用户名: 密码: 验证码:
大气压介质阻挡放电冷等离子体合成纳米晶TiO_2的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锐钛矿相TiO_2是一种用途广泛的材料,如在半导体光催化、染料敏化的太阳能电池、自清洁等方面具有重要应用。在这些实际应用中,需使用TiO_2薄膜而非其粉体。若在热敏或不耐热的基底材料(如有机聚合物、织物等)上制备TiO_2薄膜,则必需低温制备方法。冷等离子体化学气相沉积是一种非常合适的低温型制备方法,但大多需要复杂的放电装置和真空系统。介质阻挡放电是一种装置简单、能耗低,并可在大气压下产生冷等离子体的放电方式,本文开展了将其应用于合成锐钛矿相纳米晶TiO_2的研究,取得了如下结果:
     1.采用体相介质阻挡放电,在大气压和低温下,以TiCl_4和O_2为钛源和氧源,首次一步合成出锐钛矿相纳米晶TiO_2,并考察了供氧方式、TiCl_4与O_2摩尔比(R_(TiCl4/O2))及放电功率对合成纳米晶TiO_2的影响。
     相同条件下,采用分流供氧方式可获得高结晶度的纳米锐钛矿相TiO_2,而采用混合供氧方式获得的主要是无定型TiO_2。分流供氧方式的发射光谱中,可观测到非常强的Ar原子(4p→4s电子跃迁)、Ti原子谱线;而混合供氧方式的发射光谱中,只观测到比较弱的Ar原子(4p→4s电子跃迁)谱线。
     纳米晶TiO_2的锐钛矿相特征峰A(101)强度随R_(TiCl4/O2)值呈峰形变化,该结果与发射光谱测得的Ar、Ti原子谱线强度随R_(TiCl4/O2)值的变化规律是完全一致的。
     XRD、SAED、TEM表征结果表明,随着放电功率的提高,TiO_2的结晶度逐渐提高,纳米粒子的粒径逐渐减小。另外,EDX的结果表明,结晶度高的样品中残留Cl较少。
     质谱在线检测表明,合成纳米晶TiO_2的等离子体反应稳定进行,前驱体TiCl_4可被完全转化,气相主要产物是氯气。
     2.发展出一种适应于制备多孔载体负载的纳米晶TiO_2光催化剂的“吸附—放电”方法,即在载体填充的介质阻挡放电反应器中,先使TICl_4吸附在载体上,然后吸附态TiCl_4被等离子体氧化。如此“吸附—放电”循环。
     采用“吸附—放电”方法,成功地制备出具有高的光催化活性和性能稳定的负载型纳米晶TiO_2/γ-Al_2O_3光催化剂。本实验条件下,采用6次“吸附—放电”循环时,所制备的光催化剂活性最高。
     质谱对等离子体氧化吸附态TiCl_4气相产物的在线检测表明,整个放电阶段未检测到有关TiCl_4的质谱信号,气相氧化产物Cl_2的质谱信号随放电时间呈峰形变化,放电阶段结束时吸附态TiCl_4基本上全部被氧化。发射光谱研究表明,等离子体氧化吸附态TiCl_4过程中,O原子的谱峰(777.0nm,3~5p→3~5S)基本消失,Ar原子的谱峰(772.4nm,4~2P_(1/2)→4~2S_(1/2);794.8nm,4~2P_(3/2)→4~2S_(3/2))显著减弱;当吸附态TiCl_4完全消耗后,O和Ar原子的这些谱峰又恢复到原有强度。
     3.采用共面式介质阻挡放电,探索了一种大气压冷等离子体化学气相沉积制备纳米晶TiO_2薄膜的新方法。本方法适应于各种材质的基体,尤其适应于不耐热的基体材料。
     采用本方法,在常温常压下首次成功地制备出纳米晶TiO_2薄膜。SEM和AFM对TiO_2薄膜形貌的观测结果表明,薄膜由尺度均一(20~25nm)的纳米球状粒子组成,薄膜表面平整光滑,表面粗糙度的RMS值为0.42nm。另外,断面SEM图片显示TiO_2薄膜与基底紧密结合,二者之间没有明显的界面。划痕试验的进一步测试表明,TiO_2薄膜与基底结合牢固,临界载荷约为27N。UV-Vis吸收光谱研究表明,TiO_2薄膜对可见光具有高透过性,70nm厚的膜约能透过92%的可见光;但对紫外光具有很强的吸收性,薄膜中TiO_2的带隙能量约为3.3 eV。HRTEM给出的清晰可辨的晶格衍射条纹及SAED显示的明亮的衍射斑点,证实了本方法在常温常压下制备的TiO_2薄膜主体结构是锐钛矿相,并混有少量金红石相。
     纳米晶TiO_2薄膜对光催化降解硬脂酸反应较好地符合一级反应动力学。
Anatase TiO_2 plays an important role in extensive applications such as photocatalysis, dye-sensitized solar cells and self-cleaning. Among these applications, TiO_2 films are usedinstead of TiO_2 powders. Low temperature film-fabrication processes are essential for allthermally sensitive or unstable substrate materials such as organic polymers, textiles. Coldplasma chemical vapor deposition (CVD) is highly competent for low temperature fabrication, but low pressure incorporated with sophisticated discharge and vacuum systems has mainlybeen adopted. Dielectric barrier discharge (DBD) is a simple and low-cost approach forgenerating cold plasma at atmospheric pressure. Thereby, DBD has been used to synthesizenanocrystalline anatase TiO_2 in this paper. The results are as follows:
     1. Using volume DBD, for the first time, nanocrystalline anatase TiO_2 was successfullysynthesized from TiCl_4 and O_2 precursors with one-step procedure at atmospheric pressureand low temperature. The effects of the mode of feeding O_2, the molar ratio of TiCl_4 to O_2(R_(TiCl4/O2)) and discharge power were investigated.
