用户名: 密码: 验证码:
β沸石膜的制备及其分离催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沸石膜因其具有独特的物理化学性质以及与分子尺寸相近的孔道体系,故能耐高温、化学及生物侵蚀,可在分子级别上进行物质分离,实现催化分离一体化优点,兼具沸石分子筛与无机膜的特性,一直是无机膜领域研究的热点之一。β沸石是迄今为止唯一具有三维交叉孔道、十二元环且硅铝比在较大范围内可调的大孔沸石,它具有较强的热稳定性,较好的吸附性以及适度的酸性,因此,如果将β沸石制成膜,则会在膜分离与膜催化反应器上有着巨大的潜在应用。所以,开展β沸石膜的制备和应用研究,合成出性能优良的β沸石膜具有重要的意义。
     沸石膜研究的关键是对于具有高性能、低成本的沸石分子筛膜的制备。为此,本文首先采用传统路线的模板剂法详细考察了制备β沸石膜的条件,得出了β沸石膜的合成规律,然后在此基础上把导向剂法引入沸石膜的制备中,即在制备沸石膜的过程中,并不像传统的模板剂法那样直接在晶化液中加入大量的有机模板剂,而是首先利用少量的有机模板剂合成出含有β沸石微晶核的沸石结构导向剂,然后用此导向剂代替有机模板剂加入到晶化液中,晶化液在导向剂的导向作用下在载体上晶化生长形成β沸石膜,从而在大量降低模板剂用量的条件下,合成出高质量的β沸石模。然后分别将两种方法合成的膜应用在渗透蒸发分离MeOH/MTBE混合体系上,得到了较好的分离效果;最后为了拓展β沸石膜的应用,在陶瓷管载体上制备了beta-NaA催化分离双功能沸石膜,并且将该双功能膜应用在了乙酸和乙醇的酯化反应中,为β沸石膜在膜反应器上的应用奠定了基础。实验得到的主要结论如下:
     (1)在研究β沸石膜制备前,首先研究了适合作晶种用的小晶粒β沸石的合成条件,考察了晶化液中不同硅源、不同种类模板剂及其含量、碱度和水含量以及晶化温度、晶化时间等对小晶粒β沸石合成的影响。研究结果表明,以活化硅胶为硅源,TEAOH-TEABr为模板剂,按照SiO_2∶0.02Al_2O_3∶0.45(TEA)_2O∶0.061Na_2O∶0.8(NH_4)_2O∶20H_2O的摩尔比配制合成液,在150℃下晶化72 h可得到粒径为200~300 nm的高结晶度小晶粒β沸石。
     (2)研究了在大孔载体管表面预涂晶种的方法,结果表明,对于大孔载体,浸渍提拉预涂晶种法简单易操作且效果好。分别从晶化液组成和模板剂的焙烧脱除等方面对传统的模板剂法在α-Al_2O_3陶瓷管载体表面合成β沸石膜的制备条件进行了考察,结果表明:配制成膜前驱液的最佳摩尔投料比为SiO_2∶Al_2O_3∶Na_2O∶(TEA)_2O∶H_2O=1∶0.02∶0.06∶0.35∶35;在晶化温度为150℃,晶化时间为72 h的条件下,经过6次晶化生长后,能够得到10μm左右厚度的β沸石膜;采用先于氮气气氛下缓慢升温,再于空气气氛下继续焙烧的分两步脱除模板剂的脱模方式较为适宜。用已经得到的最优制备条件再于多孔炭管和多孔不锈钢管载体表面合成β沸石膜,经过比较可知,选用α-Al_2O_3陶瓷管作为载体较为合适。
     (3)考察了β沸石导向剂的制备条件,结果表明:用相对廉价且易于操作的活化硅胶做硅源,能够合成出β沸石导向剂;加料顺序和水含量对导向剂合成的影响较大。详细研究了水量、晶化时间以及晶化温度对导向剂法合成β沸石的结构和结晶度的影响,得到了导向剂法合成B沸石的最优合成条件,为进一步用该法合成β沸石膜奠定了基础。考察了水量,导向剂含量,有机物脱除等对导向剂法合成β沸石膜的影响,得出了导向剂法合成β沸石膜的最优合成条件为:按照1SiO_2∶0.033Al_2O_3∶0.317Na_2O∶28H_2O的摩尔配比配制成硅铝溶胶,然后再加入占该硅铝溶胶体积1/8的沸石结构导向剂,搅拌配制成晶化前驱液,在150℃下,晶化60 h;焙烧方式为先于氮气气氛下焙烧,在于空气下焙烧的分两步焙烧的脱模方式。在最优条件下,经过6次晶化生长的β沸石膜表面连续完整,沸石膜层大约9μm厚。对导向剂法合成的膜和传统的模板剂法合成的膜进行了比较,结果表明:在导向剂法合成膜过程中,价格高昂的有机物TEAOH的消耗量比传统方法少90%,这一方面降低了制膜成本,另一方面由于膜中需要脱除的有机物少,使得在焙烧过程中可能产生的晶间缺陷也少,从而提高了膜的质量。导向剂法不单可以应用在β沸石膜的制备上,还可以应用到其他种类需要有机物来做模板剂的沸石膜的制备中。
     (4)将两种方法合成的β沸石膜分别应用在渗透蒸发分离MeOH/MTBE混合体系中,详细考察了渗透侧压力、进料组成、进料流速和进料温度对该分离的影响;结果表明,导向剂法合成的膜在分离性能上要明显优于传统方法合成的,其最高分离系数达到了9600。
     (5)研究了NaA沸石膜在陶瓷管载体上的合成条件,然后采用导向剂法和模板剂法分别在生长于陶瓷管载体表面的NaA沸石膜表面制备了β沸石膜,最终晶化形成了beta-NaA催化分离双功能沸石膜;将该双功能沸石膜和单一催化功能的β沸石膜应用在了乙酸和乙醇的酯化反应上,通过比较可知,双功能沸石膜由于及时的将反应生成的水移走了,因而打破反应平衡提高了反应的转化率。
Owing to their unique physical and chemical characteristic and similar molecular-sized channel systems, zeolite membranes can not only work at high-temperature, chemical and biological corrosive environments but also have potential applications for separation of different substances at molecular levels and for integration of catalysis and separation processes. In the last decades, zeolite membrane materials drew the growing interests as the cutting age research field in the membrane community. Beta zeolite is a high-silica zeolite possessing a three-dimensional interconnected channel system of 12-O ring large pore and has good heat stability, adsorption capability and proper acidity, so if the beta zeolite membranes can be prepared they will have potential application in separations, even in separation and catalytic membrane reactors due to its unique pore structure and catalytic properties. The research on beta zeolite membrane is very scare, thus it is significant for the beta zeolite membrane to make many efforts on reseach of its preparation and then model application.
