用户名: 密码: 验证码:
电站设备参数异动搜索分析与故障预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统在线监控系统的报警模式大多采用设定阂值,通过监测参数实测值与设定阈值的比较实现报警功能。由于这种单一报警机制在系统状态监测过程中难以及时发现故障早期的征兆,并对其发展趋势进行跟踪而往往导致被迫停机,造成惨重的损失。因此针对这种故障后处理的阈值报警在复杂系统状态监测方面的不完善,本文提出了一套以主动预防故障为特色的系统在线状态监测与故障早期预警体系,充分利用现场实时/历史数据库,在线地展示系统参数的动态变化过程,反映出系统运行的健康状态。
     本文提出了一种参数异动搜索算法,基于重要点划分时间子序列为各个子模式,根据参数的监测信号类型分别提取各个子模式的模式特征值,并将其映射到高维空间,从模式的角度搜索出明显不满足一般数据模式的异常参数序列及其异常持续时间和基本趋势:融合灰色等维加权预测模型与时序预测模型各自的优势,提出了一种灰色—时序组合动态预测方法,应用灰色模型预测序列的趋势项,应用时序模型预测序列的残差项,对系统监测参数的异常发展趋势进行预测,提高了预测的精度并为系统异常状态分析奠定了基础。
     本文对复杂系统进行了合理且有效的层次结构划分;挖掘出参数对预测故障模式发生的重要程度及参数与参数之间的相关关系,为系统的异常状态分析提供了知识化信息;建立了基于系统异常监测参数预警潜在故障发生的计算模型,架起了参数异常与系统状态异常分析的桥梁。
     本文阐明了汽轮发电机组状态监测参数异动搜索分析及故障预警的应用,结果表明该方法体系能够从海量的监测参数数据中挖掘出机组出现劣化的证据,根据系统异常状态分析对潜在故障做出正确的预警,及时采取有效措施将故障消灭在萌芽状态从而避免可能发生的强迫停机或者将故障损失程度降到最低,具有有效性和优越性。
     总之,本文提出的预警体系为系统的安全长周期运行提供了坚实的保障,为维修的智能化提供了可靠的决策依据,为企业的“零故障”管理目标铺平了道路。
With the comparison of the measured value and the threshold of the parameters, traditional on-line monitoring systems have realized the alarm function. However there are still some deficiencies in applying this single warning mechanism, which works after the fault appears. It can't detect the early fault signs of systems timely and tracked the abnormal trends during monitoring process, usually leaving the system in downtime and resulting in heavy losses. So an improved warning mechanism is in urgent need.
     Aiming at the imperfection of the existing warning mode, this thesis proposed a new system of on-line condition monitoring and early fault warning for a complex system. The system could make full use of real-time/historical database to timely indicate the dynamic changes of parameters and the health of system status.
     Firstly, an algorithm of searching abnormal parameters was put forward, which divided time subsequence into each subschema based on the important points, then extracted each subschema's eigenvalue respectively according to the types of parameter monitoring signal and mapped the eigenvalue into high dimension space. The system would search out anomaly parameters sequence which was obviously different from the other data. Taking into account the advantages of Grey Model and Time Series Prediction Model, the thesis proposed a new combined prediction method of time siries, using the Gray Model to predict the tendency, and applying the Time Series Prediction Model to predict the residuals. With this method, the trends of abnormal parameters were advanced found, which laid the solid foundation for the analysis of system abnormality, and the Prediction accuracy was improved.
     Secondly, the hierarchy of the complex system was devided effectively. The method of determining the dependence between faults and parameters was proposed, and the correlation between parameters was also studied. Moreover, the calculation of the possibility of potenitial fault occurrence was given. All studies above could provide the knowledge-based information for the analysis of system state according to the abnormal parameters.
     Finally, the idea of on-line condition monitoring and early fault warning for a complex system was applied to turbine. Results indicate that this system is effective and superious. It can dig out the evidence of units'deterioration from immense amounts of monitoring data and predict the potential fault. According to the abnormal system status, measures can be taken timely and effectively, leaving the potential failure nipped in the bud. In other words, forced shutdown of units can be avoided and the damage losses caused by failure can be ninimized.
     In short, the early fault warning mechanism can provide a solid guarantee for systems'secure and long-term operation, provide reliable decisions for intelligent maintenance, and pave the road for the company's management goal of "zero fault".