     At the same conditions, highly nanocrystalline anatase TiO_2 was achieved feeding O_2seperated from TiCl_4, whereas amorphous structure was mainly formed feeding O_2 mixedwith TiCl_4. In the optical emission spectra, the former gives very strong atomic Ar (4p→4stransition) and Ti emissions, while the latter gives weak atomic Ar (4p→4s transition)emissions. Intensity variation of the characteristic peak, corresponding to anatase A(101), with R_(TiCl4/O2) tends to be a single peak. This is in a good agreement with intensity variationof atomic Ar and Ti emissions with R_(TiCl4/O2). From XRD, HRTEM and SAED measurements, it was found that TiO_2 crystalline increases and the particle size decreases with the increase indischarge power. Also, it was found that the chlorine contamination dramatically decreases athigh discharge power from EDX measurements.
     MS in-situ measurements proved that the plasma processes for synthesizingnanocrystalline TiO_2 proceeded stably. TiCl_4 precursor was almost completely consumed andCl_2 was the main gaseous product.
     2. Using a cyclic "adsorption-discharge" approach, nanocrystalline TiO_2 photocatalystsupported on porous materials was prepared, i.e. in a support-filled DBD reactor, TiCl_4 wasfirst adsorbed ontoγ-Al_2O_3 pellets and then the adsorbed-state TiCl_4 was oxidized to TiO_2 inO_2/Ar plasma generated by DBD.
     Using this cyclic "adsorption-discharge" approach, the supported nanocrystallineTiO_2/γ-Al_2O_3 photocatalysts, showing high photocatalytic activity and stability, wereprepared successfully. At the experimental conditions, TiO_2/γ-Al_2O_3 photocatalysts preparedby using 6 cycles give the highest photocatalytic activity.
     According to MS in-situ measurements, no peak related to TiCl_4 appears during O_2/Ardischarge for oxidizing the adsorbed-state TiCl_4. MS signal of the gaseous product, Cl_2, roserapidly at the first several minutes of discharge, followed by a slow increase to a maximum, and then decreased gradually to the baseline at the complete consumption of theadsorbed-state TiCl_4. Compared with O_2/Ar discharge in the absence of adsorbed TiCl_4, thepresence of adsorbed TiCl_4 led to a dramatic decrease of the atomic O (777.0nm, 3~5P→3~5S)and Ar (772.4 nm, 4~2P_(1/2)4 ~2S_(1/2); 794.8nm, 4~2P_(3/2)→4 ~2S_(3/2)) emissions. When the adsorbedTiCl_4 was completely consumed, the atomic O and Ar emissions reached nearly the sameintensity as that of the case without TiCl_4 adsorption.
     3. Using coplanar DBD, an atmospheric-pressure, cold plasma CVD approach fornanocrystalline TiO_2 thin film fabrication was explored. This process allows TiO_2film-deposition on a wide range of materials especially on heat-sensitive materials likeorganic polymers.