     The key for the research is how to prepare the beta zeolite membranes with better performance under the conditions of lower cost. The membrane preparation was firstly investigated using conventional template method and the membrane preparation condition was optimized. This includes the synthesis condition optimization of small crystal-size beta zeolite as the seeds, the work on how to improve the quality of seeded layer on support tubes with 3~5μm pore diameter and the optimization of preparation conditions of beta zeolite membranes. On the other hand, a novel method of beta zeolite structure-directing agent (ZSDA) was developed for the preparation of beta zeolite membrane. First, the synthesis of beta ZSDA was investigated. Then, the optimal preparation conditions of beta zeolite prepared by ZSDA method were investigated from the following aspects respectively: content of water, crystallization time and crystallization temperature. By this ZSDA method, organic templates were substituted with beta ZSDA, as a result, a lot of expensive organic templates were saved compared with the conventional method. Then the membranes prepared by both template method and ZSDA method were applied for the pervaporation separation of MeOH/MTBE mixture. The effects of permeation side pressure, feed composition, feed flow rate and feed temperature on the flux and separation factor were investigated, At last to exploit the application of beta zeolite membranes the beta-NaA bi-founctional zeolite membranes were prepared on theα-Al_2O_3 support tubes and applied as membrane reactor for the esterification of acetic acid with ethanol. The main results achieved are as follows:
     (1) For the synthesis of small crystal beta zeolite, the results indicated that when crystallization temperature and crystallization time were 150℃and 72h beta zeoltes with small crystal-size in the 200~300 nm range could be prepared according to the molar composition of SiO_2: 0.02Al_2O_3: 0.45 (TEA)_2O: 0.061Na_aO: 0.8 (NH_4)20: 20H_2O. Silicate gel was used as silicon source and TEAOH-TEABr was used as template.
     (2) As for the optimal preparation conditions of beta zeolite membranes prepared by conventional template method, it is found that the optimal molar composition of precursor solution is of SiO_2: Al_2O_3: Na_2O: (TEA)_2O: H_2O=1: 0.02: 0.06: 0.35: 35. When the crystallization temperature was 150~C and crystallization time was 72h a continuous and dense membrane with 10μm in thickness, was obtained after 6 synthesis times.Templates were removed by the mode of calcinations in N2 and air orderly. At last beta zeolite membranes were grown on the porous carbon support tubes and porous steel support tubes respectively according to the optimal membranes preparation conditions above obtained. By comparing among the three supports used, it can be known thatα-Al_2O_3 support tubes were the most proper.
     (3) It is found that beta ZSDA can be synthesized by using the silica gel as the silicon source that is cheap and easy operational. Moreover, the feed order and content of water had important effects on the synthesis of ZSDA. And the optimal preparation conditions were confirmed as follows: Silicon-aluminum sol was prepared by the molar composition of 1SiO_2:0.033Al_2O_3:0.317Na_2O:28H_2O; Precursor solution was confected by adding the ZSDA into the sol and the content of ZSDA added was 1/8 of the sol in .volume; Crystallization temperature was 150℃and crystallization time was 60h; The organic agent was removed by the mode of calcinations in N_2 and air orderly; A continuous and dense membrane with 9μm in thickness was obtained after 6 synthesis times. Compared with the conventional template method it can be concluded that by ZSDA method not only 90% of costly organic agent was saved but also the quality of membrane was improved due to the less defect was formed when the less organic agent needed to be removed. This ZSDA method can be extended to zeolite membrane preparation of other types in which organic templates are necessary.
     (4) The membranes prepared by ZSDA method had better performance in pervaporation separation of MeOH/MTBE mixture. The maximum separation factor reached 9600.
     (5) To compare with bi-founctional membranes, single catalytic beta zeolite membranes grown on theα-Al_2O_3 support tubes were also applied in the esterification of acetic acid with. ethanol under the same reaction conditions with that of bi-founcitonal membranes. It can be known from the comparison that conversion rate corresponding to bi-founctional membranes was much higher than that of the single catalytic beta zeolite membranes. This is because the bi-founctionalmembranes had the high performace of removing water, one of the reaction product, so the reaction equribrium was broken and conversion rate was increased.
引文
[1] Uhlborn R J R, Burggraaf A J. Gas separation with Inorganic Membranes. Inorganic Membranes: Synthesis Characteristics and Application. Bhave R R. New York: Van Nostrand Reinhold, 1991,155-178.
    [2] 黄仲涛,曾昭槐,钟邦克等.无机膜技术及其应用.北京:中国石化出版社,1999.
    [3] Hsieh H P. Inorganic Membranes. AIChE Symp.Ser.. New York. 1988,84(261):1
    [4] 徐南平,邢卫红,赵宜江.无机膜技术及其应用.北京:化学工业出版社,2003.
    [5] 张雄福,王金渠,刘长厚.ZSM-5型沸石膜的合成及应用于乙苯脱氢反应研究进展.膜科学与技术.2000,21(2):55-61.
    [6] Afonso M D, Borquez R. Review of the treatment of seafood processing wasterwaters and recovery proteins therein by membrane separation processes-prospects of ultrafitraction of wastewaters from the fish meal industry. Desalination. 2002,142(1):29-45.
    [7] 任建新.膜分离技术及其应用.北京:化学工业出版社,2003.
    [8] Ismail A F, David L I B. A review on the latest development of carbon membranes for gas separation. J.Memb.Sci.. 2001,193(1):1-18.
    [9] 徐南平,刑卫红,王沛.无机膜在工业废水处理中的应用与展望.膜科学与技术.2000,20(3):23-28.
    [10] E.E. McLeary, J.C. Jansen and F. Kapteijn. Zeolite based films, membranes and membrane reactors: Progress and prospects.Microporous and Mesoporous Material.2006,90(1-3): 198-220
    [11] Samuel Heng, King Lun Yeung, Malik Djafer, et al. A novel membrane reactor for ozone water treatment. Journal of Membrane Science.2007,289(1-2): 67-75.
    [12] J. Coronas and J. Santamaria. The use of zeolite films in small-scale and micro-scale applications. Chemical Engineering Science. 2004, 59( 22-23): 4879-4885.
    [13] M.I. Ahmad, S.M.J. Zaidi and S.U. Rahman. Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells. Desalination. 2006, 193(1-3): 387-397
    [14] Bhave R R. Inorganic Membranes: Synthesis, Characteristics and Applications. New York: Van Nostrand Reinhold, 1991:155-157.
    [15] 包健,官建国.聚乙二醇/SiO2固体电解质膜的制备与表征.武汉理工大学学报.2003,25(9):19-21.
    [16] Uemiya S, Kude Y, Sugino K et al. A palladium/porous-glass composite membrane for hydrogen separation. Chem.Lett.. 1988,202(10): 1687-1690.
    [17] 张文龙.严进,蒋柏泉等.管状多孔陶瓷膜载体的研制.南昌大学学报(工科版).1998,20(1):64-68.
    [18] 张延风,卢冠忠,许中强等.分子筛膜的性能和制备研究进展.化学反应工程与工艺.2000,16(1):60-66.
    [19] 阎子峰,纳米催化技术.北京:化学工业出版社,2003.
    [20] O. de la Iglesia, M. Pedernera, R. Mallada, et al. Synthesis and characterization of MCM-48 tubular membranes. Journal of Membrane Science. 2006, 280(1-2):867-875.
    [21] Au L T Y, Yeung K L. An investigation of the relationship between microstructure and permeation properties of ZSM-5 membranes. J.Membr.Sci.. 2001,194(1):33-55.
