用户名: 密码: 验证码:
碳纳米管负载半导体纳米晶的光催化聚合与光电转换器件的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能源短缺以及可持续发展的要求,将太阳能转化为电能即光电转换器件的研究是目前世界关注的热点。对于光电转换器件的普及应用来说,降低成本以及性能提高是人类面临必须解决的两大问题。为了降低成本,目前功能聚合物/半导体复合材料结构的光伏器件逐渐成为发展的重要方向之一。目前这类复合材料的制备方法比较单一,多主要采用功能聚合物与无机半导体纳米粒子的共混体系,一般会造成纳米粒子的团聚;另外在制备过程中,由于纳米半导体与聚合物之间只是物理接触,复合材料的界面性质得不到改善,光生电子和空穴不能有效进行分离,因此这类光伏器件的性能普遍还不高。
     对于光电转换器件来说,提高其性能的根本途径主要有:
     1)增大聚合物/无机半导体的界面接触面积,优化复合物界面性质,使得器件中材料的光生电子和空穴能有效分离,可降低复合的几率;
     2)采用高载流子迁移率的材料来提高器件中电子和空穴的迁移,从而形成稳定的光电流。
     光催化聚合是一种新型的聚合方法,是由半导体纳米粒子在光激发的条件下直接引发合成聚合物,原位合成纳米复合材料。由于纳米粒子直接参与了聚合反应,这样纳米粒子和聚合物之间可能存在较强的相互作用,纳米粒子与聚合物的界面性质得到改善,因此这提供了一种制备纳米复合材料的新方法,具有光明的应用前景。
     在本文的研究工作里,选用高载流子迁移率的纳米ZnO半导体作为电子受体,首先将其负载在碳纳米管(CNT)上,然后进行半导体纳米粒子的光催化聚合,制备了新型的碳纳米管-无机半导体纳米粒子-功能聚合物三元纳米复合光电转换材料。本课题主要研究内容和结果如下:
     1、采用溶胶-凝胶(Sol-Gel)法制备碳纳米管负载的ZnO纳米粒子。XRD结果表明,ZnO粒子为六角晶系纤锌矿晶型。TEM结果表明纳米粒子沿着CNT管壁生长,形成均匀的纳米粒子层,且粒子尺寸均一,实现了碳纳米管上纳米半导体粒子的高负载量。Raman光谱的研究表明ZnO与CNT间有很强的相互作用,引起了拉曼特征峰的蓝移以及峰强度的显著变化。
     2、在紫外辐射条件下,实现了碳纳米管负载的纳米ZnO粒子引发N-乙烯基咔唑单体聚合,首次实现了纳米ZnO-碳纳米管-PVK三元结构纳米复合光电转换材料的制备,未见文献报道。CNT的引入使得复合材料的紫外可见吸收边界发生红移,说明其能够更好地利用太阳能。
     3、通过稳态和瞬态荧光分析,证实ZnO与PVK的界面以及ZnO-CNT的界面处发生了光诱导的电荷转移过程。结合XPS与ESR的结果表明,在复合材料中,PVK的光生电子首先向ZnO转移,致使PVK咔唑环被氧化,ZnO粒子被还原,然后ZnO上的电子又进一步向CNT发生转移,从而实现光生空穴和电子分离效率的提高。
     4、碳纳米管作为良好的电子传输材料可以在复合材料中形成交联网络,使得通过光诱导电荷转移作用转移到CNT上的电子能够高效地进行传导,减少光生电荷的复合,形成稳定的光电流。实验发现:复合物中引入碳纳米管后,光伏器件的光电转换性能获得了大幅度的提高。瞬态光电流最高可提高为原来的7倍,IPCE%(入射单色光子-电子转化效率)高达30%,开路电压(V_(oc))、短路电流(I_(sc))以及填充因子(FF)都有较大的提高。
     5、半导体光催化聚合所制备的ZnO-PVK纳米复合材料的光电转换性能好于简单共混的复合材料。光催化聚合的复合物中ZnO与PVK的界面性质得到改善,可促进光致电荷转移的发生,使材料光电转换性能得以提升。
     6、最后本文提出了光伏器件中电荷转移过程的整个机理与模型,为制备高性能的光电转换器件奠定了理论基础。
Along with the worldwide energy shortage problem and the strong demand of sustainable development, higher attention has been paid to the photovoltaic device which can convert the solar energy into electrical energy. To reduce the cost and achieve the large scale commercial effect, the research on inorganic nano semiconductor - conjugated polymer photovoltaic composite materials is on the forefront of photoelectric materials in the current world. At present, such materials are mainly prepared by simple mixing the semiconductor nanoparticles and the polymer which may cause the aggregation of the nanoparticles and the low energy conversion efficiency. Up to now the photovoltaic device based on semiconductor nanoparticle/conjugated polymer is still in the research process and waits for the new breakthrough of the energy conversion efficiency. The main ways to enhance the efficiency of photovoltaic device are as follows:
     1) to optimize the interface of semiconductor nanoparticle and conjugated polymer and make the high dispersity of the nanocomposites which can enhance the efficiency of the separation of photo-induced charges and reduce the combination possibilities of the charges;
     2) to use the material which has high carrier mobility which could help better transportation of carriers and lead to the higher photo current.
     The photo-polymerization induced by nanosemiconductor is a new method to prepare inorganic-polymer nanocomposites. The nanoparticles take the role of initiators, the nature of interface is optimized, which enhances the photovoltaic property of the nanocomposites.
     In this study, a novel photovoltaic inorganic-polymer nanocomposite was prepared via the photo-polymerization induced by semiconductor nanoparticles. Firstly the carbon nanotubes were loaded with a layer of ZnO nanoparticles. Then the hybrid was used as initiators to induce the polymerization of N-vinyl carbazole under the UV light and the CNT-ZnO-PVK ternary assemblies were prepared as one novel photovoltaic nanocomposites. The main research contents and the results are as follows:
     1. ZnO nanoparticles with a homogeneous size loaded on carbon nanotubes was prepared through sol-gel method. The XRD results indicated that the ZnO nanoparticles were the hexagonal wurtzite crystallites. TEM results showed that the nanoparticles were grown along the CNT. The strong interaction was improved by the Raman spectra change of frequency and peak relative height.
     2. It's the first time to photopolymerize the N-vinyl carbazole initiated by the ZnO nanoparticles loaded on carbon nanotubes, and also the first time to prepare the CNT-ZnO-PVK photovoltaic nanocomposites. UV-vis results showed that the nanocomposites' absorbance of solar light was broadened with the introduction of CNT.
     3. Through the steady-state and transient fluorescence analysis, a charge transfer process at the interface between ZnO and PVK and also between ZnO and CNT was found. Combined with the results of XPS and ESR, the charge transfer mechanism was indicated as follows: the photo-generated electron was firstly transferred to ZnO nanoparticles from the polymer and then it was further transported to the CNT. The process could enhance the separation efficiency of photo-generated electron and hole.