引文
[1]Keogh E. Data mining and machine learning in time series database [C]. Proc of the 5th Industrial Conference on Data Mining (ICDM). Leipzig:[s. n.],2005
    [2]Linwei qiang, Orgunm A, Williamsg J. An overview of temporal data mining [C]. Proc of the 1st Australian Data Mining Workshop. Canberra:University of Technolo-gy.2002:84-90
    [3]Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[C]. Proc of the 4th International Conference on Foundations of Data Organization and Algorithms. London:Springer-Verlag,1993:69-84
    [4]Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subsequence matching in time-series databases[C]. Proc of the ACM SIGMOD International Conference on Management of Data. Mineapolis:ACM Press,1994:419-429
    [5]Hoppner K. Time series abstraction methods:a survey[C]. Proc of GI Jahrestagung Informatik, Workshop on Knowledge Discovery in Databases. Dortmund:[s. n.],2002:777-786
    [6]李爱国.时间序列数据分割与时态模式挖掘研究[D].西安:西安交通大学,2003:2-4
    [7]LAXMAN S, SASTRY P S. A survey of temporal data mining [J]. Sadhana Academy Proceedings in Engineering Sciences,2006,31(2):174-198
    [8]Rafieid, Mendelzon A O. Querying time series data based on similarity[J].IEEE Trans on Know ledge and Data Engineering,2000,12(5):675-693
    [9]Wang Chang-zhou, Wang Xiao-yang. Multilevel filtering for high dimensional nearest neighbor search[C]. Proc of ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. Dallas:ACM Press,2000:37-43
    [10]Struzik Z R, Siebesa. Measuring time series'similarity through large singular features revealed with wavelet transformation[C]. Proc of the International Workshop on Database and Expert Systems Application. Florence:IEEE Computer Society Press,1999:162-166
    [11]Popivanov I, Miller R J. Similarity search over time-series data using wavelets[C]. Proc of the 18th International Conference on Data Engineering. San Jose: IEEE Computer Society Press,2002:212-221
    [12]张海勤,蔡庆生.基于小波变换的时间序列相似模式匹配[J].计算机学报,2003,26(3):374-377
    [13]Agrawal R, Lin K I, Sawhney H S, et al. Fast similarity search in the presence of noise, scaling, and translation in time-series databases [C]. Proc of the 21stConference on Very Large Data Bases. San Francisco:Morgan Kaufmann,1995:490-501
    [14]Keogh E. Exact indexing of dynamic time warping [C]. Proc of the28th International Conference on Very Large Databases. Hong Kong:M organ Kaufmann, 2002:406-417
    [15]Rath TM, Manmatha R. Lower-bounding of dynamic time warping distances for multivariate time series, TechnicalReportMM-40[R]. Amherst:Center for Intelligent Information Retrieval Technical Report, University of M assachusetts,2003
    [16]Chiu S, Keogh E, Hart D, Pazzanim. Iterative deepening dynamic time warping for time series[C]. Proc of the 2nd SIAM International Conference on Data Mining. Baltimore:SIAM Press,2002:148-156
    [17]Keogh E, Pazzanim J. Derivative dynamic time warping [C]. Proc of the 1st SIAM International Conference on Data Mining. Chicago:SIAM Press,2001: 209-211
    [18]Keogh E, Chakrabartik, Pazzanim, et al. D in ensionality reduction for fast similarity search in large time series databases [J]. Journal of Know ledge and Information System s,2001,3(3):264-286
    [19]Keogh E, Chakrabartik, Pazzanim, et al. Locally adaptive dimensionality reduction for indexing large time series databases [J]. ACM Transactions on Database System s,2002,27(2):188-228
    [20]GE X, Smyth P. D eformable markov model templates for time-series Pattern matching [C]. Proc of the 6th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining. Boston:ACM Press,2000:81-90
    [21]Beckmann N, Kriegelh P, Schneider R, et al. The R*tree:an efficient and robust access method for points and rectangles [C]. Proc of ACM SIGMOD International Conference on Management of Data. Atlantic:ACM Press,1990:322-331
    [22]Tao Y, Papadias D, Sun J. The TPR*-tree:an optimized spatio-temporal access method for predictive queries[C]. Proc of the 29thVLDB Conference. Berlin:Morgan Kaufmann Publishers,2003:790-801