    [22] Zom M E, Rahne K A, Anderson M A. Characterization of Gas-Phase Adsorption on Metal Oxide Thin Films Using a Magnetoelastic Resonance Microbalance. Anal.Chem.. 2003,75(22): 6223-6230.
    [23] Bein T. Synthesis and applications of molecular sieve layers and membranes. Chem.Mater.. 1996,8(8):1636-1653.
    [24] de Vos R M, Verweij H. High-Selectivity, High-Flux Silica Membranes for Gas Separation. Science. 1998,279:1710-1711.
    [25] 汪猛,王湛,李政雄.膜材料及其制备.北京:化学工业出版社,2003年.
    [26] 徐如人,庞文琴,于吉红等.分子筛与多孔材料化学.北京:科学出版社,2004年.
    [27] Bein T. Synthesis and applications of molecular sieve layers and membranes. Chem.Mater.. 1996,8(8):1636-1653.
    [28] http://topaz.ethz.ch/IZA-SC/StdAtlas.htm
    [29] Breck D W. Zeolite Molecular Sieves: Structure, Chemistry and Use. New York: John Wile & Son, 1974.
    [30] Lubomira T, Valentin P V.nanozeolites: Synthesis, crystallization mechanism,and application. 2005,17:2494-2513.
    [31] Persson A E, Schoeman B J, Stem J et al. The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites. 1994,14:557-566.
    [32] Bu X, Feng P, Stucky G D. large cage zeolite structure with multidimensional 12-ring channels. science. 1997,278(5348):2080-2085.
    [33] Oscar de la Iglesia, Reyes Mallada, Miguel Menendez, et al. Continuous zeolite membrane reactor for esterification of ethanol and acetic acid. Chemical Engineering Journal. 2007,131(1-3): 35-39.
    [34] J. M. Duval, B. Folkerts and M. H. V. Mulder. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents. J. Membr. Sci., 80(1993): 189-198.
    [35] S. Birgul, T.C.Atalay-Oral, M. Tatter et al. Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. J. Membr. Sci., 175(2000): 285-296.
    [36] Weitkamp J. Zeolites and catalysis. Solid State Ionics. 2000, 131:175-188.
    [37] Paul D R, Wiight C T. Gas sorption and transport in UV-irradiated polyarylate copolymers based on tetrarnethyl bisphenol-A and dihydroxybenzophenone. J.Membr.Sci.. 1997,124(2): 161-174.
    [38] Te Hennepe H J C, Bargeman D, Mulder M H V. Excitability, memory and oscillations in artificial acetylcholinesterase membranes. J. Membr.Sci.. 1981,8(1)35-39.
    [39] Jia M, Peineman K V, Behling R D. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation. J.Membr.Sci.. 1991,57(2-3):289-292.
    [40] Jia M, Peineman K V, Behling R D. Preparation and characterization of thin-film zeolite-PDMS composite membranes. J.Membr.Sci.. 1992,73(2-3):119-128.
    [41] Dekker M, Boom R. Improving membrane filtration processes. Trends in Biotechnology. 1995, 13(4): 129-131.
    [42] Duval J M, Folkerts B, Mulder M H V.Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents. J.Membr.Sci.. 1993,80(1): 189-198.
    [43] Birgul S, Atalay-Oral T C, Tatter M et al. Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. J.Membr.Sci.. 2000,175(2): 285-288.
    [44] Wernick D L, Qsterhuber E J. Permeation though a single crystal of Zeolite NaX. J. Membr.Sci.. 1985,22(1):137-146.
    [45] Haydrust D T, Paravar. Zeolites. 1998,8:27.
    [46] Haag W O. Tsikoyiannis J G. Catalytic conversion over membrane composed of a pure molecular sieve. US, USP: 5110478.1992.
    [47] Suzuki H. Stripline filter apparatus and method of making the same. US, USP: 4609892.1987.
    [48] Caro J, Noack M, Kolsch P et al. Zeolite membrane - state of their development and perspective. Micropor.Mesopor.Mater.. 2000,38( 1 ):3-24.
    [49] Jansen J C, Koegler J H, van Bekkum H et al. Zeolitic coatings and their potential use in catalysis. Micropor.Mesopor.Mater.. 1998,21(4-6):213-226.
    [50]Tavolaro A, Drioli E. Zeolite membranes. Adv. Mater.. 1999,11(12):975-994.
    [51] A. Tavolaro and P. Tavolaro. LTA zeolite composite membrane preparation, characterization and application in a zeolitic membrane reactor. Catalysis Communications. 2007, 8(5): 789-794.
    [52] Santamaria J, Coronas J. The us of zeolite films in small-scale and micro-scale applications. Chem.Eng.Sci.. 2004,59:4879-4885.
    [53] Xiaobo Chen, Weishen Yang, Jie Liu and Liwu Lin. Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation. Journal of Membrane Science. 2005, 255(1-2):201-211.
    [54] Suraj Gopalakrishnan, Takeo Yamaguchi and Shin-ichi Nakao. Permeation properties of templated and template-free ZSM-5 membranes. Journal of Membrane Science,2006, 274(1-2): 102-107.
    [55] Jareman F, Andersson C, Hedlund J. The influence of the calcinations rate on silicalite-1 membranes. Micropor.Mesopor.Mater. .2005,79:1-5.
    [56] Kalipcilar H, Gade S K, Noble R D, John L, Falconer J L. Synthesis and separation properties of B-ZSM-5 zeolite membranes on monolith supports. J.Membr.Sci.. 2002,210:113-127.
    [57] Bovornlak O, Michael E M. The preparation and analysis of zeolite ZSM-5 membranes on porous alumina supports. J.Membr.Sci.. 2001,194:3-13.
    [58] Wang Z, Yan Y et al. Controlling Crystal Orientatin in Zeolite MFI Thin Films by Direct In Situ Crystallization. Chem. Mater.. 2001,13:1101-1107.
    [59] Larlus O, Valtchev V, Patarin J et al. Preparation of silicalite-1/glass fiber composites by one-and two-step hydrothermal syntheses. Micropor. Mesopor. Mater.. 2002,56(2):175-184.
    [60] Romanos G.E, Steriotis A, Kikkinides E.S.et al. Innovative methods for preparation and testing of Al_2O_3 supported silicalite-1 membranes. Journal of European Ceramic Society.2001, 21:119-126.
    [61] Coronas J, Falconer J L, Noble R D. Characrerization and Permeation Properties of ZSM-5 Tubulal Membranes. AIChE J.. 1997,42(7):1797-1814.
    [62] Casanave D ,Ciroir-Fendler A ,Sanchez J ,et al . Control of transport properties with a microporous membrane reactor to enhance yields in dehydrogenation reactions. Catal.Today. 1995,25:309-314.
    [63] G.T.P.Mabande, M.Noack, A.Avhale, et al. Permeation properties of bi-layered Al-ZSM-5/Silicalite-1 membranes. Microporous and Mesoporous Materials. 2007, 98(1-3): 55-61.
