用户名: 密码: 验证码:
拟南芥抗寄生疫霉菌突变体的筛选及其初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵菌(Oomycetes)包括腐霉菌(Pythium)、霜霉菌(downy mildews)和疫霉菌(Phytophthora)等,多数是世界上毁灭性植物病原菌,在世界范围内每年造成数百亿美元的经济损失。研究卵菌与寄主植物互作的机理,可望为建立卵菌类植物病原菌防治新途径提供理论依据。植物与病原物互作的结果可分为两类:亲和互作和非亲和互作,两者都是植物抗性因子/易感因子与病原物无毒蛋白/毒性因子复杂互作的结果。近年来人们对非亲和互作的认识突飞猛进,大量的无毒基因和抗性基因被鉴别,但相对于非亲和互作,人们对亲和互作的研究比较少。为了解植物-卵菌亲和互作的机理,本研究在已建立了拟南芥(Arabidopsis thaliana)-寄生疫霉菌(Phytophthora parasitica)亲和互作体系的基础上,通过筛选拟南芥的一个包括12000个独立的T-DNA插入的化学诱导激活型突变体库,寻找抗寄生疫霉菌的拟南芥突变体,以期为了解拟南芥-卵菌亲和互作的机制奠定基础。
     通过寄生疫霉菌游动孢子接菌离体的拟南芥叶片,我们从约12000个独立转化株的37808个T3代植株中,筛选到失活型突变体165株,激活型突变体145株,其中失活型抗病突变体267-31的抗病性表型十分稳定;将267-31 T4代收种子后,用皿内活体接菌的方法验证其抗病性,结果与T4代离体接菌一致;对野生型拟南芥、抗病突变体接种H1111游动孢子后进行细胞学观察发现,接菌2h后在抗病植株上与野生型上游动孢子萌发率没有明显差异,但在抗病突变体上附着胞产生率明显低,菌丝扩展也明显较慢。通过Tail-PCR法和Southern blot法分析表明,267-31抗病突变体上有3个T-DNA插入位点。
Oomycetes including Pythium, downy mildews, Phytophthora, most of which are devastating plant pathogens, cause an annual loss of tens of billions dollars worldwide. An understanding of the compatible interaction between oomycetes and their host plants is crucial to the development of efficient control measures for plant diseases caused by oomycete pathogens. The outcome of interactions between plants and pathogens can be grouped generally into two types: incompatible and compatible, both are the results of complex interplay between many factors of both plant and pathogen origin. Compared with our knowledge of incompatible interaction in which many of both pathogen avirulence genes and plant disease resistance genes have been cloned and characterized, little is known about the nature of compatible plant-pathogen interaction. To understand the mechanism of compatible interaction between plants and pathogens, in this study we took advantage of our established compatible plant-pathogen interaction system in which the model plant Arabidopsis thaliana and oomycete pathogen Phytophthora parasitica are employed to screen a large collection of A. thaliana T-DNA insertional, chemical activated mutants for P. parasitica-resistant mutants. The identification and characterization of disease resistant mutants will aid the understanding of compatible interaction between P. parasitica and A. thaliana.
     Inoculation of detached leaves with P. parasitica zoospores led to the identification of 165 degenerate mutants and 145 activated mutants that were likely resistant to P. parasitica infection, from 37808 T3 A. thaliana plants representing ~12000 independent T-DNA insertional events. One of the degenerate mutants named 267-31 has been shown to be stably resistant to P. parasitica infection. Root infection assay using our established method in petri dishes confirmed the resistant phenotype. Cytological characterization showed that the zoospore germination had no significant difference between the wild-type and the resistant mutant 267-31. However, fewer appressoria-like structures were formed and the hyphal growth and expanding were slower on the resistant mutant than the wild-type. Southern blot and Tail-PCR analysis showed that the resistant mutant 267-31 had three T-DNA insertion sites.
引文
[1] Birch P. R. J. , Whisson S. C. Phytophthora infestans enters the genomics era [J]. Molecular Plant Pathology, 2001, 2: 257-263.