     4. The photovoltaic property of the device was largely enhanced with the introduction of CNT which could form a network in the nanocomposites and help the transportation of electron. The transient photo-current was 7 times as the one which had no CNT. The IPCE% efficiency was improved to 30% and the V_(oc)、I_(sc)、and FF values were largely increased.
     5. The nanocomposites prepared through photopolymerization presented the better photovoltaic property, compared with the composites obtained from general radical polymerization. This is because the interface between ZnO and PVK is optimized, which promotes the charge transfer and improves the separation efficiency of the hole- electronic pair.
     6. The model was proposed to illustrate the charge transfer mechanism of the photovoltaic device, which provided the theory basis for the enhancement of the photovoltaic property.
引文
[1]梁宗存,沈辉,李缙洪.太阳能电池及材料研究[J].材料导报,2000,8(14):36-40.
    [2]袁茵.太阳能电池阳光普照[J].电子技术,2006,03:26-28.
    [3]Hoppe H,Sariciflci N S.Organic solar cells:An overview[J].J Mater Res,2004,19:1924-1945.
    [4]Spanggaard H,Krebs F C.Production of large-area polymer solar cells by industrial silk screen printing,lifetime considerations and lamination with polyethyleneterephthalate[J].Sol Energy Mater Sol Cells,2004,83:293-300.
    [5]Coakley K M,McGehee M D.Conjugated polymer photovoltaic cells[J].Chem Mater,2004,16:4533-4542.
    [6]Sariciftci N S,Smilowitz L,Heeger A Jet al.Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene[J].Science,1992,258:1474-1476.
    [7]Yu G,Gao J,Hummelen J C,et al.Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J].Science,1995,270:1789-1791.
    [8]Dennler G,Sariciftci N S.Flexible conjugated polymer-based plastic solar cells:From basics to applications[J].Proceedings of the IEEE,2005,93:1429-1431.
    [9]Gregg B A.Comment on "Diffusion impedance and space charge capacitance in the nanoporous dye-sensitized electrochemical solar cell" and "Electronic transport in dye-sensitized nanoporous TiO_2 solar cells-comparison of electrolyte and solid-state devices"[J].Phys.Chem.B,2003,107:4688-4698.
    [10]Haugeneder A,Neges M,Kallinger C,et al.Exciton diffusion and dissociation in conjugated polymer fullerene blends and heterostructures[J].Phys.Rev.B,1999,59:15346-15351.
    [11]Sariciftci N S,Heeger A J,Wudl F,et al.Photoinduced electrontransfer from a conducting polymer to buckminsterfullerene[J].Science,1992,258:1474-1476..
    [12]Smilowitz L,Sariciftci N S,Wudl F,et al.Photoexcitation spectroscopy of conducting-polymer-C(60) composites-photoinduced electrontransfer[J].Phys Rev B,1993,47:13835-13842.
    [13]Wei X,Sariciftci N S,Heeger A J,et al.Absorption-detected magnetic-resonance studies of photoexcitations in conjugatedpolymer/C-60 composites[J].Phys Rev B,1996,53:2187-2190.
    [14]李凤英,徐菊华.C_(60)衍生物的光电导性能研究[J].科学通报,1998,43(17):1817-1820.
    [15]Ghosh A K,Morel D L,Feng T,et al.Photovoltaic and rectification properties of Al-Mg phthalocyanine-Ag Schottky-barrier cells[J].J.Appl.Phys.,1974,45:230-236.
    [16]Tang C W.2-Layer organic photovoltaic cell[J].Appl.Phys.Lett.,1986,48:183-185.
    [17]Morita S,Zakhidov A A,Yoshina K.Wavelength dependence of junction characteristics of poly(3-alkylthiophene)/C_(60) fullerene layer[J].Jpn.J.Appl.Phys.,1993,32:L873-L878.
    [18]Shaheen SE,Brabec CJ,Sariciftci NS,et al.2.5%efficient organic plastic solar cells[J].Appl.Phys.Lett.,2001,78:841-843.
    [19]Pading F,Roman S,Sariciftci N S,et al.Effects of Postproduction Treatment on Plastic Solar Cells[J].Adv.Funct.Mater.,2003,13:85-88.
    [20]Li G,Shrotriya V,Huang J S,et al.High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J].Nat.Mater.,2005,4:864-868.
    [21]张立德(Zhang L D),牟季美(Mou J M).纳米材料和纳米结构(Nano Materials and Structure)[M].北京:科学出版社(Beijing:Scientific Press),2001,59.
    [22]Han L L,Qin D H,Jiang X,et al.Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells[J].Nanotechnology,2006,17:4736-4742.
    [23]Milliron D J,Gur I,Alivisatos A P,et al.Hybrid organic-Nanocrystal solar cells [J].MRS.Bull.,2005,30:41-44.
    [24]Kim JY,Chung I J,Kim YC,et al.Nanocrystal-conjugated polymer photovoltaic devices[J].J.Korean Phys.Soc.,2004,45:231-234.
    [25]Kumar S,Nann T.First solar cells based on CdTe nanoparticle/MEH-PPV composites[J].J.Mater.Res.,2004,19:1990-1994.
    [26]Arango A C,Carter S A,Brock P J,et al.Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO_2 nanoparticles [J].Appl.Phys.Lett.,1999,74:1698-1700.
    [27]Waldo J E B,Martijin M W,Rene A J J,et al.Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer[J].Adv.Mater.,2004,16: 1009-1013.
    