    [64] Kikuchi E, Yamashita, K, Hiromoto S et al. Synthesis of a zeolitic thin layer by a vapor-phase transport method: appearance of a preferential orientation of MFI zeolite. Micropor. Mater.. 1997,11:107-116.
    [65] Oscar de la Iglesia, Silvia Irusta, Reyes Mallada, et al. Preparation and characterization of two-layered mordenite-ZSM-5 bi-functional membranes: Microporous and Mesoporous Materials. 2006, 93(1-3): 318-324.
    [66] Xomeritakis G, Gouzinis A, Nair S et al. Growth, microstrucrure and permeation properties of supported zeolite (MFI) films and membranes prepared by Secondary growth. Chem.Eng.Sci.1999, 54:3521-3531.
    [67] Nair S, Lai Z, Nikolakis V et al. Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth. Micro.Mesopo.Mater.. 2001,48:219-228.
    [68] Pan M, Lin Y S. Template-free secondary growth synthesis of MFI type zeolite membranes. Micropor.Mesopor.Mater.. 2001,43:319-327.
    [69] Lovallo M C, Gouzinis A, Tsapatsis M. Synthesis and characterization of oriented MFI membranes prepared by secondary growth. AIChE J.. 1998,44(8): 1903-1913.
    [70] Lai Z,Tsapatsis M,Nicolich J P. Siliceous ZSM-5 Membranes by secondary Growth of b-Oriented Seed Layers. Advanced Function Materials. 2004,14(7):716-729.
    [71] Yue Cheng, Jian-Sheng Li, Lian-Jun Wang, et al. Synthesis and characterization of Ce-ZSM-5 zeolite membranes. Separation and Purification Technology. 2006,51 (2):210-218.
    [72] Wang Z, Hedlund J, Sterte J. Synthesis of thin silicalite-1 films on steel supports using a seeding method. Micropor. Mesopor. Mater.. 2002,52(3): 191-197.
    [73] Lai R, Gavalas G R. Surface Seeding in ZSM-5 Membrane Preparation. Ind. Eng. Chem. Res.. 1998,37(11):4275-4283.
    [74] Lovallo M C, Tsapatsis M.. Preferentially oriented submicron silicalite membranes AIChE J.. 1996,42(11):3020-3029.
    [75] Lee S.J, Lee Y.J, Lee T.E, et al. Synthesis of zeolite as ordered muticrystal arrays. Science. 2003,301(5634):818-821.
    [76] Park J.S, Lee G.S, Lee Y.J, et al. Organization of Microcrystals on Glass by Adenine-Thymine Hydrogen Bonding. J.Am.Chem.Soc.. 2002,124:13366-13367.
    [77] Chun Y S, Ha K, Lee Y J et al. Diisocyanates as novel molecular binders for monolayer assembly of zeolite crystals on glass. Chem.Commun.. 2002,1846-1847.
    [78] Wang Z, Yan Y, Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization. Micropor.Mesopor.Mater.. 2001,48:229-238.
    [79] Mabande G T P, Pradhan G, Schwieger W et al. A study of Silicalite-1 and Al-ZSM-5 membrane synthesis on stainless steel supports. Micropor.Mesopor.Mater.. 2004,75:209-220.
    [80] Garcia-Martinez J, Cazorla-Amoros D, Linares-Solano A et al. Synthesis and characterization of MFI-type zeolites supported on carbon materials. Micropor.Mesopor. Mater.. 2001,42(2-3):255-268.
    [81] Berenguer-Murcia A, Garcia-Martinez J, Cazorla-Amoros D et al. Silicalite-1 membranes supported on porous carbon disc. Micropor.Mesopor.Mater.. 2003,59(2-3): 147-159.
    [82] Berenguer-Murcia A, Morallon E, Cazorla-Amoros D et al. Preparation of thin silicalite-1 layers on carbon materials by electrochemical method. Micropor.Mesopor. Mater.. 2003,66(2-3):331-340.
    [83] 邹本雪,张雄福,王同华等.新型管式炭载体上型沸石膜的制备与性能.无机材料学报.2006,21(1):204-210.
    [84] 邹本雪.新型炭基MFI型沸石复合膜的制备及其性能研究:(硕士学位论文).大连:大连理工大学,2005.
    [85] Ikegami T, Yanagishita H, Kitamoto D,et al. Production of highly concentrated ethanol in a coupled fermentation/pervaporation process using silicalite-1 membranes. Biotechnol Tech. 1997,11:921-924.
    [86] Jiang Z D, Wang J Q. Dehydrogenation of ethylbenzene to styrene in an inorganic membrane reactor. Sep.Sci.Technol.. 1998,33(9): 1379-1385.
    [87] Melkon Tatlier, Mesut Demir, Begum Tokay,et al. Substrate heating method for coating metal surfaces with high-silica zeolites: ZSM-5 coatings on stainless steel plates. Microporous and Mesoporous Materials. 2007, 101(3): 374-380.
    [88] Bakker W J W, Kapteijin F, Poppe J et al. Permeation Characteristic of a metal-surpported silicalite-1 membrane. J.Membr.Sci.. 1996,117(1-2):57-78.
    [89] Jung M, Kim M, Hong S. Aging effects in the synthesis of ZSM-5 film. Micropor. Mesopor. Mater.. 1998,26:153-159.
    [90] Zhou J, Lia P, Zhang S et al. Zeolite-modified microcantilever gas sensor for indoor air quality control. Sensors and Actuators B. 2003,94:337-342.
    [91] Dong J, Lin Y S, Hu M Z. et al. Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes. Micropor.Mesopor. Mater.. 2000,34(3):241-253.
    [92] Noack M, Kolsh P, Caro et al. MFI membranes of different Si/Al ratios for pervaporation and steam permeation. Micropor.Mesopor.Mater.. 2000,35-36:253-265.
    [93] Raileanr M, Popa M, Moreno J et al. Preparation and characterization of alumina supported silicalite-1 membranes by sol-gel hydrothermal method. J.Membr.Sci.. 2002, 210(2): 197-207.
    [94] Zhao H, Jin T, Kuraoka K et al. A novel method for the synthesis of ZSM-5 zeolite membranes on a porous alumina tube: the role of a dry-gel barrier in pores. Chem.Commun.. 2000,1621-1622.
    [95] 李永生,江志东,王金渠.在多孔α-Al_2O_3陶瓷管上合成ZSM-5沸石膜.大连理工大学学报.2000,40(1):57-60.
    [96] 李永生,王金渠,鲍仲英,郭树才.在载体上引入晶种合成ZSM-5沸石膜.石油学报.2000,16(5):31-35.
    [97] 李永生,王金渠.晶种涂层对合成ZSM-5沸石膜影响.大连理工大学学报.2000,40(5):546-551.
    [98] 李永生,王金渠,郭树才.ZSM-5沸石晶粒尺寸对合成膜性能的影响.石油学报.2000,16(6):51-56.
    [99] 李永生,王金渠,郭树才.高渗透率ZSM-5沸石膜的合成.高等学校化学学报.2000,12(21):1812-1814.
    [100] 李永生,王金渠,郭树才.ZSM-5沸石膜内孔结构的研究.燃料化学学报.2000,28(4):356-361.