    [2] Rizzo D. M. , Garbelotto M. , Davidson J. M. et al. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California [J]. Plant Disease, 2002, 86: 205-214.
    [3] Lucas G. B. Disease of Tobacco [M]. Necth Carolins, 1975.
    [4] Thomas A. M. , David Porter et al. Flue-cured tobacco information [M]. North Carolina Press, 1997.
    [5] Nusbaum C. , Kamoun S. , Fry W. , et al. The genome sequence of Phytophthora infestans T30-4 [J]. DDBJ/EMBL/GenBank project accession AATU01000000, 2006.
    [6] Tyler B. M. , Tripathy S. , Zhang X, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis [J]. Science, 2006, 313: 1261-1266.
    [7] Attard A. , Gourgues M. , Galiana E. , et al. Strategies of attack and defense in plant-oomycete interactions accentuated for Phytophthora parasitica Dastur [J]. Journal of Plant Physiology, 2008, 165: 83-94.
    [8] Erwin D. C. , Ribeiro O. K. Phytophthora Diseases World-wide [M]. American Phytopath- ological Society Press, 1996.
    [9]胨瑞豢,朱赞朝,王智发等.全国l6十主产烟省(区)烟草侵染性病害调研报告[J].中国烟草科学, 1997, l(4): 1-7.
    [10] Van Breda de Haan. De Bibitziekte in de Deli-tabak, veroorzaakt door Phytophthora nicotianae [M]. Mdededeelingen uit’slands Plantentuin, 1896, 15: 1-107.
    [11] Stokstad E. Genomes highlight plant pathogens’powerful arsenal [J]. Science, 2006, 313: 1217.
    [12]陈瑞泰主编.烟草病虫害防治[M].济南:山东科学技术出版社, 1989.
    [13]方中选,蔚家云,叶钟音等.中国农业百科全书(植物病理学卷) [M].北京:农业出版杜, 1996.
    [14]尚志强.烟草黑胫病病原、发生规律及综合防治研究进展[J].中国农业科学导报, 2007, 9(2): 73-76
    [15]朱贤朝主编.烟草黑胫病(中国家作物病虫害下册) [M].北京:中国农业出版社, 1996.
    [16]苏德成主编.烟草病虫害[M].北京:中国财经出版社, 1992.
    [17]周嘉平,王宝华.烟草黑胫病田间动态研究[J].植物病理学报, 1986, 9(1): 37-39.
    [18]郑小波,陆家云等.云南省烟草黑胫病菌厚垣抱子和菌丝在土壤中存活状态[J].南京家业大学学报, 1998, 21(1): 41-45
    [19]谈文主编.烟草病理学.北京:中国农业出版社, 2003.
    [20] Warburton A. J. , Deacon J. W. Transmembrane Ca2+ fuxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica [J]. Fungal Genetics and Biology, 1998, 25: 54-62.
    [21] Mitchell H. J. , Kovac K. A. , Hardham A. R. Characterisation of Phytophthora nicotianae zoospore and cyst membrane proteins [J]. Mycology Research, 2002, 106(10): 1211-1223.
    [22] Wolf F. T. , The pathology of tobacco black shank [M]. Phytopathora, 1933, 23:605-612.
    [23] Lin X. , Kaul S. , Rounsley S. , et al. Sequence and analysis of chromosome 2 of the plantArabidopsisthaliana [J]. Nature, 1999, 402: 761-768.
    [24] Mayer K. , Schüller C. R. , Wambutt G. et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana [J]. Nature, 1999, 402: 769-777.
    [25]孟金陵.拟南芥及分子生物学的研究[J].遗传, 199, 17(增刊): 41-45
    [26] The Arabidopsis Genome initiative. Analysis on the genome sequence of the flowering Plant Arabidopsis thaliana [J]. Nature, 2000, 408: 796-815.
    [27] Leutwiler L. S. , Hough-Evans B. R. , Meyerowitz E. M. The DNA of Arabidopsis thaliana [J]. Molecular and General Genetics, 1984, 194: 15-23.