    [23]Tao Y, Papadiasd. MN3R-tree:a spatio-temporal access method for timestamp and interval queries[C]. Proc of the 27thVLDB Conference. Roma:Morgan Kaufmann Pu-blishers,2001:431-440
    [24]Ferhatosmanoglu H, Tuncel E, Agrawal D, et al. Approximate nearest neighbor searching in multimedia databases[C]. Proc of the 17th IEEE Int'l Conference on Data Engineering. Heidelberg:IEEE Computer Society Press,2001:504-511
    [25]Kahvecit, Singh A, Gurela. An efficient index structure for shift and scale invariant search of multi-attribute time sequences[C]. Proc of the 18th Int'l Conference on Data Engineering. San Jose:IEEE Computer Society Press,2002
    [26]Loh W, Kim S, Whang K. Index interpolation:an approach to subsequence matching supporting normalization transform in time series databases[C]. Proc of the 9thACM CIKM Int'l Conference on Information and Knowledge Management. McLean:ACM Press,2000:480-487
    [27]Wu Y, Agrawal D, Abbadi A E. A comparison of DFT and DWT based similarity search in time-series databases[C]. Proc of the 9thACM CIKM Int'l Conference on Information and Knowledge Management. McLean:ACM Press,2000: 488-495
    [28]Carac-Valente J P, Lopez-Chavarrias I. Discovering similar patterns in time series[C]. Proc of the 6th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining. Boston:ACM Press,2000:497-505
    [29]Shim K, Srikang R, Agrawal R. High-dimensional similarity joins[J]. IEEE Trans on Know ledge and Data Engineering,2002,14(1):156-171
    [30]Kim S, Park S, Chuw. An index-based approach for similarity search supporting time warping in large sequence databases[C]. Proc of the 17th International Conference on Data Engineering. Heidelberg:IEEE Press,2001:607-614
    [31]Kalpakisk, Gada D, PuttaguntaV. Distance measures for effective clustering of ARIMA time-series[C]. Proc of the IEEE International Conference on Data Mining. San Jose:IEEE Computer Society Press,2001:274-280
    [32]Zhang Hui, Ho Tu-bao, Linmao-song. A non-parametric wavelet feature extractor for time-series classification[C]. Proc of the 8th Pacific-Asia Conf Knowledge Discovery and Data Mining. Berlin:Springer,2004:595-603
    [33]Vaithyanathan S, Dom B. Model-based hierarchical clustering[C]. Proc of the 16th Conference Uncertainty in Artificial Intelligence. Stanford, California:Morgan Kaufmann,2000:599-608
    [34]Keogh E, Chu S, Hart D, et al. An on-line algorithm for segmenting time series[C]. Proc of the IEEE Int'l Conference on Data Mining. San Jose:IEEE Computer Science Press,2001:289-296
    [35]段江娇,薛永生,林子雨,等.一种新的基于隐Markov模型的分层时间序列聚类算法[J].计算机研究与发展,2006,43(1):61-67
    [36]李斌,谭立湘,章劲松,等.面向数据挖掘的时间序列符号化方法研究[J].电路与系统学报,2000,5(2):9-14
    [37]覃征,李爱国.时间序列数据的稳健最优分割[J].西安交通大学学报,2003,37(4):338-342
    [38]Sripada S G, Reiter E, Hunter J, et al. Segmenting time series for weather forecasting[C]. Proc of ES.2002
    [39]Hanlon B, Forbes C. Model selection criteria for segmented time series from a bayesian approach to information compression[R]. [S.1]:Monash University,2002
    [40]Hawkins D M. Fitting multiple change-point models to data [J]. Computational S tatistic &Data Analysis,2001,37(3):324-341
    [41]Keogh E, Chu S, Hart D, Pazzani M. An online algorithm for segmenting time series. In:Proc. of IEEE Int'l Conf. on Data Mining. Los Alamitos:IEEE Computer Society Press,2001.289-296
    [42]Firoiu L. Segmenting time series with a hybrid neural networks-hidden markov model. In:Proc. of the 18th National Conf. onArtificial Intelligence (AAAI). Menlo Park:AAAI Press,2002.247-252
    [43]Guralnik V, Srivastava J. Event detection from time series data. In:Proc. of the 5th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press,1999.34-42
    [44]Li AG, Qin Z, He SP. Extracting similar patterns in time series data. Journal of Xi'an Jiaotong University,2002,36(12):1275-1278
    [45]Qin Z, Li AG. Rubost optimization segment for time series data. Journal of Xi'an Jiaotong University,2003,37(4):338-342