    [101] Li Y, Zhang X, Wang J et al. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis. Sep.Purif.Technol.. 2001,25(1-3):459-466.
    [102] Li Y, Wang J, Shi J et al. Synthesis of ZSM-5 zeolite membranes with large area on porous, tubular α-Al_2O_3 supports. Stud.Surf.Sci.Catal.. 2003,32(1-3):397-401.
    [103] Jiang Z D, Wang J Q. Dehydrogenation of ethylbenzene to styrene in an inorganic membrane reactor. Sep. Sci.Technol.. 1998,33(9):1379-1385.
    [104] 刘建亮.纯硅沸石膜的合成及在乙苯脱氢制苯乙烯中的应用:(硕士学位论文).大连:大连理工大学硕士学位论文,2005.
    [105] 张雄福,王金渠,刘海鸥等.沸石膜反应器乙苯脱氢反应性能.高校化学工程学报.2001,15(2):121-126.
    [106] 122[111]张雄福,王金渠,殷德宏等.多孔陶瓷管基膜上合成ZSM-5沸石膜新方法.大连理工大学学报.2000,40(6):673-675.
    [107] 王金渠,王国强,江志东等.ZSM-5沸石膜合成中几个影响因素.大连理工大学学报.1998,38(6):654-660.
    [108] 李军,张建华,龙英才.堇青石载体表面Silicalite-1沸石膜的合成与表征.化学学报.2000,58(4):371-373.
    [109] Zhang X, Wang J. Factors affecting the synthesis of hetero-atom zeolite Fe-ZSM-5 membrane. Sep.Purif.Technol.2003,32(1-3):151-158.
    [110] Zhang X, Li Y, Wang J et al. Synthesis and characterization of Fe-MFI zeolite membrane on a porous α-Al_2O_3 tube. Sep.Purif.Technol..2001,25(1-3):269-274.
    [111] 樊栓狮.ZSM-5沸石膜的合成及渗透性能研究(硕士学位论文).大连:大连理工大学.1993.
    [112] 李永生.ZSM-5沸石膜的合成及渗透性能研究(博士学位论文).大连:大连理工大学,2001.
    [113] 张雄福.ZSM-5型沸石膜的合成、表征及反应性能研究(博士学位论文).大连:大连理工大学,2000.
    [114] Suraj Gopalakrishnan, Takeo Yamaguchi and Shin-ichi Nakao. Permeation properties of templated and template-free ZSM-5 membranes. Journal of Membrane Science. 2006, 274(1-2): 102-107.
    [115] Ahunbay M G, Elliott J R, Talu O. The Diffusion Process of Methane though a Silicalite-1 Single Crystal Membrane. J.phys.Chem.B. 2002,106(20):5163-5168.
    [116] Zhu W, Gora L, van den Berg A W C et al. Water vapour separation from permanent gases by a zeolite-4A membrane. 2005,253(1-2):57-66.
    [117] Xu X, Bao Y, Song C et al. Synthesis, characterization and single gas permeation properties of NaA zeolite membrane. J.Membr.Sci..2005,249:51-64.
    [118] Aoki K, Kusakabe K, Morooka. Preparation of oriented A-type zeolite membranes. AIChE J.. 2000,46(1):221-224.
    [119] Ma Y H, Zhou Y, Poladi R, Engwall E, The synthesis and charaterization of zeolite A membranes. Sep.Purif.Technol.. 2001,25:235-240.
    [120] 王金渠,李铮.A型沸石膜的制备及其在气体脱湿中的应用.膜科学与技术.1998,18(2):54-58.
    [121] 张雄福,刘海鸥,王金渠等.用亚微米级晶种涂层合成NaA沸石膜及其结构表征.催化学报.2004,25(7):586-590.
    [122] 梁玉秀,鲁金明,李邦民等.在粗孔α-Al_2O_3管上制备NaA沸石膜.过程工程学报.2003,3(3):251-255.
    [123] 董强.NaA型沸石分子筛膜的合成及渗透性能的研究:(博士学位论文).南京:南京工业大学,2001.
    [124] Bonaccorsi L, Proverbio E. Microvave assisted crystallization of zeolite A from dense gels. J.Cryst.Grownth. 2003,247(2):555-562.
    [125] 程志林,晁自胜,方维平等.微波场中NaA分子筛膜合成规律的研究.无机材料学报,2003,18(6):1306-1312.
    [126] Xu X, Yang W, liu J et al. Synthesis of a high-permeance NaA zeolite membrane by microwave heating. Adv.Mater.. 2000,12(3): 195-198.
    [127] Han Y, Ma H, Qiu S et al. Preparation of zeolite A membranes by microwave heating. Micropor.Mesopor.Mater.. 1999(30):321-326.
    [128] Xu X, Yang W, Liu J et al. Synthesis of NaA zeolite membrane by microwave heating. Sep.Purif.Technol.. 2001,25:241-249.
    [129] Bonaccorsi L, Proverbio E. Synthesis of thick zeolite 4A coatings on stainless steel. Microp.Mesopor.Mater.. 2004,(74):221-229.
    [130] Yin X, Zhu G, Yang W et al. Stainless-steel-net supported zeolite NaA membrane with high permeance and high permselectivity for Oxygen over Nitrogen. Adv.Mater.. 2005,(17):2006-2010.
    [131] Zhang X, Zhu W, Liu H et al. Novel tubular composite carbon-zeolite membranes. Mater.Lett.. 2004,58:2223-2226.
    [132] Okamoto K, Kita H, Horii K et al. Zeolite NaA membrane: Preparation,single-gas permeation,and pervaporation and vapor permeation of water/organic liquid mixtures. Ind. Eng.Chem.Res.. 2001,40:163-175.
    [133] Xu X, Yang W, liu J et al. Synthesis of NaA zeolite membranes from clear solution. Micropor.Mesopor.Mater.. 2001,43(3):299-911.
    [134] Jafar J J, Budd P M. Separation of alcohol/water mixtures by pervaporation though zeolite A membranes. Micropor.Mesopor.Mater.. 1997,12(4-6):305-311.
    [135] Okamoto K, Kita H, Horii K et al. Zeolite NaA membrane: prepatration, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Micropor. Mesopor.Mater.. 2001,40(1):163-175.
    [136] Morigami Y, Kondo M, Abe J et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep. Purif. Technol.. 2001,25:251-260.
    [137] Xu X, Yang W, Liu J et al. Synthesis and perfection evaluation on NaA zeolite membrane. Sep.Purif.Technol.. 2001,25:475-485.
    [138] Jafar J J, Budd P M, Hughes R. Enhancement of esterification reaction yield using zeolite A vapour permeation membrane. J.Membr.Sci.. 2002,199(1): 117-123.
    [139] Kulak A, Lee Y J, Park Y S et al. Anionic surfactants as nano-tools for the alignment of non-spherical zeolite nanocrystals. Adv.Mater.. 2002,14(7):526-529.
    [140] Ha K, Park J S, Oh K S et al. Aligned monolayer assembly of zeolite crystals on platinum,gold, and indium - tin oxide surfaces with molecular linkages, Micropor. Mesopor. Mater.. 2004,72:91-98.