    [28] Pruitt R. , Meyerowitz E. Characterization of the genome of Arabidopsis thaliana [J]. Journal of Molecular Biology , 1986, 187: 169–183.
    [29] Lineoln C. , Britton J. H. , Estelle M. Growth and development of the axrl mutants of Arobidopsis [J]. Plant Cell, 1990, 2: 1071-1080.
    [30] Zhang X. R. , Henriques R. , Lin Sh. Sh. , et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the foral dip method [J]. Nature Protocols, 2006,1(2): 641-646.
    [31] Randall G. , Grakoui A. , Rice C. M. Clearance of replieating hepatitis C virus replieon RNAs in cell culture by small interfering RNAs [J]. Proceedings of the National Academy of Sciences, 2003, 100(l): 235-240.
    [32] Brununelkamp T. R. , Bemards R. , Agami R. A system for stable expression of short interfering RNAs mediates RNA interference in malmalian cells [J]. Science, 2002, 296: 550-553.
    [33] Wesley S. V. , Helliwell C. A. , Smith N. A. , et al. Construet design for effieient,effective and high throughput gene sileneing in Plants [J]. Plant Journal, 2001, 27(6): 581-590.
    [34] Smith N. A. , Singh S. P. , Wang M. B. , et al. Total silencing by intron-spliced hairpin RNAs [J]. Nature, 2000, 407: 319-320.
    [35] Waterhouse P. M. , Graham M. W. , Wang M. B. Virus resistance and gene sileneing in Plant can be induced by simultaneous expression of sense and antisense RNA [J]. Proceedings of the National Academy of Sciences, 1998, 95(23): 13959-13964.
    [36] Tavemararakis N. , Wang S. L. , Dorovkov M. , et al. Heritable and indueible genetie interference by double-stranded RNA eneoded by transgenes [J]. Nature Genetics, 2000, 24(2): 180-183.
    [37] Comai L. , Henikoff S. TILLING: practical single-nucleotide mutation discovery [J]. Plant Journal, 2006, 45: 684-694.
    [38] Till B. , Reynolds S. , Greene E. , et al. Large-scale discovery of induced point mutations with high-throughput TILLING [J]. Genome Research, 2003b, 13: 524-530.
    [39] Koornneef M. , Dellaert L. W. , van der Veen J. H. EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana [J]. Arabidopsis Information Service, 1982, 93: 109-123.
    [40] Walbot V. Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 49-52.
    [41] Barakat A. , Gallois P. , Raynal M. , et al. The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice [J]. FEBS Letters, 2000, 471: 161-164.
    [42] Barakat A. , Carels N. , Bernardi G. The distribution of genes in the genomes of Gramineae [J]. Proceedings of the National Academy of Sciences, 1997, 94(13): 6857-6861.
    [43] Liu Y. G. , Mitsukawa N. , et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR [J]. Plant Journal, 1995, 8: 457-463.
    [44] Alonso J. M. , Stepanova A. N. , Leisse T. J. et al. Genome-Wide lnsertional Mutagenesis of Arabidopsis thaliana [J]. Seience, 2003, 301: 653-657.
    [45] Weigel D. , Ahn J. H. , Blazquez M. A. , et al. Activation tagging in Arabidopsis [J]. Plant Physiology, 2000, 122: 1003-1013.
    [46] Qin G. , Kang D. , Dong Y. , et al. Obtaining and analysis of flanking sequenees from T-DNA transfromants of Arabidopsis [J]. Plant Seience, 2003, 165(5): 941-949.
    [47]张健,左建儒.化学诱导激活型拟南芥突变体库的构建及分析[J].遗传学报, 2005,32 (10 ): 1082-1088.
    [48]李志邈,张海扩,曹家树等.拟南芥激活标记突变体库的构建及突变体基因的克隆[J].植物生理与分子生物学学报, 2005, 31 (5): 499-506.
    [49] Jeong D. H. , An S. , Kang H. G. , et al. T-DNA insertional mutagenesis for activation tagging in rice [J]. Plant Physiology, 2002, 130(4): 1636-1644.
