用户名: 密码: 验证码:
可聚合松香基单体的合成、表征和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松香是一种重要的可再生资源,它是由松树分泌的黏稠液体经蒸馏而得到的一种天然树脂。松树是分布最广的树种之一,在我国从南到北都有分布。松香是我国重要的森林化学产品,年产量80多万吨。随着原油的短缺和价格的提升使得世界各国的科研人员开始探索可以替代石油成为生产高分子材料的其它资源,松香以它特有的组成和结构,已成为继纤维素、木质素、淀粉、甲壳素、壳聚糖、天然橡胶等之后,又一个制备高分子材料的重要原料来源。
     本文先以含羧基官能团的松香或松香衍生物为原料,通过羧基官能团的酰氯化后酯化或直接酯化法的方法分别合成了8种(β-丙烯酰氧基乙基)酯类、(甲基)烯丙基酯类和丙烯酸氢化松香醇酯类可自由基聚合松香基单体,采用FT-IR、GC-MS、LC、NMR和DSC等分析手段分析了上述目标产物的组成和结构,并证实上述松香基单体具有可自由基聚合活性。所合成的可自由基聚合松香基单体具有如下特性:(1)歧化松香(β-丙烯酰氧基乙基)酯(DR-2-HEA),其主要成分脱氢枞酸(β-丙烯酰氧基乙基)酯(DHR-2-HEA)含量为53.2 %,均聚物玻璃化转变温度为-20℃;(2)脱氢枞酸(β-丙烯酰氧基乙基)酯,收率为75%,白色晶体,熔点为59-61℃,质量含量在98%以上,均聚物玻璃化转变温度为54.18℃;(3)脱氢枞酸(β-甲基丙烯酰氧基乙基)酯是白色晶体,质量含量为99.8 %,熔点为54.23℃,均聚物玻璃化转变温度为73.97℃;(4)脱氢枞酸(β-甲基丙烯酰氧基丙基)酯是一个同分异构体,质量含量为97.7 %,两种结构质量含量分别为67.29 %和30.25 %;(5)马来海松酸是一种白色晶体,质量含量为99.5 %,熔点为232.27℃。马来海松酸经酰氯化,酯化反应可合成马来海松酸(β-丙烯酰氧基乙基)酯,它为一种白色晶体,熔点99.11℃,均聚物的玻璃化转变温度为60.96℃;(6)脱氢枞酸烯丙基酯的质量含量为98.2 %,马来海松酸烯丙基酯的质量含量为99.3 %;(7)脱氢枞酸甲基烯丙基酯,质量含量为91.36%,熔程为41.24~52.24℃,均聚物玻璃化转变温度为-29.7℃;(8)丙烯酸氢化松香醇酯主要由丙烯酸四氢松香醇酯、丙烯酸二氢松香醇酯和丙烯酸去氢松香醇酯组成,三者质量分数总量为80.45 %,其余为氢化松香甲酯和中性物,均聚物玻璃化转变温度为-28.92℃。
     采用非等温和等温DSC分析法,分别研究了(β-丙烯酰氧基乙基)酯类、(甲基)烯丙基酯类和丙烯酸氢化松香醇酯类等三类可自由基聚合松香基单体的均聚活性。分析结果表明可自由基聚合松香基单体聚合活化能从大到小排列如下:脱氢枞酸甲基烯丙基酯>歧化松香(β-丙烯酰氧基乙基)酯>丙烯酸氢化松香醇酯>歧化松香(β-甲基丙烯酰氧基乙基)酯>脱氢枞酸(β-丙烯酰氧基乙基)酯>脱氢枞酸(β-甲基丙烯酰氧基乙基)酯。均聚物相对分子质量最高为30000左右,最小在4000左右,因而可自由基聚合松香基单体更适合用于共聚反应。
     通过乳液聚合法制得DHR-2-HEA/丙烯酸酯、脱氢枞酸(DHR)/丙烯酸酯和歧化松香(DR)/丙烯酸酯复合乳液。动态光散射方法和TEM的方法证实,在乳化体系和引发剂体系相同条件下,DHR-2-HEA、DHR和DR的复合乳液的粒子最终粒径基本相同;DHR-2-HEA的引入并不影响共聚物的相对分子质量,而随着DHR和DR的用量增加,共聚物相对分子质量下降;DHR-2-HEA、DHR和DR都与聚甲基丙烯酸甲酯有较好的相容性;随着DHR-2-HEA、DHR和DR用量的增加,共聚物的玻璃转变温度均呈现不同程度的下降。DHR-2-HEA可以在一定程度上增加丙烯酸酯聚合物膜的贮存模量和拉伸强度,而DHR和DR则会使贮存模量和拉伸强度下降;DHR-2-HEA的引入对丙烯酸酯聚合物膜的憎水性影响不大,DR和DHR则略有增加。
     分别制备了歧化松香(β-甲基丙烯酰氧基乙基)酯(DR-2-HEMA)、丙烯酸松香(β-甲基丙烯酰氧基乙基)酯(AR-2-HEMA)、DHR和DR的丙烯酸酯压敏胶复合乳液。研究发现随着DR用量的增加,初黏性和180°剥离强度增加,而持黏性下降;DR-2-HEMA用量的增加,初黏性和180°剥离强度变化不大,而持黏性有一定程度的下降,表明DR-2-HEMA适合作为一种反应型的增粘树脂;AR-2-HEMA用量的增加,丙烯酸酯压敏胶(PSA)初黏性和180°剥离强度下降,而持黏性增加。DR的引入可以提高PSA的疏水性,降低PSA的表面张力,DR-2-HEMA的加入对PSA的表面张力的影响不大。实验结果显示,DR-2-HEA和AR-2-HEA能作为功能单体应用于反应型的压敏胶中。
     探讨了DR-2-HEA和丙烯酸松香(β-丙烯酰氧基乙基)酯(AR-2-HEA)在紫外光固化涂层中的应用。研究结果显示(β-丙烯酰氧基乙基)酯类可自由基聚合松香基单体可以提高聚合物涂层的硬度,但对玻璃的附着力差;通过在配方中引入一定量的丙烯酸-2-羟基乙基酯(HEA),可在硬度不受影响的前提下,提高涂层的附着力;AR-2-HEA组成比例增加,附着力降低;对于玻璃涂层,最佳的组成配比为:DR-2-HEA(50%), AR-2-HEA(30%),其它辅助成分(20%)。