    [141] Kusakabe K, Kuroda T, Murata A, Morooka S. Formation of a Y-type zeolite membrane on a porous α-alumina tube for gas separation. Ind.Eng.Chem.Res.. 1997,36:649-655.
    [142] Coutinho D, Kenneth J, Balkus J. Preparation and characterization of zeolite NaX X membranes via pulsed-laser Ablation deposition. Micropor.Mesopor.Mater.. 2002,52(1):79-93.
    [143] 许中强,卢冠忠,陈庆龄.二次生长法在多孔载体上制备X型分子筛膜.催化学报.2000,21(5):489-493.
    [144] Hasegawa Y, Watanabe K, Kusakabe K et al. The separation of CO_2 using Y-type zeolite membranes ion-exchanged with alkali metal cations. Sep.Purif.Technol.. 2001,22-23:319-325.
    [145] Jeong B H, Sotowa K I, Kusakabe K. Catalytic dehydrogenation of cyclohexane in a FAU-type zeolite membrane reactor. J.Membr.Sci.. 2003,224:151-158.
    [146] Kita H, Asamura H, Tanaka K et al. Preparation and pervaporation properties of X- and Y-type zeolite membranes. ACS Sym.Ser.. 2000,744:330-341.
    [147] Kita H, Fuchida K, Horita T, Asamura H, Okamoto K. Preparation of faujasite membranes and their permeation properties. Sep.Purif.Technol.. 2001,25(2):261-268.
    [148] Hasegawa Y, Kusakabe K, Morooka S. Selective oxidation of carbon monoxide in hydrogen-rich mixtures by permeation though a platinum-loaded Y-type zeolite membrane. J. Membr.Sci.. 2001,190(1):1-8.
    [149] Kusakabe K, Kuroda T, Morooka S. Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes. J.Membr. Sci.. 1998,148(1):13-23.
    [150] Okada K, Kuboyama K, Takei T et al. In situ zeolite NaX coating on glass fibers by soft solution process. Micropor.Mesopor.Mater.. 2000,37(1-2):99-105.
    [151] Kumakiri, Yamaguchi T, Nakao S. Preparation of Zeolite A and Faujasite Membranes from a Clear Solution. Ind.Eng.Chem.Res.. 1999,38(12):4682-4688.
    [152] 许中强,卢冠忠,陈庆龄等.X型分子筛膜的制备及渗透性能的改善.石油炼制与化工.2001,32(9):43-48.
    [153] 许中强,陈庆龄,卢冠忠.在多孔陶瓷载体上X型分子筛生长成膜的研究.石油化工.2000,29(8):578-581.
    [154] Li S G,Tuan Vu A,Falconer J L.X-type zeolite membranes: preparation, characterization, and pervaporation performance. Micropor.Mesopor.Mater.. 2002,53(1):59-70.
    [155] Nikolakis V, Xomeritakis G, Abibi A. Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures. J. Membr. Sci.. 2001,184(2):209-219.
    [156] Web K, Noack M, Sieber I. Permeation of single gases and gas mixtures though faujasite-type molecular sieve membranes. Micropor.Mesopor.Mater.. 2002,54(1):27-36.
    [157] Li S G, Yuan Vu A, Falconer J L. Separation of 1,3-Propanediol from Aqueous Solutions Using Pervaporation though an X-type Zeolite Membrane. Ind.Eng.Chem.Res.. 2001,40(8): 1952-1959.
    [158] Matsufuji T, Nishiyama N, Ueyama K et al. Crystallization of ferrierite (FER) on a porous alumina support by a vapor-phase transport method. Micropor.Mesopor.Mater.. 1999, 32:159-168.
    [159] Nishiyama N, Matsufuji T, Ueyama K et al. FER membrane synthesized by a vapor-phase transport method: its structure and separation characteristics. Micropor.Mater.. 1997, 12(4-6):293-303.
    [160] Matsufuji T, Nakagawa S, Nishiyama N et al. Synthesis and permeation studies of ferrierite/alumina composite membranes. Micropor.Mesopor.Mater.. 2000,38:43-50.
    [161] Seijger G B F, Palmaro S G, Krishna K et al. In situ preparation of ferrierite coatings on structured metal supports. Micropor.Mesopor.Mater.. 2002,56:33-45.
    [162] Seijger G B F, van den Berg A, Riva R et al. In situ preparation of ferrierite coatings on cordierite honeycomb supports. Appl.Catal. A: General. 2002,236:187-203.
    [163] 祝刚,王金渠,鲁金明等.在多孔α-Al_2O_3陶瓷管上合成ZSM-35型沸石膜.化工学报.2006,51(4):987-991.
    [164] Zhu G, Wang J, Tong H. Synthesis and Characterization of Zeolite ZSM-35 Membrane on Porous α -Al2O3 Tubes. Proceedings of Eight International Conference on Inorganic Membranes, Cincinnati, USA, 2004, 262-265.
    [165] Zhu G, Wang J, Zhang Y et al. Preparation and Permeance of ZSM-35/FER-type Zeolite Membranes on Porous Stainless Steel Supports. Proceedings of ninth International Conference on Inorganic Membranes, Norway, 2006, 611-615.
    [166] 许中强,陈庆龄,卢冠忠等.用水热法在氧化铝陶瓷膜管上原位合成丝光沸石膜.催化学报.2000,21(4):151-157.
    [167] Pieara E, Salmon M A, Coronas J et al. Synthesis, characterization and separation properties of a composite mordenite/ZSM-5/chabazite hydrophilic membrane. J.Membr.Sci.. 1998,149(1):99-114.
    [168] 张延风.丝光沸石膜的制备及其在酯化膜反应中的应用:(博士学位论文).上海:华东理工大学,2002.
    [169] 张延风,许中强,陈庆龄.用水热合成法在氧化铝陶瓷膜管上合成丝光沸石膜.催化学报.2001,22(4):402-404.
    [170] 张延风,许中强,陈庆龄.小晶粒丝光沸石膜的制备和表征.催化学报.2002,23(2):145-149.
    [171] Zhang Y, Xu Z, Chen Q. Synthesis of small crystal polycrystalline mordenite membrane. J.Membr.Sci.. 2002,210:361-368.
    [172] 厉刚,林瑞森,菊地英一等.丝光沸石复合膜的制备及其影响因素.浙江大学学报(理学版).32(4):423-427.
    [173] Balkus K J, Sottile L J, Gnade B E et al. The preparation and characterization of AlPO_4 thin films via laser ablation of AlPO_4. Thin Soild Films. 1995,260(1):4-9.
    [174] Munoz T, Balkus K J. Preparation of FeAPO-5 Molecular Sieve Thin Films and Application as a Capacitive Type Humidity Sensor. Chem.Mater.. 1998,10(12):4114-4122.
    [175] Mintova S, Mo S, Bein T. Nanosized AlPO4-5 Molecular Sieves and Ultrathin Films Prepared by Microwave Synthesis. Chem.Mater.. 1998,10(12):4030-4036.
    [176] Poshusta J C, Tuan V A, Falconer J L et al. Synthesis and Permeation Properties of SAPO-34 Tubular Membranes. Ind.Eng.Chem.Res.. 1998,37(10):3924-3929.