    [50] Nakazawa M. , Ichikawa T. , Ishikawa A. , et al. Activation tagging, a novel tool to dissect the functions of a gene family [J]. Plant Journal, 2003, 34(5): 741-750.
    [51] Zuo J. , Niu Q. W. , Chua N. H. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants [J]. Plant Journal, 2000, 24(2): 265-273.
    [52] Zuo J. , Chua N. H. Chemical-inducible systems for regulated expression of plant genes [J]. Current Opinion in Biotechnology, 2000, 11(2): 146-151.
    [53] Büschges R. , Hollricher K. , Panstruga R. et al. The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance [J]. Cell, 1997, 88: 695-705.
    [54] Vogel J. , Somerville S. Isolation and characterization of powdery mildew-resistant Arabidopsis mutants [J]. Proceedings of the National Academy of Sciences, 2000, 97: 1897-1902.
    [55] Vogel J. , Raab T. , Schiff C. , et al. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis [J]. Plant Cell, 2002, 14: 2095-2106.
    [56] Hammond-Kosack K. E. , and Jones D. G. Resistance gene–dependent plant defense responses [J]. Plant Cell, 1996, 8: 1773-1791.
    [57] Kogel K. H. Compatible host-microbe interactions:Mechanistic studies enabling future agronomical solutions [J]. Journal of Plant Physiology, 2008, 165: 1-4.
    [58] O’Connell R. J. , Panstruga R. Têteàtête Inside a plant cell: Establishing compatibility between plants and biotrophic fungi and oomycetes [J]. New Phytologist, 2006, 171: 699-718.
    [59] Cui J, Bahrami A K, Pringle E G, et al. Pseudomonas syringae manipulates systemic plantdefenses against pathogens and herbivores [J]. Proceedings of the National Academy of Sciences , 2005, 102: 1791-6.
    [60] Mendgen K. , Hahn M. Plant infection and the establishment of fungal biotrophy [J]. Trends in Plant Science, 2002, 7: 352-356.
    [61] Knapp A. C. , Franke W. W. , Heid H. , et al. An epidermal type I keratin characteristic of a special program of keratinocyte differentiation displaying body site specificity [J]. Cell biology, 1986, 103: 657–667.
    [62] Alfano J. R. , Charkowski O. , Deng W. et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants [J]. Proceedings of the National Academy of Sciences, 2000, 97: 4856-4861.
    [63] Thanassi D. G. , Hultgren S. J. Multiple pathways allow protein secretion across the bacterial outer membrane [J]. Current Opinion in Cell Biology, 2000, 12(4): 420-430.
    [64] Oelschlaeger T. A. , Hacker J. Impact of pathogenicity islands in bacterial diagnostics [J]. Acta Pathologica, Microbiologica, Et Immunologica Scandinavica , 2004, 112(11-12): 930-936.
    [65] Abramovitch R. B. , Martin G. B. Strategies used by bacterial pathogens to suppress plant defenses [J]. Current Opinion in Plant Biology, 2004, 7: 356-364.
    [66] Abramovitch R. B. , Kim Y. J. , Chen S. , et al. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J]. The EMBO Journal, 2003, 22: 60-69.
    [67] Jakobek J. L. , Lindgren P. B. Generalized Induction of Defense Responses in Bean Is Not Correlated with the Induction of the Hypersensitive Reaction [J]. Plant Cell, 1993, 5(1): 49-56.
    [68] Jones J. D. , Dangl J. L. The plant immune system [J]. Nature, 2006, 444: 323-329.
    [69] Truman W. , de Zabala M. T. , Grant M. Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance [J]. Plant Journal, 2006, 46: 14-33.
    [70] Melotto M. , Underwood W. , Koczan J. , et al. Plant stomata function in innate immunity against bacterial invasion [J]. Cell, 2006, 126: 969-980.
    [71] Marta de T. Z. , William T. , Bennett M. H. , et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease [J]. The EMBO Journal, 2007, 26: 1434-1443.
    [72] Kahmann R. , Basse C. Fungal gene expression during pathogenesis-related development and host plant colonization [J]. Current Opinion in Microbiology, 2001, 4: 374-380.