The rosin, a major renewable resource, is natural resin distilled from the high viscous liquids exuded from the pine tree which is extensively widespread in the world. Rosin is also one of key natural products in China, with an annual output of about 800 000 tons. Due to the limited resource and increasing price of cruel oil, the study on the replacement of petroleum-based polymer has attracted great attention in recent years. Because of its features such as the structure and chemical reactivity, rosin has become an important resource for polymer preparation just like cellulose, lignin, starch, chitin, chitosan and natural rubber.
     A variety of rosin-based polymerizable monomers were synthesized by the esterification of carboxyl group in rosin or its derivatives, and characterized by IR, GC-MS, LC, NMR and DSC. The results showed that these monomers could polymerize in present of initiators. The basic properties of rosin-based monomers were described as follows:
     (1) Disproportionated rosin (β-acryloxyl ethyl) ester(DR-2-HEA) is mainly composed by (β-acryloxyl ethyl) esters of dehydroabietic acids (53.2%, wt) and the glass transition temperature(Tg) of its homopolymer was -20℃。
     (2) (2-acryloyloxy)ethyl ester of dehydroabietic acid(DHR-2-HEA)(>98%, wt) is a type of white crystals with melt point 59~61℃. It could polymerize in the present of initiator and the homopolymer has a Tg of 54.18℃.
     (3) (2-methylacryloyloxy)ethyl ester of dehydroabietic acid(99.8 %, wt) , a type of white crystals with melt point 54.23℃, could polymerize in the present of initiator and the Tg of its homopolymer is 73.97℃.
     (4) (2-methylacryloyloxy)propyl ester of dehydroabietic acid(97.7 %, wt) is a isomer and the fraction of two structures is 67.29 % and 30.25 % respectively.
     (5) Maleopimaric acid (99.5 %, wt), a white crystals with the melt point 232.27℃was used to synthesize the (2-acryloyloxy)ethyl ester of maleopimaric acid by acyl chlorination and esterification. (2-acryloyloxy)ethyl ester of maleopimaric acid is a kind of white crystal with melting point 99.11℃, which can polymerize without of initiator after being heated to the temperature above the melting point. The glass transition temperature of its homopolymer is 60.96℃
     (6) The contents of allyl ester of dehydroabietic acid and maleopimaric acid synthesized are 98.2 % and 99.11% by weight respectively
     (7) Methylallyl ester of dehydroabietic acid (91.36%, wt), has a melting range of 41.24~52.24℃and the Tg of its homopolymer is -29.7℃.
     (8) Hydroabietyl acrylate is mainly composed of perhydrogenated abietyl acrylate, dihydroabietyl acrylate ,dehydrogenated abietyl acrylate, and small amount of methyl hydroabietate. The fraction of hydroabietyl acrylate is 80.45 wt%. Hydroabietyl acrylate can polymerize in the present of initiators. The glass transition temperature of the homopolymer is -28.92℃.