    [28] McDonald S A, Konstantatos G, Sargent E H, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J]. Nat. Mater., 2005, 4:138-142.
    
    [29] Watt A A R, Meredith P, Rubinsztein D H, et al. Organic light emitting diodes with nanostructured ultrathin layers at the interface between electron- and hole-transport layers [J]. Curr. Appl. Phys., 2005, 4: 321-326.
    
    [30] Greenham N C, Peng X G, Alivisatos A P, et al. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Phys. Rev. B, 1996, 54:17628-17637.
    
    [31] Huynh WU , Dittmer J J , Alivisatos A P. Hybrid nanorod-polymer solar cells [J].Science, 2002, 295: 2425-2427.
    
    [32] O'regan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO_2 films [J]. Nature, 1991, 353: 737-740.
    
    [33] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photo-to-electron conversion effiencies [J]. Nature, 1998, 395:583-585.
    
    [34] Hagfelt A, Gratzel M. Molecular photovoltaics [J]. Acc. Chem. Res., 2000, 33:269-277.
    
    [35] Jde G, Sanchez C. Synthesis and Characterization of Mesostructured Titania-Based Materials through Evaporation-Induced Self-Assembly [J]. Chem.Mater., 2002, 14: 750-759.
    
    [36] Ravirajan P, Bradley D D C, Kroon M, et al. Efficient charge collection in hybrid polymer/TiO_2 solar cells using poly(ethylenedioxythiophene) polystyrene sulphonate as hole collector [J]. Appl. Phys. Lett., 2005, 86: 143101-143104.
    
    [37] Kawata K, Buriakov V M, Samuel I D W, et al. Description of exciton transport in a TiO_2/MEH-PPV heterojunction photovoltaic material[J]. Solar Energy Materials and Solar Cells, 2005, 87: 715-724.
    
    [38] Petrella A, Tamborra M, Agostiano A, et al. Colloidal TiO_2 nanocrystals/MEH-PPV nanocomposites: Photo(electro)chemical study [J]. J. Phys.Chem. B, 2005, 109: 1554-1562.
    
    [39] Ravirajan P, Haque S A, Nelson J, et al. The effect of polymer optoelectronic properties on the performance of multilayer hybrid polymer/TiO_2 solar cells [J]. Adv. Funct. Mater., 2005, 15: 609-618.
    
    [40] Pearton S J, Norton D P, Steiner T, et al. Recent progress in processing and properties of ZnO[J]. Progress Mater. Sci., 2005, 50: 293-340.
    
    [41] Huang M H, Mao S, Yang P, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science, 2001, 292: 1897-1899.
    
    [42] Wang Z S, Huang C H, Cheng H M, et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO_2 nanoporous electrode [J]. Chem. Mater., 2001, 13:678-682.
    
    [43] Yoshihara T, Katoh R, Tachiya M. Quantitative estimation of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film [J]. J.Phys. Chem. B, 2004, 108: 2643-2647.
    
    [44] Petrella A, Tamborra M, Agostiano A, et al. TiO_2 nanocrystals-MEH-PPV composite thin films as photoactive material[J]. Thin Solid Films, 2004, 451: 64 -68.
    
    [45] Kwong C Y, Djurisic A B, Chui P C, et al. Influence of solvent on film morphology and device performance of poly(3-hexylthiophene): TiO_2 nanocomposite solar cells [J]. Chem. Phys. Lett., 2004, 384: 372-375.
    