    [73] Kolattukudy P. E. , Rogers L. M. , Li D. , et al. Surface signaling in pathogenesis [J]. Proceedings of the National Academy of Sciences, 1995, 92: 4080-4087.
    [74] Hwang C. S. , Flaishman M. A. , Kolattukudy P. E. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene [J]. Plant Cell, 1995, 7: 183-193.
    [75] Munoz C. I. , Bailey A. M. A cutinase-encoding gene from Phytophthora capsici isolated by differential-display RT-PCR [J]. Current Genetics, 1998, 33: 225-230.
    [76] van Kan J. A. , vant Klooster J. W. , Wagemakers C. A. , et al. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato [J]. Molecular Plant-Microbe Interaction, 1997, 10: 30-38.
    [77] Basse C. W. , Stumpferl S. , Kahmann R. Characterization of a Ustilago maydis gene specifically induced during the biotrophic phase: evidence for negative as well as positive regulation [J]. Molecular Biology of the Cell , 2000, 20: 329-339.
    [78] Hirschi K. , VanEtten H. Expression of the pisatin detoxifying genes (PDA) of Nectria haematococcain vitro and in planta [J]. Molecular Plant-Microbe Interaction, 1996, 9: 483-491.
    [79] Osbourn A. , Bowyer P. , Lunness P. , et al. Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to detoxify different host plant saponins [J]. Molecular Plant-Microbe Interaction, 1995, 8: 971-978.
    [80] Hahn M. , Mendgen K. Characterization of in planta-induced rust genes isolated from a haustorium-specific cDNA library [J]. Molecular Plant-Microbe Interaction, 1997, 10: 427-437.
    [81] Hahn M. , Neef U. , Struck C. , et al. A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae [J]. Molecular Plant-Microbe Interaction, 1997, 10: 438-445.
    [82] Shan W. , Cao M. , Leung D. , et al. The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b [J]. Molecular Plant-Microbe Interaction, 2004, 17: 394-403.
    [83] Armstron M. R. , Whisson S. C. , Pritchard L. , et al. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognised in the host cytoplasm [J]. Proceedings of the National Academy of Sciences, 2005, 102: 7766-7771.
    [84] Tyler B. M. , Tripathy S. , Zhang X. , et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis [J]. Science, 2006, 313: 1261-1266.
    [85] Bos J. I. , Kanneganti T. D. , Young C. , et al. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is suficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana [J]. Plant Journal, 2006, 48: 165-176.
    [86] Whisson S. C. , Boevink P. C. , Moleleki L. , et al. A translocation signal for delivery of oomycete effector proteins inside host plant cells [J]. Nature, 2007, 450: 115-118.
    [87] Dou D. L. , Kale S. D. , Wang X. , et al. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen encoded machinery [J]. Plant Cell, 2008, 20(7): 1930-1947.
    [88] Genre A. , David G. , Chabaud M. et al. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection [J]. The Plant Cell, 2005, 17: 3489-3499.
    [89] Yang B. , Sugio A. , and White F. F. Os8N3 is a host disease-susceptibility gene for bacterialblight of rice [J]. Proceedings of the National Academy of Sciences, 2006, 103: 10503-10508.
    [90] Manning V. , Ciuffetti L. Localization of Ptr ToxA Produced by Pyrenophora tritici-repentis Reveals Protein Import into Wheat Mesophyll Cells [J]. The Plant Cell, 2005, 17: 3203-3212.
    [91] Tzfira T. , Vaidya M. , Citovsky V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP [J]. Proceedings of the National Academy of Sciences, 2002 , 99(16): 10435-10440.
    [92] Lu M. , Tang X. , Zhou J. M. Arabidopsis NHO1 Is Required for General Resistance against Pseudomonas Bacteria Plant [J]. Cell, 2001, 13: 437-447.
    [93] Hammond-Kosack K. E. , Parker J. E. Deciphering plant-pathogen communication:fresh perspectives for molecular resistance breeding [J]. Current Opinion in Biotechnology, 2003, 14: 177-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700