     The kinetics of homopolymerization of the above rosin-based monomers was evaluated by non-isothermal or isothermal DSC measurement. The results showed that the activation energy of homopolymerization of rosin-based monomers in descending order was as follows: Methylallyl ester of dehydroabietic acid > Disproportionated rosin (β-acryloxyl ethyl) ester > hydroabietyl acrylate > Disproportionated rosin (β-methylacryloxyl ethyl) ester > (2-methylacryloyloxy)ethyl ester of dehydroabietic acid > (2-methylacryloyloxy)propyl ester of dehydroabietic acid. All the homopolymers are kind of oligomers with molecular weight ranging from 4000 to 30000, which shows that those rosin-based monomers is more sutiable for copolymerization.
     Acrylate hybrid emulsions containing (2-acryloyloxy)ethyl ester of dehydroabietic acid (DHR-2-HEA), dehydroabietic acid (DHR) or disproportionated rosin (DR) were synthesized by miniemulsion polymerization respectively and characterized by the DSL and TEM. It was found that the particle sizes of hybrid emulsions by using different rosin based monomers were almost same when same emulsifiers and initiator were used. The introduction of DHR-2-HEA had no significant impact on molecular weight of the copolymer. However, the molecular weight of the copolymers decreased with the increase of the amount of DR or DHR. The result of DSC measurement showed that both of DHR and DR are compatible with poly(methyl methacrylate) (PMMA). The Tg of copolymers decreased with the increase of the amount of the rosin based monomers, especially in the case of DR and DHR. It is obvious that the introduction of DHR-2-HEA could increase the storage modulus and tensile strength of copolymer. On the contrary, the storage modulus and tensile strength of copolymer decreased with the increase of content of DR or DHR. By the contact angle evaluation, the copolymer containing DR or DHR was more hydrophobic than that of DHR-2-HEA.
     The pressure sensitive adhesives (PSA) based on acrylate hybrid emulsions containing rosin-based monomers were also formulated and their performance was evaluated. The results showed that the initial adhesion and 180°peeling strength of PSA were improved and the persistent adhesion decreased when DR or DHR was added. However, the introduction of disproportionated rosin (β-methylacryloxyl ethyl) ester (DR-2-HEMA) did not affect the initial adhesion and 180°peeling strength of PSA, although the persistent adhesion decrease slightly, which reflected that DR-2-HEMA was more suitable for the preparation of heat active resin. With two acrylate groups, acrylic rosin (β-methylacryloxyl ethyl) ester (AR-2-HEMA) could be used as crosslinking monomer to increase the persistent adhesion of PSA. However it also led to the decrease of initial adhesion and 180°peeling strength. DR was proved to improve the hydrophobicity of the copolymers and reduce the surface tension of PSA film by the contact angle measurements, while DR-2-HEMA had no significant effect on the surface tension.
     The ultraviolet curing coatings based on the rosin-based monomer were prepared and evaluated. It was found that DR-2-HEA and acrylic rosin (β-acryloxyl ethyl) ester (AR-2-HEA) could increase the pencile hardness of coating film. However, the coating based on DR-2-HEA and AR-2-HEA showed poorer adhesion to glass, particularly when the content of AR-2-HEA was increased. The introduction of a small amount of 2-hydroxyethyl acrylate could improve significantly the adhesion of coating, without reducing the pencile hardness. The suitable mass fraction of coating for glass was DR-2-HEA (50 %), AR-2-HEA (30 %) and additives (20 %).
引文
[1]宋湛谦中国松脂特征与松属分类[M]北京:中国林业出版社, 1998,1-20
    [2]宋湛谦松香的精细化工利用(Ⅰ)———松香的组成与性质[J]林产化工通讯, 2002, 36 (4): 29-33
    [3]任天瑞,李永红.松香化学业及其应用[M]北京:化学工业出版社,2005:1-17
    [4]杨东海松香再加工及利用[M]北京:北京林业出版社, 1984,1-22
    [5]杨成武,谢晖,黄莉.马来海松酸新戊二醇酯多元醇的制备及性能[J]南京工业大学学报,2007,29 (1):85-88
    [6]谢晖,程芝.丙烯海松酸聚氧乙烯酯聚醚多元醇的合成研究[J]林产化学与工业,2000, 20 (1):27-32
    [7]凌建雄,涂伟萍,杨卓如等.马来海松酸(MPA)改性醇酸树脂的研制[J]合成材料老化与应用,2000 (1):1-2
    [8]刘煜平,韩秀萍,傅宁婕等.马来海松酸不饱和聚酯树脂研究[J]广西大学学报:自然科学版,2005, 30 (4):348-349
    [9]张跃冬,刘治猛,毕良武.松香衍生物改性不饱和聚酯的研制[J]塑料工业, 1991, (1):21-22
    [10] Le T N H, Pascault J.P, Lam T M, et al. Unsaturated polyester prepolymer from rosin[J] Eur. Polym. J,1993,29 (4):491-495
    [11] Atta A M, Nassar. I F., Bedawy H M. Unsaturated polyester resins based on rosin maleic anhydride adduct as corrosion protections of steel [J]. React. Funct. Polym, 2007, 67 (7):617-626
    [12] Roy S S, Kundu A K., Maiti S. Polymers from renewable resources—13. Polymers from rosin acrylic acid adduct [J]. Eur. Polym. J,1990 , 26 (4): 471-474
    [13] Atta A M, Elsaeed A M, Farag R K, et al. Synthesis of unsaturated polyester resins based on rosin acrylic acid adduct for coating applications[J]. React. Funct. Polym,2007, 67 (6):549-653
    [14]魏晓惠,曹德榕,陈就记等.丙烯海松酸二缩水甘油酯的合成、结构与性能[J]林产化学与工业,. 2004, 24 (B18):47-51
    [15]邓礼波,吴岳德,曾昭琼.松香马来酰亚胺聚酯的合成及热稳定性研究[J].华南师范大学学报:自然科学版,1993,(1):51-58.
