaAs/AlGaAs two-dimensional electron gas [J]. Applied Phys. Lett. 2007, 90(11): 112111(3).
    [12] Morkoc H, Drummond T J, Fischer R, et al. Moderate mobility enhancement in single period AlxGa1-xAs/GaAs heterojunctions with GaAs on top [J]. J. Appl. Phys. 1982, 53(4): 3321-3323
    [13] Shang X Z , Wang W C , Wu S D, et al. Effects of indium doping on the properties of AlAs/GaAs quantum wells and inverted AlGaAs/GaAstwo-dimensional electron gas [J]. Semicond. Sci. Technol. 2004, 19(3): 519-522
    [14] Leosson K, Jensen J R, Langbein W,et al. Exciton localization and interface roughness in growth-interrupted GaAs/AlAs quantum wells [J]. Phys. Rev. B. 2000, 61(15): 10322-10329
    [15] Kohrbruck R, Munnix S, Bimberg D, et al. Inequivalence of normaland inverted interfaces of molecular beam epitaxy grown AlGaAs GaAs quantum wells [J]. J. Vac. Sci. Technol. B. 1990, 8(4): 798-804
    [16] Ohno Y, Terauchi R, Adachi T, Matsukura F, Ohno H. Electron spin relaxation beyond D'yakonov-Perel' interaction in GaAs/AlGaAs quantum wells [J]. Physica. E. 2000, 6(1-4): 817-820

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700