     Nanocrystalline TiO_2 films were successfully fabricated, for the first time, through thiscoplanar DBD-induced plasma CVD route at atmospheric pressure and room temperature.SEM and AFM images indicate that the extremely flat surface of the as-deposited TiO_2 films, composed of uniform-size nanospheres (20~25 nm in diameter), with 0.42 nm of thestatistical root-mean-square (RMS) roughness. The fractured cross-section SEM image showsthat the TiO_2 films appear to have uniform and compact structure over the substrate.Additionally, scratch adhesion test result, giving 27 N of the critical load, proves that theas-deposited TiO_2 films have good adhesion onto the substrate. The UV-Vis spectra showmore than 92% visible light transparency and strong UV absorption for the deposited TiO_2layer with~70 nm thickness. Band gap energy for the as-deposited TiO_2 films was estimatedat 3.3 eV. The clear lattice configuration shown in HRTEM images and the bright diffractionspots shown in SAED patterns strongly support that the as-deposited TiO_2 films are quitecrystalline with anatase formation prevalent under co-presence of both very fine anatase andrutile nanocrystals.
     As photocatalysts for the destruction of stearic acid the as-deposited TiO_2 films weretested and the kinetics of stearic acid destruction are first order.
引文
[1] 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社,2002,6-38.
    [2] 申泮文,车云霞.无机化学丛书(第八卷,钛分族).北京:化学工业出版社,1999,39-41.
    [3] Tanaka K, Capule M F V, Hisanga T. Effect of crystallinity of TiO_2 on its photocatalytic action. Chem. Phys. Lett., 1991, 187: 73-76.
    [4] 张立德,牟季美著.纳米材料和纳米结构.北京:科学出版社,2001,51-67.
    [5] 袁哲俊,编著.纳米科学与技术.哈尔滨:哈尔滨工业大学出版社,2005,186-193.
    [6] Linsebigler A L, Lu G Q, et al. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95: 735-758.
    [7] Hoffmann M R, Martin S T, et al. Environmental application of semiconductor photocatalysis. Chem. Rev., 1995: 95, 69-96.
    [8] Mills A, Lee S K. A web-based overview of semiconductor photochemistry-based current commercial applications. Journal of Photochemistry and Photobiology A: Chemistry. 2002, 152: 233-247.
    [9] Anissian L, et al. Abstract 862, Transations of 5th world biomaterials congress. Canads: Toronto, 1996, May 29~June 2.
    [10] 余家国,赵修建.TiO_2纳米粉体的溶胶—凝胶工艺制备和光催化活性表征.中国粉体技术,2000,6(2):7-10.
    [11] Zhu Y F, Zhang L, Gao C. The synthesis of nanosized TiO_2 powder using a sol-gel method with TiCl_4 as a precursor. J Mater Sci., 2000, 35: 4049-4054.
    [12] 沈伟韧,贺飞,赵文宽等.TiO_2纳米粉体的制备及光催化活性.武汉大学学报,1999,45(4):389-392.
    [13] Liu X H, Yang J. Wang L. An improvement on sol-gel method for preparing ultrafine and crystallized titania powder. Mater. Sci. & Eng., 2000, A269: 241-245.
    [14] 祖庸,李晓娥,卫志贤.超细TiO_2的合成研究.西北大学学报,1998,28(1):51-56.
    [15] 卫志贤,李晓娥,祖庸等.溶胶—凝胶法制备纳米二氧化钛小试放大研究.无机盐工业,1998,30(5):5-7.
    [16] 黄元龙,赵光明.溶剂、催化剂对TiO_2溶胶—凝胶过程转的影响.功能材料,1997,28(1):37-41.
    [17] 包定华,顾豪爽等.Sol-Gel法合成TiO_2纳米粉末和薄膜.无机材料学报,1996,11(3):453-458.
    [18] 罗莉,丁星兆,程黎放.用溶胶—凝胶法制备的纳米TiO_2粉末的结构.材料科学进展,1993,7(1):52-56.
    [19] 尹荔松,周歧发,唐新桂等.溶胶—凝胶法制备纳米TiO_2的凝胶过程机理研究.功能材料,1999,30(4):407-409.
    [20] 栾伟玲,高濂,郭景坤.溶胶-凝胶法制备纳米BaTiO_3粉体的影响因素.无机材料学报,1999,14(6):861-865.
    [21] 张汝冰,刘宏英,李凤生.均匀沉淀法制各纳米TiO_2及其在环保方面的应用.环境化学,1999,18(6):579-583.