    [16]邓礼波,吴岳德.松香马来酰亚胺聚酯合成[J]化学试剂,1994, 16 (5):273-276
    [17]邓礼波,吴岳德,曾昭琼. N-对羧苯基松香马来酰亚胺的合成及结构测定[J]华南师范大学学报:自然科学版, 1991,2):72-77
    [18] Maiti S, Ray S S , Kundu A K. Kundu. Rosin: a renewable resource for polymers and polymer chemicals [J] Prog. Polym.Sci, 1989,14 ( 3):297-338
    [19]李春成,宋湛谦.脂松香合成聚酰胺亚胺烘漆及性能研究[J]塑料工业, 1997,25(6):66-68
    [20]李春成,宋湛谦.脂松香制备聚氨酯-聚酰胺亚胺烘漆及性能的研究[J]涂料工业,1998,(1):66-68
    [21]李春成,宋湛谦.双马来海松酸型聚(氨酯酰胺亚胺)烘漆制备及性能[J]林产化学与工业, 2000,20(1):41-46
    [22] Ray S S, Kundu A K., Maiti M. et al. Polymers from renewable resources, part 7. Synthesis and properties of polyamideimide from rosin-maleic anhydride adduct [J] Angewandte Makromolekulare Chemie. 1984, 122( 1):153-167
    [23] Ray S S, Kundu A K., Maiti S. J. Polymers from renewable resources. XII. Structure property relation in polyamideimides from rosin[J] Appl. Polym. Sci, 1998, 36( 6):1283-1293
    [24] Kundu A K., Ray S S, Mukherjea R N., et al. Polymer blends, 3. Preparation and evaluation of the blends of shellac with polyamideimide from rosin[J] Angewandte Makromolekulare Chemie,1986, 143 ( 1):197-207
    [25] Kundu A. K., Ray S. S., Adhikari B. et al. Polymer blends—4: Blends of resole with polyamideimide synthesized from rosin[J] Eur. Polym. J,1986, 22(10): 821-825
    [26] Kim S J, Kim B J, Jang D W, et al. J. Photoactive polyamideimides synthesized by the polycondensation of azo-dye diamines and rosin derivative[J] Appl. Polym. Sci , 2001, 79( 4): 687-695
    [27] Bicu I, Mustata.F. Water soluble polymers from Diels-Alder adducts of abietic acid as paper additives[J] Macromol.Mater. Eng. 2000, 280-281(1): 47-53
    [28]商士斌,张跃冬,王定选.马来海松酸酐合成酯多元醇反应的研究[J]林产化学与工业, 1995,15(2):1-6
    [29]商士斌,张跃冬,王定选.双马来海松酸酯多元醇的合成研究[J]林产化学与工业, 1996,16(2):1-6
    [30] Jin J F, Chen Y L, Wang D N, et al. Structures and physical properties of rigid polyurethane foam prepared with rosin-based polyol[J] J. Appl. Polym. Sci, 2002, 84(3):598-604
    [31]张跃冬,金一, ,刘治猛等.含松香的硬质聚氨酯泡沫塑料的制备及性能研究[J]林产化学与工业,1991,11(3):203-207
    [32]张跃冬,商士斌,张晓艳等.松香改性硬质聚氨酯泡沫塑料耐热性研究(Ⅰ)──松香酯多元醇结构对其耐热性的影响[J]林产化学与工业,1995,15(3):1-6
    [33]张跃冬,商士斌,张晓艳等.松香改性硬质聚氨酯泡沫塑料耐热性研究(Ⅱ)──泡沫组成对耐热性的影响[J]林产化学与工业,1995,15(4):1-7
    [34] Zhang Y , Heath R. J, Hourston D. J. Morphology, mechanical properties, and thermal stability of polyurethane-epoxide resin interpenetrating polymer network rigid foams[J] J. Appl. Polym. Sci,2000,75(3): 406-416
    [35] Zhang Y , Shang S B, Zhang X., et al. Influence of the composition of rosin-based rigid polyurethane foams on their thermal stability[J] J. Appl. Polym. Sci,1996,59(7): 1167-1171
    [36] Zhang Y, Hourston.D. J. J. Rigid interpenetrating polymer network foams prepared from a rosin-based polyurethane and an epoxy resin[J] Appl. Polym,1998, 69(2): 271-281
    [37]谢晖,程芝.丙烯海松酸型聚氨酯涂料的研制[J]林产化学与工业,1998,18(3):67-73