    [177] Jhung S H, Chang J S, Huang J S et al. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Micropor.Mesopor.Mater.. 2003,64(1-3):33-39.
    [178] 王爱琴.蜂窝陶瓷载体上沸石分子筛的原位合成及在deNOX中的应用:(博士学位论文).大连:中国科学院大连化学物理研究所博士论文,1999.
    [179] Dong J, Lin Y S. In Situ Synthesis of P-Type Zeolite Membranes on Porous α-Alumina Supports. Ind.Eng.Chem.Res.. 1998,37(6):2404-2409.
    [180] 祝刚,王金渠,鲁金明.P型沸石膜的合成及表征.过程工程学报.2004,4(4):352-357.
    [181] Su B, Provoost C. Zeolite P on the outer surface of α-A1203support: synthesis and charaterization. Xiong G. 7th international conference on inorganic membranes, Daiian:Dalian institute of chemical physics press. 2002, 100-101.
    [182] Zhu G, Wang J. Study of P-type zeolite membrane on a long tubular ceramic support. Proceedings of Eight International Conference on Inorganic Membranes, Cincinnati, USA, 2004, 608-612.
    [183] Balkus K J, Munoz Jr T, Gimon-Kinsel M E. Preparation of Zeolite UTD-1 Films by Pulsed Laser Ablation: Evidence for Oriented Crystal Growth. Chem.Mater.. 1998,10(2): 464-466.
    [185] Balkus K J, Scott A S. Zeolite Coatings on Thee-Dimensional Objects via Laser Ablation. Chem.Mater.. 1999,11(2):189-191.
    [186] Munoz J T, Balkus K J. Preparation of Oriented Zeolite UTD-1 Membranes via Pulsed Laser Ablation. J.Am.Chem.Soc.. 1999,121(1):139-146.
    [187] Balkus K J, Scott A S, Gimon-Kinsel M E et al. Oriented films of mesoporous MCM-41 macroporous tubules via pulsed laser deposition. Micropor.Mesopor.Mater.. 2000, 38(1):97-105.
    [188] Liu C Y, Wang J, Li B. Preparation and characterization of ordered mesoporous silica membrane. J.Non-crystalline solids. 2005,351 (5):409-412.
    [189] Nishiyama N, Koide A, Egashira Y et al. Mesoporous MCM-48 membrane synthesized on a porous stainless steel support. Chem.Commun.. 1998,2147-2148.
    [190] 刘春艳,介孔氧化硅分子筛膜的仿生合成与表征:(博士学位论文).大连:大连理工大学,2005.
    [191] Tuan V A, Li S, John L. et al. In situ crystallization of beta zeolite membranes and their permeation and separation properties. Chem.Mater.. 2002,14:489-492.
    [192] Maloncy M L, van den Berg A W C, Gora L et al. Preparation of zeolite beta membranes and their pervaporation performance in separating di-from mono-branched alkanes. Micropor. Mesopor. Mater.. 2005,85:96-103.
    [193] 李贤森,项寿鹤.沸石分子筛复合膜的制备及其分离水中微量苯酚和苯的性能.2000,21(5):457-478.
    [194] 余少兵,李永红,陈洪钫.支撑β分子筛膜的制备.膜科学与技术.2004,24(5):1-5.
    [195] Cheng M, Hu G, Tan D et al. Vertically oriented MCM-22 zeolite crystal films. Micropor. Mesopor.Mater.. 2001,50:69-76.
    [196] Kalipcilar H, Bowen T C, Noble R D et al. synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports. Chem.Mater.. 2002,9:3458-3464.
    [197] Marlow F, Hill W, Caro J, Finger G. Raman Study of PNA in the Pores of the Molecular Sieve. AlPO4-5. J. Raman Spec.. 1993,(24): 603-612.
    [198] Mintova S, Mo Shangyi, Bein T. Nanosized AlPO4 -5 Molecular Sieves and Ultrathin Films Prepared by Microwave Synthesis. Chem Mater,1998, (10):4030-4036.
    [199] Han Y, Ma H, Qiu S L,et al. Preparation of zeolite A membranes by microwave heating[J].Microporous and Mesoporous Materials. 1999,30:321-326.
    [200] Lucio Bonaccorsi, Edoardo Proverbio. Microvave assisted crystallization of zeolite A from dense gels.[J] Journal of Crystal Grownth, 2003, (247):555-562.
    [201] Yan Y, Davis M E, Gavalas G R. Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment. J Membr Sci,1997,123(1):95-103.
    [202] Geus ER, Van Bekkum H. Calcination of large MFI-type single crystals, Part 2: Crack formation and thermomechanical properties in view of the preparation of zeolitemembranes [J].. Zeolites, 1995, 15: 333 -341.
    [203] J. LP, Q. T. Nguyen, et al. Preparation and p roperties of ZSM-5 zeolite membrane obtained by low-temperature chemical vapor deposition [J]. Desalination, 2002,147: 321-326.
    [204] Matsufuji, Nishiyama, et al. Crystallization of ferrierite (FER) on a porous alumina support by a vapor-phase transportmethod [J]. Microporous andMesoporousMaterials, 1999, 32:159-171.
    [205] Mikihiro Nomura, Takeo Yamaguchi, et al. Transport phenomena through intercrystalline and intracrystalline pathways of silicalite zeolite membranes [J]. Journal of Membrane Science, 2001, 187: 203-212.
    [206] Coronas J.Noble R.D.,Falconer J.L. et al. Separation of C4 and C6 Isomers in ZSM-5 Tubular Membranes. Ind.Eng.Chem.Res.1998,37(1):166-176.
    [207] Smetana J F, Falconer J L, Noble R D. Separation of methyl ethyl ketone from water by pervaporation using a silicalite membrane. J. Mem. Sci.1996,114(1): 127-130.
    [208] Wegner K, Dong J, Lin Y S. Polycrystalline MFI zeolite membranes:xylene pervaporation and its implication on membrane microstructure. J. Mem. Sci. 1999,158(1-2): 17-27.
    [209] Liu Q, Noble R D, Falconer J L et al.Organics/water separation by pervaporation with a zeolite membrane. J.Mem. Sci. 1996, 117 (1-2): 163-174.
    [210] Sano T, Hasegawa M, Kawakami Y et al. Separation of methanol/methyl-tert-buty ether mixture by pervaporation using silicalite membrane. J. Mem. Sci.1995, 107(2):193-196.
    [211] Sano T, Yanagishita H , Kiyazumi Y et al.Separation of ethnol/water mixture by silicalite membran on pervaporation. J. Memb. Sci.1994, 95: 221-228.
    [212] Matsuda H, Yanagishita H, Kitamoto D et al. Preparation of silicalite pervaporation membrane with ethal permselectivity by a 2-step hydrothermal synthesis.Sep.Sci.Tech.2001,36:3305-3311.
    [213] Bowen T C, Li Noble R.D et al. Driving force for pervaporation through zeolite membranes. J. Membr. Sci. 2003,225:165-172.
    [214] Bowen T C. Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes. J. Mem. Sci. 2004, 245 (1-2): 1-33.