    [46] Yang X N, van Duren J K J, Loos J, et al. Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules, 2004, 37): 2151-2158.
    
    [47] Yang X N, van Duren J K J, Loos J, et al. Crystalline organization of a methanofullerene as used for plastic solar-cell applications.[J] Adv Mater, 2004, 16:802-806.
    
    [48] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells [J].Science, 2002, 295(5564): 2425-2427.
    
    [49] Huynh W U, Dittmer J J, Alivisatos A P, et al. Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv Funct Mater, 2003, 13(1): 73-79.
    
    [50] Drolet N, Morin J F, Leclerc M, et al. 2,7-carbazolenevinylenebased oligomer thin-film transistors: High mobility through structural ordering [J]. Adv Mater, 2005,15: 1671-1682.
    
    [51] Kim K, Carroll D L. Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene) C60 bulk heterojunction photovoltaic devices [J]. Appl Phys Lett, 2005, 87:203113.
    
    [52] Yang C H, Qiao J, Li Y F, et al. Improvement of the performance of polymer C-60 photovoltaic cells by small-molecule doping[J]. Synth Met, 2003, 137: 1521-1522.
    
    [53] Shin, YJ; Lee, JH; Park, JH, et al. Enhanced photovoltaic properties of SiO2-treated ZnO nanocrystalline electrode for dye-sensitized solar cell [J].Chemistry Letters 2007, 36: 1506-1507.
    
    [54] Jiang, CY; Sun, XW; Tan, KW, et al. High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode[J]. Applied Physics Letters, 2008, 92:143101.
    
    [55] Kyaw, AKK; Sun, XW; Jiang, CY, et al. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer.[J] Applied Physics Letters 2008, 93: 221107.
    
    [56] Iijima, S. Helical Microrubules of Graphitic Carbon[J]. Nature. 1991, 354(6348):56-58.
    
    [57] Ajayan, P. M. Nanotubes from carbon[J]. Chemical Reviews. 1999, 99(7):1787-1799.
    
    [58] Falvo, MR; Clary, GJ; Taylor, RM, et al. Bending and buckling of carbon nanotubes under large strain[J]. NATURE 1997, 389: 582-584.
    
    [59] Salvetat, JP; Bonard, JM; Thomson, NH, et al. Mechanical properties of carbon nanotubes[J]. Applied Physics A-materials Science& Processing, 1999, 69: 255-260.
    
    [60] Ebbesen T W, Lezec HJ , Hiura H , Bennett J W, Ghaemi H F , Thio T1 Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382: 54-56.
    
    [61] Satio R , Fujita M, Dresselhaus G, Dresselhaus M S1 Electrical structure and growth mechanismof carbon tubules[J]. Materials Science and Engieering, 1993, B19:185-191.
    
    [62] Dai H, Wong E W, Lieber C Ml Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes [ J]. Science, 1996, 4: 523-526.
    
    [63] De Heer W A , Bacsa W S , Ugarte D , Gerfin T , Humphreybaker R, Forro L,Ugartel Aligned carbon nanotubes films: production and electrical properities[J].Science, 1995, 268: 845-847.
    
    [64] Huang Y H , Okada M, Tanaka K, Yamabe Tl Estimation of superconducting transition temperature in metallic carbon nanotubes[J]. Phys. Rev. B, 1996, 53:5129-5132.
    
    [65] Murakami Y, shibata T , Okuyama K, et al. Structural, magaetic and superconducting properities of graphite nanotubes and their encapsulation compounds[J]. J. Phys. Chem1 Solids, 1993, 54: 1861-1870.
    [66] Yi W, Lu L , Zhang D L , Pan ZW, Xie S S1 Linear specific heat of carbon nanotubes[J]. Phys. Rev. B., 1999, 59: R9015-R9018.
    
    [67] KAILI JIANG, Spinning continuous carbon nanotube yarns[J]. Nature, 2002, 419:801-801.
    
    [68] Sandier, J.; Shaffer, M. S. P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A. H.Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer, 1999, 40: 5967-5971.
    
    [69] Shaffer, M. S. P.; Windle, A. H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites[J]. Advanced Materials, 1999,11: 937-+.
    
    [70] Salvetat, J. P.; Briggs, G. A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stockli,T.; Burnham, N. A.; Forro, L. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Physical Review Letters, 1999, 82: 944-947.
    
    [71] Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393: 49-52.
    
    [72] Henk W Ch Postma , Teepen T , Yao Z , et al. Carbon nanotube single-electron transistors at room temperature[J].Science, 2001, 293: 76-79.
    
    [73] Collins P C, Arnold M S, Avouris P. Engineering carbon nanotubes and nanotube circuit s using elect rical breakdown[J]. Science, 2001, 292: 706-709.
    
    [74] Bachtold A, Hadley P , Nakanishi T , et al. Logic circuits with carbon nanotube transistors[J]. Science, 2001, 294: 1317-1320.
    
    [75] Lim S H, Wei J, Lin J, et al. A glucose biosensor based on electrode position of palladium nanoparticles and glucose oxidase onto nafion solubilized carbon nanotube elect rode [J]. Biosens. Bioelectron., 2005, 20: 2341.
    