    [38]谢晖,程芝.丙烯海松酸聚酯多元醇的合成及其性质研究[J]林产化学与工业, 1999,19(2):61-65
    [39] Bicu I, Mustata.F. Study of the condensation products of abietic acid with formaldehyde at high temperatures[J] Angewandte Makromolekulare Chemie, 1994, 222(1):165-174
    [40] Bicu I, Mustata F. Diels-Alder polymerization of some derivatives of abietic acid[J] Die Angewandte Makromolekulare Chemie,1999, 264(1):21-29
    [41] Bicu I, Mustata F. Polymers from a levopimaric acid-acrylic acid Diels-Alder adduct: Synthesis and characterization[J] J. Polym. Sci., Part A: Polym. Chem, 2007, 45(24):5979-5990
    [42] Bicu I, Mustata F. Ketone derivatives of diels-alder adducts of levopimaric acid with acrylic acid and maleic anhydride: Synthesis, characterization, and polymerization[J] J. Appl. Polym. Sci ,2004, 92(4):2240-2252
    [43] Bicu I, Mustata F. Polymers from a levopimaric acid-acrylonitrile Diels-Alder adduct: Synthesis and characterization[J] J. Polym. Sci., Part A: Polym. Chem, 2005, 43 (24):6308-6322
    [44] Atta A M, Mansour R, Mahmoud I, et al. Epoxy resins from rosin acids: synthesis and characterization[J] Polym. Adv. Technol,2004, 15 (9): 514-522
    [45] Reppe W. et.al. US[P]: 2 066 075, 1936
    [46] Reppe W. et.al. US[P]: 2 118 864, 1936
    [47] Lierpins.R, Marvel.C.S. Polymers from vinyl esters of perhydrogenated rosin[J] J. Polym. Sci., Part A-,1966,4(8):2003-2014
    [48] Lewis J.B, Hedrick.G.W. Vinyl esters of rosin[J] J. Polym. Sci. Part A-1, 1966, 4(8):2026-2027
    [49] Fukuda.W, Marvel.C.S. Polymers from the vinyl ester of dehydroabietic acid[J] J. Polym. Sci., Part A-1,1968,6(5):1281-1291
    [50] Fukuda.W, Marvel.C.S. Polymers from the vinyl esters of different samples of hydrogenated rosins[J] J. Polym. Sci. Part A-1, 1968, 6(4):1050-1054
    [51] Lewis.J B, Lloyd.W.D,Hedrick.G.W. Preparation and some reactions of the vinyl ester of maleopimaric acid[J] J.Org. Chem, 1960,25(7):1206-1208
    [52] Sowa.J R, Marvel.C.S. Preparation of homopolymers and copolymers of vinyl maleopimarate acid anhydride[J] J. Polym. Sci. Part B: polymer letters, 1966, 4(6):431-437
    [53]哈成勇,袁金伦,夏建汉.松香树脂酸乙烯酯的研究——马来海松酸乙烯酯的合成与结构的研究[J]化学试剂,1998, 20 (5):259-261
    [54]哈成勇,袁金伦,夏建汉.CN[P]:1158863
    [55]哈成勇,袁金伦,常东亮. CN[P]:1158864
    [56]夏建汉,哈成勇.松香树脂酸乙烯酯的研究Ⅰ:歧化松香乙烯酯组成与结构的研究[J]天然产物研究与开发,1997, 9 (4):29-33
    [57]哈成勇,袁金伦,夏建汉.松香树脂酸乙烯酯的研究(Ⅱ)——松香树脂酸乙烯酯组成与结构的研究林产化学与工业,1998,18(3):11-14
    [58]哈成勇,袁金伦,陈淑颜等.CN[P]:1160060
    [59]哈成勇,袁金伦,常东亮. CN[P]:1158862
    [60] Fukuda.W, Saga M, Marvel.C.S. Homopolymers and copolymers of vinyl ethers of rosin-derived alcohols[J]. J. Polym. Sci., Part A-1,1968, 6(6):1523-1536
    [61] Lee. J S, Hong S. Synthesis of acrylic rosin derivatives and application as negative photoresist[J]. Eur. Polym. J,2002, 38( 2):387-392