    [22] 胡晓力,尹虹,胡晓洪.用均匀沉淀法制备纳米TiO_2粉体.中国陶瓷,1997.33(4)5-8.
    [23] 赵旭,王子忱,赵敬哲等.球形TiO_2的制备.功能材料,2000,31(3):303-305.
    [24] 祖庸,李晓娥,任莉等.一种制备纳米级二氧化钛的新方法.CN 1192992A.
    [25] 沈兴海,高宏成.W/O微乳液中纳米微粒的形成.化学通报,1995,11:6-9.
    [26] 施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用.功能材料,1998,29(2):136-139.
    [27] Sakai H, Kawahara H, Dhimazaki M, et al. Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition. Langmuir, 1998, 14:2208-2212.
    [28] Schmidt J, Guesdon C, Schomacker. Engineering aspects of preparation of nanocrystalline particles in microemulsions. Journal of Nanoparticles Research, 1999, 1: 267-276.
    [29] Higgins R J, Goldsmith R L. Process and system for production of inorganic nanoparticle. U. S. Patent 5, 879, 715.
    [30] Hirai T, Sato H, Komasawa I. Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide. Ind. Eng. Chem. Res., 1993, 32:3014-3019.
    [31] Cheng H M, Ma J M, Zhao Z G, et al. Hydrothermal preparation of uniform nanosized rutile and anatase particles. Chem. Mater., 1995, 7:663-671.
    [32] 郑燕青,施尔畏,元如林等.二氧化钛晶粒的水热制备及其形成机理研究.中国科学(E辑),1999,29(3):206-213.
    [33] Zheng Y Q, Shi E W, Cui S X. Hydrothermal preparation of nanosized brookite powders. J. Am. Ceram. Soc., 2000, 83(10): 2634-2636.
    [34] 陈代荣,孟祥建,李博等.偏钛酸作前驱体水热合成TiO_2粉体.无机材料学报,1997,12(1):110-114.
    [35] Komameni S, Rajha R K, Katsuki H. Microwave-hydrothermal processing of titanium dioxide. Materials Chemistry and Physics, 1999, 61: 50-54.
    [36] Adschiri T, Hakuta Y, Sue K. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. Journal of Nanoparticles Research, 2001, 3: 227-235.
    [37] 杨宏昀,李春忠.一次氧气对氢氧火焰水解制各纳米TiO_2颗粒的影响.华东理工大学学报,2003,29(5):484-488.
    [38] 施利毅,李春忠,房鼎业等.TiCl_4-O_2体系高温反应制备超细TiO_2光催化材料的研究.无机材料学报,1999,14(5):717-725.
    [39] 施利毅,李春忠,陈爱平等.高温气溶胶反应器中制备纳米TiO_2颗粒的形态与结构.华东理工大学学报,1999,25(2):151-155.
    [40] Jang H D, Kim S K, Kim S J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalyitc properties. Journal of Nanoparticles Research, 2001, 3:141-147.
    [41] 施利毅,李春忠,谷宏晨等.气相合成二氧化钛超细粒子的形态及其光催化性.环境科学学报,2000,20(2):134-138.
    [42] Oh S M, Park D W. Production of ultrafine titanium dioxde by dc plasma jet. Thin Solid Films, 2001, 386: 233-238.
    [43] Oh S M, Kim S S, Lee J E. Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma. Thin Solid Films, 2003, 435: 252-258.
    [44] Kato Y, Yokobayashi H, Kasuya A. Oxygen-deficient anatase precipitated from high-temperature plasma. J. Am. Ceram. Soc., 2004, 87: 166-169.
    [45] 徐海萍,孙彦平,王俊文等.TiO_2纳米微晶的RF-PCVD法制备及表征.材料科学与工艺,2005,13(4):411-414.
    [46] 展红全,孙彦平,徐海萍.RF-PCVD法制备条件对纳米TiO_2微晶的影响.钛工业进展,2004,21(5):29-33.
    [47] 徐海萍,孙彦平,王俊文.RF-PCVD法TiO_2纳米晶的粒径与晶型控制.稀有金属材料与工程,2005,34(7):1089-1093.
    [48] 郑国梁,程如烟.常压微波等离子体气相法制取纳米二氧化钛.钛工业进展,2001,5:22-24.
    [49] Ayllon J A, Figueras A, Garelik S, et al. Preparation of TiO_2 powder using titanium tetraisopropoxide decomposition in a plasma enchanced chemical vapor deposition (PECVD) reactor. Journal of Materials Science Letters, 1999, 18: 1319-1321.