    [46]Guralnik V, Srivastava J. Event detection from time series data. In:Proc. of the 5th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press,1999.34-42
    [47]Yu J, Hunter J, Reiter E, et al. Recognising visual patterns to communicate gas turbine time-series data[C]. Applications and Innovations in Intelligent Systems. London:Springer,2002:105-118
    [48]Hochheiser H, Shneiderman B. Visual specification of queries for finding patterns in time series data[D]. Maryland:University of Maryland,2001
    [49]Hochheiser H. Interactive graphical querying of time series and linear sequence data sets[D]. Maryland:University of Maryland,2003
    [50]Billor N, Hadi A, Velleman P. BACON:blocked adaptive computationally efficie-nt outlier nominators[J]. Computational Statistics & Data Analysis,2000: 279-298
    [51]Knorr E M, Ng R T. A Unified notion of outliers:properties and computation[C]. ICDM 97. [S.l.]:AAAI Press,1997:219-222
    [52]Breunig M, Kriegel H P, Ng R, et al. LOF:identifying density-based local outliers[C]. ACM SIGMOD,2000:94-104
    [53]Keogh E, Lin J. Finding unusual medical time-series subsequences:algorithms and applications[C]. IEEE Transactions on Information Technology in Biomedicine, 2006:429-439
    [54]Ansari N, Hou E S H.IEEE Trans on AES,1996, AES-32(2):524-530
    [55]Kersjes R, Liebscher F, Spiegel E, et al. Sensors and actuators(A),1996,54: 564-567
    [56]Hierold C, Hildebrandt A, Naher U, et al. Sensors and Actuators(A),1996,57: 111-116
    [57]张翼,韩兵.现场总线的发电厂机组控制应用研究.自动化仪表,2008,29(10):18-19
    [58]Kulkarni Rahul, Saxe Walter, Misra Ranganath. PACs making inroads into automation:20 Reasons to choose a PAC over a PLC. Robotics World,2004,22(7): 8-11
    [59]Davis D.N. Agent-based decision-support framework for water supply infrastructure rehabilitation and development. Computers Environment and Urban Systems,2000,24(3):174-190
    [60]Mari C.G, Miguel A S B, Javier D.P. SIMAP:Intelligent system for predictive maintenance application to the health condition monitoring of a windturbine gearbox. Computers in Industry,2006,57(6):552-568
    [61]Saranga, Haritha.Relevant condition-parameter strategy for an effective condition-based maintenance. Journal of Quality in Maintenance Engineering,2002, 8(1):92-105
    [62]Bickford, Randall, Davis, Eddie, Rusaw, Richard, Shankar, Ramesh. Development of an online predictive monitoring system for power generating plants. Instrumentation, Control, and Automation in the Power Industry, Proceedings, 45(421):137-146
    [63]Logan K. P. Operational experience with intelligent software agents for shipboard diesel and gas turbine engine health monitoring. Electric Ship Technologies Symposium,2005 IEEE, July 2005,184-194
    [64]Qiang Miaoa, Viliam Makis. Condition monitoring and classification of rotating machinery using wavelets and hidden Markov models. Mechanical Systems and Signal Processing.2007,21:840-855
    [65]Agamalov O. N. A cluster analysis of partial discharges for evaluation of the condition of electrical machine insulation. Elektricestvo,2006,7:56-62
    [66]Raheja D., Llinas J, Nagi R, Romanowski C. Data fusion/data mining based maintenance architecture for condition-based maintenance. International Journal of Production Research,2006,44(14):2869-2887
    [67]林果园,郭山清.基于动态行为和特征模式的异常检测模型[J].计算机学报,2006,29(9):1554-1559
    [68]翁小清,沈钧毅.基于滑动窗口的多变量时间序列异常数据的挖掘[J].计算机工程,2007,33(12):102-104
    [69]周黔,吴铁军.一种动态数据流的实时趋势分析算法[A].控制与决策,2008,23(10):1182-1185
    [70]詹艳艳,徐荣聪.时间序列异常模式的k-均距异常因子检测[J].计算机工程与应用,2009,45(9):141-145
    [71]周大镯,刘雷.时间序列增量异常模式检测算法[A].计算机工程,2009,35(16):45-47
    [72]汪成亮,陆志坚,庞栩.一种数据流趋势分析方法的研究与应用[J].计算机系统应用,2010,19(1)
    [73]黄臻,李怀新,马瑞东等.状态维修在邹县电厂的应用与实践.电力设备,2004,5(5):11-14
    [74]施冲,李宁,朱辰.三峡左岸电厂趋势分析系统的技术实现与研究.水电厂自动化,2007,4:215~220,225
    [75]Perng C S, Wang H, Zhang S R, et al. Landmarks:a new model for similarity-based pattern querying in time series databases[C]. Proceedlings of the 16th International Conference on Data Mining. San Jose:IEEE,2001:289-296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700