    [62]林明涛,储富祥,马丽等.歧化松香(丙烯酸-2-羟基乙基酯)酯的合成[J]林产化学与工业,2006,26(4):43-47
    [63]陈林,张发爱,余彩丽.氢化松香与甲基丙烯酸β-羟乙酯酯化物的制备[J]精细与专用化学品, 2007, 15(24):12-15
    [64] Hyun-Sung Do, Jin-Hee Park, Hyun-Joong Kim. Synthesis and characteristics ofphotoactive-hydrogenated rosin epoxy methacrylate for pressure sensitive adhesives[J] J.Appl. Polym. Sci,2009, 111(3):1172-1176
    [65] Hyun-Sung Do, Jin-Hee Park, Hyun-Joong Kim. UV-curing behavior and adhesion performance of polymeric photoinitiators blended with hydrogenated rosin epoxy methacrylate for UV-crosslinkable acrylic pressure sensitive adhesives[J] Eur. Polym. J,2009,111(3):1172-1176
    [66] Wengui Duan, Changmao Shen, Huaxiang Fang, et al. Synthesis of dehydroabietic acid-modified chitosan and its drug release behavior[J] Carbohydr.Res,2009,344(1):9-13
    [67] Wengui Duan, Changmao Shen, Huaxiang Fang, et al. Preparation and characterization of the graft copolymer of chitosan with poly[rosin-(2-acryloyloxy)ethyl ester] [J] Carbohydr.Polym.,2008, 73(4):582-586
    [68] Atta A M, El-Saeed S M, Farag R K. New vinyl ester resins based on rosin for coating applications[J] React.Funct.Polym.,2006, 66 (12):1596-1608
    [69]白丽娟,张晓丽,蓝虹云等.功能化松香丙烯醇酯聚合物吸附分离银杏黄酮[J]化学与生物工程, 2007, 24 (3):24-26
    [70]陈春红,段文贵,李行任等.松香烯丙醇酯的合成研究[J]林产化学与工业, 2007, 27(5):57-61
    [71]左振宇,雷福厚,段文贵.马来松香丙烯醇酯聚合物的制备及表征[J]广西民族大学学报:自然科学版, 2007, 13 (1):88-92,103
    [72] Bicu I, Mustata F. Allylic polymers from resin acids[J] Angewandte Makromolekulare Chemie,1997, 246 (1):11-12
    [73]卢建芳,赵慷,雷福厚等. N-(歧化松香基)丙烯酰胺聚合物的合成研究[J]化学与生物工程,2007, 24 (11):12-15
    [74]王剑,储富祥有机硅氧烷—丙烯酸酯乳液研究进展[J]中国胶粘剂,2003, 12 (5):52-55
    [75] C.Wang, F.Chu, C.Graillat, A.Guyot. Hybrid Acrylic-Polyurethane Latexes by Miniemulsion Polymerization[J] Polymer Reaction Engineering, 2003, 11(3):541-562
    [76] Chunpeng Wang, Fuxiang Chu, Alain GUYOT, Catherine GAUTHIER, Fernande BOISSON. Hybrid Acrylic-Polyurethane Latexes : Emulsion Versus Miniemulsion Polymerization[J] J. Appl. Polym. Sci, 2006, 101(6): 3927-3941
    [77] Chunpeng WANG, Fuxiang CHU, Alain GUYOT, Catherine GAUTHIER. Mechanical Properties of Films from Hybrid Acrylic-Polyurethane Polymer Colloids[J] Journal of Dispersion Science and Technology ,2006, 27(3):325-330.
    [78]王春鹏,储富祥,金立维等.不同端基聚氨酯-丙烯酸酯复合细乳液的表征[J]高分子材料科学与工程, 2006, 22(5):90-94
    [79] C.Wang, F.Chu, C.Graillat, A.Guyot , C.Gauthier, J.P.Chapel. Hybrid Polymer Latexes Acrylics-Polyurethane from miniemulsion polymerization: Properties of Hybrid Latexes Versus Blends[J] Polymer, 2005, 46 (4) :1113-1124
    [80] Mingtao Lin, Fuxiang Chu, Alain Guyot, Jean-Luc Putaux, Elodie Bourgeat-Lami. Silicone-polyacrylate composite latex particles. Particles formation and film properties[J] Polymer,2005, 46,1331-1337
    [81]杨玉昆,胡树文.增粘树脂存在下丙烯酸酯分布乳液共聚制备压敏胶1997年全国胶粘剂会议论文预印集北京:出版社不详, 1997.60 63.