    [76] B.J. Landi, S.L. Castro, H.J. Ruf, C.M. Evans. CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells[J]. Solar Energy Materials & Solar Cells, 2005, 85: 733-746.
    
    [77] Anusorn Kongkanand, Rebeca Martinez Dominguez, and Prashant V. Kamat Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells.Capture and Transport of Photogenerated Electrons[J]. Nano Lett., 2007, 7: 676-680.
    
    [78] Brian J. Landi, Ryne P. Raffaellel, Stephanie L. Castro and Sheila G. Bailey[J].Prog. Photovolt: Res. Appl., 2005, 13:165-172.
    
    [79] E. Kymakis , E. Stratakis, E. Koudoumas. Integration of carbon nanotubes as hole transport electrode in polymer/fullerene bulk heterojunction solar cells[J]. Thin Solid Films, 2007, 515: 8598-8600.
    [80]E.Kymakis,G.A.J.Amaratunga.Single-wall carbon nanotube/conjugated polymer photovoltaic devices[J].Appl.Phys.Lett.,2002,80:112-114.
    [81]E.Kymakis,I.Alexandrou,G.A.J.Amaratunga.High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites[J].J.Appl.Phys.,2003,93:1764-1768.
    [82]E.Kymakis,E.Koudoumas,I.Franghiadakis,G.A.J.Amaratunga.Post-fabrication annealing effects in polymer-nanotube photovoltaic cells[J].J.Phys.D:Appl.Phys.2006,39:1058-1062.
    [83]Wei G,WangL H,L in Y J,et al.Novel ruthenium catalyst(K-Ru/C-60/70)for ammonia synthesis[J].Chi.Chem.Lett.,1999,10:433.
    [84]Cai Y,lin J D,Chen H B,et al.Novel Ru-K/carbon nanotubes catalyst for ammonia synthesis[J].Chi.Chem.Lett.,2000,11:373.
    [85]Qin,S.H.;Oin,D.Q.;Ford,W.T.;Resasco,D.E.;Herrera,J.E.Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate[J].Journal of the American Chemical Society,2004,126:170-176.
    [86]Qin,S.H.;Qin,D.Q.;Ford,W.T.;Resasco,D.E.;Herrera,J.E.Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods[J].Macromolecules,2004,37:752-757.
    [87]Yao,Z.L.;Braidy,N.;Botton,G.A.;Adronov,A.Polymerization from the surface of single-walled carbon nanotubes-Preparation and characterization of nanocomposites[J].Journal of the American Chemical Society,2003,125:16015-16024.
    [88]Liu,Y.Q.;Adronov,A.Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization[J].Macromolecules,2004,37:4755-4760.
    [89]Islam,M.F.;Rojas,E.;Bergey,D.M.;Johnson,A.T.;Yodh,A.G High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J].Nano Letters,2003,3:269-273.
    [90]O'Connell,M.J.;Boul,P.;Ericson,L.M.;Huffman,C.;Wang,Y.H.;Haroz,E.;Kuper,C.;Tour,J.;Ausman,K.D.;Smalley,R.E.Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping[J].Chemical Physics Letters,2001,342:265-271.
    [91]Gomez,F.J.;Chen,R.J.;Wang,D.W.;Waymouth,R.M.;Dai,H.J.Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes[J]. Chemical Communications, 2003, 2: 190-191.
    
    [92] Rajeshwar, K.; Chenthamarakshan, C. R. Semiconductor-based composite materials: Preparation, properties, and performance[J]. Chem. Mater., 2001, 13:2765-2782.
    
    [93] Hagfeldt, A.; Gratzel, M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev., 1995, 95: 49-68.
    
    [94] Kuriacose, J. C.; Markham, M. C. Mechanism of photo-initiated polymerization of methyl methacrylate at zinc oxide surfaces [J]. J. Phys. Chem., 1961, 65:2232-2236.
    
    [95] Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95: 69-96.
    
    [96] Hoffman, A. J.; Yee, H.; Mills, G.; Hoffmann, M. R. Photoinitiated polymerization of methyl methacrylate using Q-sized ZnO colloids [J]. J. Phys.Chem., 1992, 96: 5540-5546.
    
    [97] Hoffman, A. J.; Mills, G.; Yee, H.; Hoffmann, M. R. Q-sized CDs - synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers [J]. J. Phys. Chem., 1992, 96: 5546-5552.
    
    [98] Popovic, I. G.; Katslkas, L.; Muller, U.; Velickovic, J. S.; Weller, H. The homogeneous photopolymerization of methyl methacrylate by colloidal cadmium sulfide[J]. Macromol. Chem. Phys., 1994, 195: 889-904.
    
    [99] Huang, Z. Y., Barber, T., Mills, G., Morris, M.-B.Heterogeneous photo-polymerization of methyl methacrylate initiated by small ZnO particles[J]. J.Phys. Chem., 1994, 98:12746-12752.
    
    [100] Stroyuk A L, Granchak V M, Korzhak A V. Photoinitiation of buthylmethacrylate polymerization by colloidal semiconductor nanoparticles[J]. J.Photochem. Photobiol. A: Chem., 2004,162: 339-351.
    