    [215] Wadlinger. R. L, Kerr. G.T, Rosinski. E.J. Catalytic composition of a crystalline zeolite [P]. U.S.Pat: 3,308,069, 1967.
    [216] Treacy. M.M, Newsam. J.M. Two new three-dimensional twelve-ring zeoliteframeworks of which zeolite beta is a disordered intergrowth. Nature, 1988, 322(17): 249-251.
    [217] J.B. Higgins, R.B. Lapierre, J.L. Schlenker, et al. The framework topology of zeolite beta. Zeolites, 1988, 8(66): 446-452.
    [218] Paul A. Wright,* Wuzong Zhou,* Joaquin Perez-Pariente, and Mar Arranz. Direct Observation of Growth Defects in Zeolite Beta. J. Am. Chem. Soc. 2005, 127 (2):494 -495.
    [219] Tetsu Ohsuna, Zheng Liu, Osamu Terasaki, Kenji Hiraga, and Miguel A. Camblor. Framework Determination of a Polytype of Zeolite Beta by Using Electron Crystallography. J. Phys. Chem. B 2002, 106: 5673-5678.
    [220] V. D. Vleugel, J. M. Walterbos. Zeolite Beta Preparation. E. P. Appl.. 187522, 1986.
    [221] 周群,裘式纶,庞文琴.导向剂法合成β沸石的晶化机制研究.高等学校化学学报.2000,21(1):1-4.
    [222] Eapen M J, REDDY K S N, Shiralkar V R. Hydrothermal Crystallisation of Zeolite Beta Using Tetraethyl-Ammonium Bromide[J]. Zeolites, 1994,14:295-302.
    [223] Caullet P, Guth J L, Faust A C. Zeolite Beta and Their Manufacture[P]. US patent, 5171556
    [224] Rubin M K, Zeolite Beta[P]. EP, 159846, 1985.
    [225] Wang Z B, Kamo A, Komatsu T, et al. Isomerization of n-heptane over Pt-loaded Zeolite β Catalysts Appl Catal A: General. 1997, 159(1-2):119-132.
    [226] Wang I ,Tsai T C, Huang S T. Dispropornation of Toluene and of Trimethylbenzene and their Transalkylation over Zeolite Beta. Ind Eng Chem Res. 1990, 29:2005-2012.
    [227] Bellussi G, Pazzuconi G, Perego C, et al. Liquid Phase Alkylation of Bezene with Light Olefins Catalyzed by Beta-zeolites. EniChemical-Sinopec Seminar, Xian, 1996:172.
    [228] 王延吉,赵新强,苑保国.离子交换型β沸石在酯化反应中的应用[J].催化学报.1997,4:3312334.
    [229] 赵振华.丁酸戊酯在用硫酸改性的Hβ沸石上的催化合成[J].合成化学.2002,10:539-541.
    [230] 刘志坚,廖建军,谭经品.甲醇脱水生成二甲醚的沸石催化剂.石油化工.1999,28:236~250.
    [231] J.F. Denayer, W. Souverijns, P.A. Jacobs,et al. High-Temperature Low-Pressure Adsorption of Branched C5-C8 Alkanes on Zeolite Beta,ZSM-5, ZSM-22, Zeolite Y, and Mordenite.J. Phys. Chem. B. 1998, 102: 4588-4597.
    [232] K. Huddersman, M. Klimczyk. Separation of Branched Hexane Isomers Using Zeolite Molecular Sieves. AIChE J. 1996, 42: 405-412.
    [233] K. S. N. Reddy, M. J. Eapen, H. S. Son, et al. Sorption Properties of Cation-Exchanged & Zeolites. J. Phys. Chem.. 1992, 96: 7923-7928.
    [234] Camblor M A, Mifsud A, Perez-Pariente J. Influnce of Synthesis Sonditions on the Crystallization of Zeolite Beta[J]. Zeolites, 1991,11: 792-797.
    [235] Iton L E, Trouw F, Rum T O, et al. Small-Angel Neutron-Scattering Studies of the Template-mediated Crystallization of ZSM-5-type zeolite. Langmuir. 1992, 8:1045-1048.
    [236] Camblor M A, Perez-Pariente J. Crystallization of Zeolite Beta: Influnce of Na~+ and K~+ ions[J]. Zeolites, 1991,11: 202-207.
    [237] den Ouden C. J. J., Tompson R.W.. Ind Eng Chem Res. Analysis of zeolite crystallization using the "crystallization curve".1992, 31: 369-373.
    238 Li J L, Liang Y H, Ben C K et al. Synthesis of zeolite β and catalytic isomerization of n-hexane over Pt/H-β catalysts. Appl Catal. 1991, 69: 49-63.
    [239] Ha Kwang, Lee Y. J., Lee H. J., et al. Facile Assembly of Zeolite Monolayers on Glass, Silica, Alumina, and Other Zeolites Using 3-Halopropylsilyl Reagents as Covalent Linkers. Adv. Mater. [J]. 2000, 12,(15):1114-1117.
    [240] E.bourgeat-Lami, F.D. Renzo, F. Fajula, Mechanism of the Thermal Decomposition of the Tetraethylammonium in Zeolite.Beta.. J. Phy. Chem.. 1992, 96 (9): 3807-3811.
    [241] Jonas Hedlund, Johan Sterte, Marc Anthonis, et al. High-flux MFI membranes. Microporous and Mesoporous Materials. 2002,52: 179-189.
    [242] 周群,李宝宗,裘式纶等.导向剂法合成低硅铝比β-沸石,高等学校化学学报[J],1999,20:693-699.
    [243] 祁晓岚,刘希尧,陈钢等.四乙基溴化铵.氟化物复合模板剂合成β沸石(Ⅱ)—β沸石晶化过程研究.高等学校化学学报,2000,21(8):1161-1166.
    [244] Robert W. van Gemert *, F. Petrus Cuperus. Newly Developed Ceramic Membranes for Dehydration and Sseparation of Organic Mixtures by Pervaporation. Journal of Membrane Science. 1995,105: 287-29.
    [245] Hidetoshi Kita, Tsutomu Inoue, Hidetoshi Asamura, et al. NaY Zeolite Membrane for the Pervaporation Separation of Methanol-methyl Tert-butyl Ether mixtures. Chem Commun. 1997:45-46.
    [246] M. Noack, P. Ko" lsch, J. Caro,et al. MFI Membranes of Different Si/Al Ratios for Pervaporation and Steam Permeation. Microporous and Mesoporous Materials. 2000, (35-36): 253-265.
    [247] Tsuneji Sano, Masaru Hasegawa, Yusuke Kawakami,et al. Separation of Methanol/methyl-tert-butyl Ether Mixture by Pervaporation Using Silicalite Membrane. Journal of Membrane Science.1995, (107):193-196.
    [248] http://topaz.ethz.ch/IZA-SC/FMPro?-db=Atlas_main.fp5 &-lay=web%201ayout&-format=FWtopology.htm&STC=LTA&-find
    [249] 申少华,李爱玲,张术根等.A型沸石的水热制备及生长机制研究[J].硅酸盐学报.2003,31(8):732-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700