    [82]林明涛,蒋煜,储富祥.松香/丙烯酸系复合高分子乳液的制备与性能研究[J]林产化学与工业,2002, 22 (2):17-20
    [83]林明涛,王基夫等细乳液聚合制备松香/丙烯酸复合高分子新材料的研究[J]林业科学,2006,42(10):95-100
    [84] Ramis X, Cadenato A, Morancho J M. Curing of a thermosetting powder coating by means of DMTA, TMA and DSC[J]. Polymer,2003,44:2067-2079
    [85]陈祖芬,祝远姣等.脱氢枞酸单离方法的比较研究[J]生物质化学工程, 2008, 42 (3):9-12
    [86] COMYN.J. Surface characterization of pentaerythritol rosin ester[J]. International Journal of Adhesion and Adhesives, 1995,15 (1):9-14
    [87] Fonseca T, Gigante B, Matilde Marques M, et al. Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid[J]. Bioorganic & Medicinal Chemistry, 2004, 12 (1):103-112
    [88] Shao Li P, G?fvert E, Nilsson U, et al. 15-hydroperoxydehydroabietic acid—a contact allergen in colophony from Pinus species [J]. Phytochemistry,1995, 38 (4):853-857
    [89]蒋福宾,曾华辉.松香基双季铵盐阳离子表面活性剂的合成与性能[J]精细化工,2007, 24 (11):1074-1079.
    [90]王恒山,张业.脱氢松香酸甲酯呋咱衍生物的合成与表征[J]精细化工,2005, 22 (9):709-711
    [91]张晓丽,雷福厚,段文贵.聚松香丙烯醇酯及其氧化物的合成及表征(Ⅰ)——微波加热法合成聚松香丙烯醇酯[J]林产化学与工业,2006, 26 (3):31-36
    [92]雷福厚,段文贵,张晓丽等.聚松香丙烯醇酯及其氧化物的合成及表征(Ⅱ)——大孔网状聚松香丙烯醇酯氧化物的合成研究[J]林产化学与工业, 2007, 27 ( 1):33-37
    [93]赵卫娟,张佐光,孙志杰等.非等温法研究TGDDM/DDS体系固化反应动力学[J]高分子学报,2006, (4):564-568
    [94]沈敏敏,吕满庚,陈用烈等.液晶环氧树脂/蒙脱土纳米复合材料的制备和固化反应动力学研究[J].高分子学报,2005,(2):231~235.
    [95]沈时骏,鲍素琴,翟红波等.树脂/桐油酸酐/蒙脱土纳米复合材料固化动力学[J].应用化学,2004,(2):130~134.
    [96]吴世臻,康庄,吴晓青等.采用差示扫描量热法(DSC)对TDE-85/70#酸酐体系固化动力学的研究[J]天津工业大学学报,2005,24 (6):30-33
    [97]徐卫兵,鲍素萍,沈时俊等.酚醛树脂/蒙脱土纳米复合材料的制备及固化反应动力学研究[J]高分子学报, 2002, (4):457-461
    [98]潘祖仁.高分子化学[M]北京:化学工业出版社,2002,70-145
    [99] A. Thakur, A. K. Banthia, B. R. Maiti. Studies on the kinetics of free-radical bulk polymerization of multifunctional acrylates by dynamic differential scanning calorimetry[J] Appl. Polym. Sci ,1995, 58,959-966
    [100] Ali-Reza Mahdavian, Mojgan Zandi. Thermal and kinetic study of radical polymerization I. Melt state bulk polymerization of acrylamide by DSC[J] Appl. Polym. Sci,2003, 87, 2335-2340
    [101] Ali-Reza Mahdavian, Mojgan Zandi. Kinetic study of radical polymerization II. Solid-state bulk polymerization of sodium methacrylate by differential scanning calorimetry[J] Appl. Polym. Sci,2003, 90, 1648-1654
    [102] Zhenhua Luo, Liuhe Wei, Wanwan Li, et al. Isothermal differential scanning calorimetry study of the cure kinetics of a novel aromatic maleimide with an acetylene terminal[J] Appl. Polym. Sci,2008, 109,525-529
    [103] Kissinger D E. Reaction kinetic in differential thermal analysis. Analytical chemistry, 1957, 29(11):1702-1706
    [104] Hsien-Tang Chiu, Ruey-Er Jeng, Jung-Sheng Chung. Thermal Cure Behavior of Unsaturated Polyester/Phenol Blends[J] Appl. Polym. Sci, 2004, 91, 1041–1058
    [105] D Ro?u, F Mustat ??, CN Ca?caval. Investigation of the curing reactions of some multifunctional epoxy resins using differential scanning calorimetry[J]. Thermochimica Acta,2001, 370, 105-110.