    [101] Xiuyuan N., Jin Y., Ceng D.. Kinetics studies of methyl methacrylate photopolymerization initiated by titanium dioxide semiconductor nanoparticles[J]. J.Photochem. Photobiol. A: Chem., 2006, 181:19-27.
    [102] Dan Y., Xiuyuan N., Zhen W.. The observation of photo-Kolbe reaction as a novel pathway to initiate photocatalytic polymerization over oxide semiconductor nanoparticles[J]. J. Photochem. Photobiol. A: Chem., 2008, 195:323-329.
    
    [103] Weng, Z., Xiuyuan N., Oxidative polymerization of pyrrole photocatalyzed by TiO_2 nanoparticles and interactions in the composites[J]. Journal of Applied Polymer Science., 110, 1: 109-116.
    
    [104] Dong, C.; Ni, X. Y., The photopolymerization and characterization of methyl methacrylate initiated by nanosized titanium dioxide[J]. Journal of Macromolecular Science-Pure and Applied Chemistry, 2004, A41: 547-563.
    
    [105] Ni, X. Y.; Ye, J.; Dong, C., Kinetics studies of methyl methacrylate photopolymerization initiated by titanium dioxide semiconductor nanoparticles[J].Journal of Photochemistry and Photobiology a-Chemistry 2006, 181:19-27.
    
    [106] Yang, D.; Ni, X. Y.; Chen, W. K.; Weng, Z., The observation of photo-Kolbe reaction as a novel pathway to initiate photocatalytic polymerization over oxide semiconductor nanoparticles[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2008, 195: 323-329.
    
    [107] Wang, J.; Ni, X. Y., Photoresponsive polypyrrole-TiO_2 nanoparticles film fabricated by a novel surface initiated polymerization[J]. Solid State Communications,2008, 146: 239-244.
    
    [108] Guowei L., Xiuyuan N.. A novel photoconductive ZnO/PVK nanocomposite prepared through photopolymerization induced by semiconductor nanoparticles[J].Materials Letters, 2008, 62: 3066-3069.
    
    [109] Xufeng L., Xiuyuan N., etc. A novel route to photoluminescent, water-soluble Mn-doped ZnS quantum dots via photopolymerization initiated by the quantum dots[J]. Nanotechnology, 2008, 19: 485602.
    [1] Ceng Dong, Xiuyuan Ni. The Photopolymerization and Characterization of Methyl Methacrylate Initiated by Nanosized Titanium Dioxide[J]. J. Macromol. Sci.Part A-Pure Appl. Chem., 2004, A41:547-63.
    
    [2] Xiuyuan Ni, Jin Ye, Ceng Dong. Kinetics studies of methyl methacrylate photopolymerization initiated by titanium dioxide semiconductor nanoparticles[J]. J. Photochem. Photobiol. A: Chem., 2006, 181:19-27.
    
    [3] Dan Yang, Xiuyuan Ni, Weikang Chen, Zhen Weng. The observation of photo-Kolbe reaction as a novel pathway to initiate photocatalytic polymerization over oxide semiconductor nanoparticles[J]. J. Photochem. Photobiol. A: Chem., 2008,195:323-329.
    
    [4] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan,V. Avrutin,S. J. Cho, H. Morkoc. A comprehensive review of ZnO materials and devices[J]. J.Appl. Phys., 2005, 98: 041301-04130103.
    
    [5] Aleksandra B. Djurisic, Yu Hang Leung. Optical Properties of ZnO Nanostructures[J]. Small, 2006, 2:944-961.
    
    [6] Yuanhui Zheng, Chongqi Chen, Yingying Zhan, Xingyi Lin, Qi Zheng, Kemei Wei,Jiefang Zhu, Yingjie Zhu. Luminescence and Photocatalytic Activity of ZnO Nanocrystals: Correlation between Structure and Property[J]. Inorg. Chem., 2007, 46:6675-6682.
    
    [7] Shen, WZ, Li, ZJ, Wang, H,. Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol-gel methods[J]. J. Hazard. Mater., 2008,152: 172-175.
    
    [8] Wang L., Chang L.X., Zhao B. Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids[J]. Inorg. Chem., 2008, 47: 1443-1452.
    
    [9] A. J. Hoffman, H. Yee, G Mills, and M. R. Hoffmann. Photoinitiated Polymerization of Methyl Methacrylate Using Q-Sized ZnO Colloids[J]. J. Phys.Chem., 1992, 96: 5540-5546.
    [10] Z.Y. Huang, T. Barber, G Mills, and M. B. Morris. Heterogeneous Photopolymerization of Methyl Methacrylate Initiated by Small ZnO Particles[J]. J.Phys. Chem., 1994, 98: 12746-12752.
    
    [11] Kock-Yee Law. Organic Photoconductive Materials: Recent Trends and developments[J]. Chem. Rev., 1993, 93: 449-488.
    
    [12] Wei Wu, Shuang Zhang, Yong Li, Junxin Li, Luqi Liu, Yujun Qin, Zhi-Xin Guo,Liming Dai, Cheng Ye, and Daoben Zhu. PVK-Modifled Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer[J]. Macromolecules, 2003,36: 6286-6288.
    
    [13] Ceng Dong, Xiuyuan Ni. The Photopolymerization and Characterization of Methyl Methacrylate Initiated by Nanosized Titanium Dioxide[J]. J. Macromol. Sci.Part A-Pure Appl. Chem., 2004, A4: 547-563.
    
    [14] Lin Y. H., Wang D. J., Zhao Q. D., Yang M., Zhang Q. L.. A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy[J]. J. Phys. Chem. B, 2004, 108: 3202-3206.
    
    [15] Fantini, C; Usrey, ML; Strano, MS. Investigation of Electronic and Vibrational Properties of Single-Walled Carbon Nanotubes Functionalized with Diazonium Salts[J]. J. Phys. Chem. C, 2007, 111: 17941-17946.
    
    [16] Strano, MS; Huffman, CB; Moore, VC, et al. Reversible, Band-Gap-Selective Protonation of Single-Walled Carbon Nanotubes in Solution[J]. J. Phys. Chem. B,2003, 107: 6979-6985.
    
    [17] Kavan, L; Rapta, P; Dunsch, L, et al. Electrochemical Tuning of Electronic Structure of Single-Walled Carbon Nanotubes: In-situ Raman and Vis-NIR Study[J]. J.Phys. Chem. B, 2001, 105: 10764-10771.
    
    [18] Landi, BJ; Evans, CM; Worman, JJ, et al. Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes[J]. Materials Letters, 2006, 60:3502-3506.
    
    [19] Ceng Dong, Xiuyuan Ni. The Photopolymerization and Characterization of Methyl Methacrylate Initiated by Nanosized Titanium Dioxide[J]. J. Macromol. Sci.Part A-Pure Appl. Chem., 2004, A41:547-563.
    [20]Aglaia Karali,George E.Froudakis,Photis Dais.Complete Assignment of ~1H and ~(13)C NMR Spectra of Poly(N-vinylcarbazole)[J].Macromolecules,2000,33:3180-3183.
    [21]Itaru Natori.Anionic Polymerization of N-Vinylcarbazole with Alkyllithium as an Initiator[J].Macromolecules,2006,39:6017-6024.
    [22]Zhang,DS;Shi,LY;Fang,JH,et al.Preparation and modification of carbon nanotubes[J].Materials Letters,2005,59:4044-4047.
    [1]C.R.Kagan.Organic-Inorganic Hybrid Materials as Transistors Semiconducting Channels in Thin-Film Field-Effect[J].Science,1999,286:945-947.
    [2]Edson R.Leite,Flavio L.Souza.Hybrid Organic-Inorganic Polymer:A New Approach for the Development of Decoupled Polymer Electrolytes[J].Chem.Mater.,2005,17(18):4561-4563.
    [3]Gustavo L.,Raffet Velarde-Ortiz.A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol-Gel Chemistry and Electrically Forced Liquid Jets[J].J.Am.Chem.Soc.,2003,125:1154-1155.
    [4]Xuping Sun,Shaojun Dong,Erkang Wang.Coordination-Induced Formation of Submicrometer-Scale,Monodisperse,Spherical Colloids of Organic-Inorganic Hybrid Materials at Room Temperature[J].J.Am.Chem.Soc.,2005,127:13102-13103.
    [5]C.V.Krishnamohan Sharma,Abraham Clearfield.Deprotonation of Phosphonic Acids with M~(2+) Cations for the Design of Neutral Isostructural Organic-Inorganic Hybrids[J].J.Am.Chem.Soc.,2001,123:2885-2886.
    [6]Nazeeruddin,M.K.;Kay,A.;Rodicio,I.;Humphrybaker,R.;Muller,E.;Liska,P.;Vlachopoulos,N.;Gratzel,M.Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate) Ruthenium(Ii) Charge-Transfer Sensitizers(X=CI-,Br-,I-,Cn-,and Scn-) on Nanocrystalline TiO_2 Electrodes[J].Journal of the American Chemical Society,1993,115:6382-6390.
    [7]I.Robel,V.Subramanian,M.Kuno,P.V.Kamat.Quantum Dot Solar Cells.Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO_2 Films[J].J.Am.Chem.Soc,2006,128(7):2385-2393.
    [8]X.Qian,D.Qin,Y.Bai,T.Li,X.Tang,E.Wang,S.Dong.Photosensitization of TiO_2 nanoparticulate thin film electrodes by CdS nanoparticles[J].J.Solid State Electrochern,2001,5(7-8):562-567.
    [9]A.Hagfeldt,H.Lindstrom,S.Sodergren,S.E.Lindquist.Photoelectrochemieal Studies Of Colloidal TIO_2 Films-The Effect Of Oxygen Studies By Photocurrent Transients[J]. J. Electroanal. Chem, 1995, 381(1-2): 39-46.
    
    [10] Brabec C J, Cravino A, Fromherz T, et al. Origin of the open circuit voltage of plastic solar cells[J]. Adv. Funct. Mater., 2001, 11(5): 374-380.
    