    [106] Worzakowska,M.The kinetic study of the curing reaction of mon- and di-epoxides obtained duringthe reaction of divinylbenzene and hydrogen peroxide with acid anhydrides[J] Polymer,2007, 48,1148-1154
    [107] Weiming Chen, Peng Li, Yunhua Yu, Xiaoping Yang. Curing kinetics study of an epoxy resin system for T800 carbon fiber filament wound composites by dynamic and isothermal DSC[J] Appl. Polym. Sci,2008, 107,1493-1499
    [108] Ghaemy, M.; Khandani, M.H. Kinetics of curing reaction of DGEBA with BF3-Aime complexes using isothermal DSC technique[J] Eur.Polym.J,1998,34,477-486
    [109] Jungang Gao, Min Zhao, Gang Li. Curing kinetics and thermal property characterization of o-CFER/MeTHPA/O-MMT nanocomposite[J] Appl. Polym. Sci,2006, 101, 3023-3032
    [110] Gooch J W, Dong H, Schork F J. Waterborne Oil-Modified Polyurethane Coatings via HybridMiniemulsion Polymerization[J] Appl. Polym. Sci, 2000, 76:105-114
    [111] Anne Koenig, Ulrich Ziener, Axel Schaz, Katharina Landfester. Polyurethane-block-polystyrene Prepared by Polymerization in Miniemulsion[J] Macromolecular Chemitry and Physics, 2007, 208: 155-163
    [112] Grailla C, Bartholir M, Gauthier C, Guyot A. Hybrid acrylic–polyimide latexes from miniemulsion polymerization[J] Polymer International, 2004, 53:536–540
    [113] Tsavalas J G, Luo Y W, Schork F J. Grafting Mechanisms in Hybrid Miniemulsion Polymerization[J] Appl. Polym. Sci, 2003, 87,1825–1836
    [114] Jose M.Asua. Miniemulsion Polymerization[J] Prog. Mater Sci, 2002, 27,1283-1346
    [115]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M]北京:化学工业出版社.2007,16-112
    [116] Ugelstad J,El-Aasser MS,Vanderhoff JW.Emulsion polymerization:initiation of polymerization inmonomer droplets[J] J Polm Sci Lett Ed,1973;11:503-13
    [117]傅和青,张心亚,黄洪等助稳定剂及其对细乳液聚合的影响[J]现代化工, 2004,4(24):62-64
    [118]韩玉贵,祝仰文,庞雪君等.高相对分子质量丙烯酰胺/丙烯酸钾共聚物的制备[J]精细石油化工进展,2006, 7 (6):35-38
    [119]何曼君,张红东,陈维孝等.高分子物理(第三版)[M],上海:复旦大学出版社2006,103-140
    [120]杨玉昆,吕凤亭.压敏胶制品技术手册[M]北京:化学工业出版社, 2004.
    [121]杨玉昆.乳液压敏胶的技术进展[J]粘接, 2007, 28 (5):41-44
    [122] Hayashi S, Kim H J, Kajiyama M, Ono H, Mizumachi H, Zhou Z F. Miscibility and pressure-sensitive adhensive performances of acrylic copolymer and hydrogenated rosin systems[J] Appl. Polym. Sci, 1999,71(4): 651-663.
    [123] Fujita M, Kajiyama M, Takemura A, Ono H, Mizumachi H, Hayashi S. Miscibility between natural rubber and tackfiers. I. Phase diagrams of the blends of natural rubber with rosin and terpene resins[J] Journal of applied polymer science, 1997, 64(11):2191-2197
    [124]王振洪,宋湛谦.松香酯乳液增粘剂的制备和应用研究[J]林产化工通讯,2002, 36 (4):9-15
    [125]王雪荣,焦剑,黄旭东等.增粘树脂在丙烯酸酯乳液胶粘剂中的共聚改性研究[J]中国胶粘剂, 2006, l5 (7):13-16
    [126]廖世珍,梁茹,曹德榕等.松香酯乳液制备工艺研究[J]林产化学与工业, 2004, 24(B08): 97-100
    [127]谢晖,王鹏林.松香酯乳液与高分子乳液复配体的研究与应用[J]林产化学与工业, 1997,17(1):46-50
    [128] Kim B J, Kim S E, Do H S, etal Probe tack of tackified acrylic emulsion PSAs[J] International Journal of Adhesion & Adhesives, 2007, 27: 102-107.
    [129]陈明,洪啸吟.紫外光固化涂料的进展[J]涂料工业, 1999, 29 (12):30-36
    [130]杨永源. UV固化材料进展[J]精细与专用化学品, 2001, 9 (7):9-12
    [131]张文杰,闫富安,王建成等.紫外光固化玻璃涂膜附着力的研究[J]涂料工业, 2006, 36 (12):49-50,58
    [132]胡伟武,杨琦,万力.不同紫外光固化涂料的涂膜性能研究[J]化工新型材料, 2005, 33 (6):33-35,23
    [133] Fourssier J P, Rabek J F. Radiation curing in polymer science and technology[M]. London ;New York :Elsevier Applied Science, 1993.
    [134] Rutsch W, Dietliker K, Leppard D, et al. Recent development in photoinitiators[J] Progress in Organic Coatings, 1996,(27):227-239.
    [135]蒋秋娜,林明涛,王基夫等.紫外光固化纳米SiO2/改性丙烯酸松香杂化涂料的研究[J]生物质化学工程, 2008,42 (6):10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700