    [11] Brabec C J, Cravino A, Fromherz T, et al. The influence of materials work function on the open circuit voltage of plastic solar cells[J]. Thin Solid Films, 2002,403-404: 368-372.
    [1]Kock-Yee Law.Organic Photoconductive Materials:Recent Trends and developments[J].Chem.Rev.,1993,93:449-488.
    [2]Ceng Dong,Xiuyuan Ni.The Photopolymerization and Characterization of Methyl Methacrylate Initiated by Nanosized Titanium Dioxide[J].J.Macromol.Sci.Part A-Pure Appl.Chem.,2004,A41:547-63.
    [3]Elizabeth C.Carroll,Owen C.Compton,Dorte Madsen,Frank E.Osterloh,Delmar S.Larsen.Ultrafast Carrier Dynamics in Exfoliated and Functionalized Calcium Niobate Nanosheets in Water and Methanol[J].J.Phys.Chem.C,2008,112:2394-2403.
    [4]Frank I.M.,Vavilov S.I..Fluorenscene quenching in different media[J].Z.Phys Chem(Munich),1931,69:100.
    [5]Felix Vietmeyer,Brian Seger,Prashant V.Kamat.Anchoring ZnO Particles on Functionalized Single Wall Carbon Nanotubes.Excited State Interactions and Charge Collection[J].Adv.Mater.,2007,19:2935-2940.
    [6]Xiong,G;Pal,U;Serrano,JG.Correlations among size,defects,and photoluminescence in ZnO nanoparticles[J].Journal of Applied Physics,2007,101:024317
    [7]Robel,I;Bunker,BA;Kamat,PV.Single-Walled Carbon Nanotube-CdS Nanocomposites as Light-Harvesting Assemblies:Photoinduced Charge-Transfer Interaction[J].Adv.Mater.,2005,17:2458-2463.
    [8]Felix Vietmeyer,Brian Seger,Prashant V.Kamat.Anchoring ZnO Particles on Functionalized Single Wall Carbon Nanotubes.Excited State Interactions and Charge Collection[J].Adv.Mater.,2007,19:2935-2940.
    [9]Pradhan,T;Ghoshal,P;Biswas,R.Excited state intramolecular charge transfer reaction in binary mixtures of water and tertiary butanol(TBA):Alcohol mole fraction dependence[J].Journal of Physical Chemistry A,2008,112:915-924.
    [10]李国巍,半导体光催化聚合制备新型无机有机纳米复合光电导材料,复旦大学硕士学位论文,2008,54-57.
    [11] A. Sezai Sarac, Marina Serantoni, Syed A.M. Tofail, John Henry, Vincent Cunnane, James B. McMonagle. Characterisation of nanosize thin films of electrografted N-vinylcarbazole copolymers (P[NVCz-co-VBSA] and P[NVCz-co-3-MeTh]) onto carbon fibre AFM, XPS, and Raman spectroscopy[J].Appl. Surf. Sci., 2005, 243:183-198.
    
    [12] R. Wilken, A. Hollalnder, J. Behnisch. Nitric Oxide Radical Trapping Analysis on Vacuum-Ultraviolet Treated Polymers[J]. Macromolecules, 1998, 31: 7613-7617.
    
    [13] Manish Dubey, Steven L. Bernasek, and Jeffrey Schwartz. Highly Sensitive Nitric Oxide Detection Using X-ray Photoelectron Spectroscopy[J]. J. Am. Chem.Soc., 2007, 129:6980-6981.
    
    [14] William K. Liu, Kelly M. Whitaker, Kevin R. Kittilstved, Daniel R. Gamelin.Stable Photogenerated Carriers in Magnetic Semiconductor Nanocrystals[J]. J. Am.Chem. Soc, 2006,128:3910-3911.
    
    [15] Serguei B. Orlinskii, Jan Schmidt. Probing the Wave Function of Shallow Li and Na Donors in ZnO Nanoparticles[J]. Phys. Rev. Lett., 2004, 92:047603-047606.
    
    [16] William K. Liu, Kelly M. Whitaker, Alyssa L. Smith, Kevin R. Kittilstved, Bruce H. Robinson, Daniel R. Gamelin. Room-Temperature Electron Spin Dynamics in Free-Standing ZnO Quantum Dots[J]. Phys. Rev. Lett., 2007, 98: 186804-186807.
    
    [17] D. J. Williams, M. Abkowitz, G Pfister. Photoinduced Electron Spin Resonance Signals in Acid-Doped Poly (N-vinylcarbazole)-Nitroaromatic Charge Transfer Complexes[J]. J. Am. Chem. Soc, 1972, 94: 7970-7975.
    
    [18] G Safoula, S. Touihrib, J.C. Bern&de, M. Jamali, C. Rabiller, P. Molinied, K. Napo. Properties of the complex salt obtained by doping the poly(N-vinylcarbazole) with bromine[J]. Polymer, 1999, 40:531-539.
    
    [19] Wei Wu, Shuang Zhang, Yong Li, Junxin Li, Luqi Liu, Yujun Qin, Zhi-Xin Guo,Liming Dai, Cheng Ye, Daoben Zhu. PVK-Modified Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer[J]. Macromolecules, 2003,36: 6286-6288.
    
    [20] Konenkamp. R, Word. RC, Godinez. M. Ultraviolet Electroluminescence from ZnO/Polymer Heterojunction Light-Emitting Diodes[J]. Nano Lett., 2005, 5(10): 2005-2008.
    [21]Wang.SH,Yang.SH,Yang.CL,et al.Poly(N-vinylcarbazole)(PVK)Photoconductivity Enhancement Induced by Doping with CdS Nanocrystals through Chemical Hybridization[J].J.Phys.Chem.B,2000,104:11853-11858.
    [22]Landi.BJ,Castro.SL,Ruf.HJ,et al.CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells[J].Solar Energy Materials & Solar Cells,2005,87:733-746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700