    [50] Bai H, Chen C, Lin C, et al. Monodisperse nanoparticle synthesis by an atmospheric pressure plasma process: an example of a visible light photocatalyst. Ind. Eng. Chem. Res., 2004, 43(22): 7200-7203.
    [51] 朱新河,严立,徐久军.常压非平衡等离子体辅助TiO_2纳米粉的制备.大连海事大学学报,2003,29(2):78-81.
    [52] Alexandrescu R, Dumitrache F, Morjan I, et al. TiO_2 nanosized powders by TiCl_4 laser pyrolysis. Nanotechnology, 2004, 15: 537-545.
    [53] 胡春,王怡中.凹凸棒负载TiO_2对偶氮染料和纺织废水光催化脱污.环境科学学报,2001,21(1):123-125.
    [54] Yu J G, Zhao X J, Zhao Q N. Effect of film thickness on the grain size and photocatalytic activity of the sot-gel derived nanometer TiO_2 thin films. Journal of Materials Science Letters, 2000. 19: 1015-1017.
    [55] 朱永法,何俣,张利.多孔薄膜型TiO_2光催化剂及其环境净化研究.宁夏大学学报(自然科学版),2001,22(2):217-218.
    [56] 李传峰,钟顺和.溶胶-凝胶法合成聚酰亚胺二氧化钛杂化膜.高分子学报,2002,3(3):326-310.
    [57] 颜秀茹,郭伟巍,宋宽秀等.载体SiO_2上纳米TiO_2膜的制备及光催化性能.太阳能学报,2001,22(2):196-199.
    [58] 张玉红,吴鸣,熊国兴等.溶胶-凝胶法制备TiO_2复合陶瓷光催化膜:制备前驱物对膜性质的影响.功能材料,2000,31(5):536-538.
    [59] 贺飞,唐怀军,赵文宽等.二氧化钛光催化自洁功能陶瓷的研制.武汉大学学报(理学版),2001,47(4):419-424.
    [60] Matsuda A, Matoda T. Formation of anatase nanocrystals-precipitated silica coatings on plastic substrates by the sol-gel process with hot water treatment. Journal of Sol-Gel Science and Technology, 2003, 27: 61-69.
    [61] Shimizu K, Imai H, Hirashima H, et al. Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films, 1999, 351: 220-224.
    [62] 李莉,魏子栋,李兰兰.电沉积纳米材料研究现状.电镀与精饰,2004,26(3):9-14.
    [63] Zhou M, Lin W Y, Tacconi N R, et al. Metal semiconductor electrocomposite and comparison of photoactivity of anatase and rutile modifications. J of Electroanalytical Chem., 1996, 402: 221-224.
    [64] Shigehito D, Yoshifumi A, Osamu H, et al. Titanium oxide thin films prepared from aqueous solution. Chemistry Letters, 1996, 6(5): 433-434.
    [65] Miao L, Tanemura S, Jin P, et al. Simultaneous epitaxial growth of anatase and futile TiO_2 thin films by RF helicon magnetron sputtering. Journal of Crystal Growth, 2003, 254: 100-106.
    [66] Miyata T, Tsukada S, Minami T. Prearation of anatase of TiO_2 thin films by vacuum arc plasma evaporation. Thin Solid Films, 2006, 496: 136-140.
    [67] Wang T M, Zheng S K, Hao W C, et al. Studies on photocatalytic activity and transmittance spectra of TiO_2 thin films prepared by r.f. magnetron sputtering method. Surface and Coatings Technology, 2002, 155: 141-145.
    [68] Zheng S K, Wang T M, Hao W C, et al. Improvement of photocatalytic activity of TiO_2 thin film by Sn ion implantation. Vacuum, 2002, 65: 155-159.
    [69] Zheng S K, Wang T M, Xiang G, et al. Photocatalytic activity of nanostructured TiO_2 thin films prepared by dc magnetron sputtering method. Vacuum, 2001,62: 361-366.
    [70] Wang C, Wang T M, Zheng S K. Investigation of the photoreactivity of nanocrystalline TiO_2 thin film by ion-implantation technique. Physica E, 2002, 14: 242-248.
    [71] Zheng S K, Wang T M, Wang C. Photocatalytic activity study of TiO_2 thin films with and without Fe ion impantation. Nuclear Instruments and Methods in Physics Research B, 2002, 187: 479-484.
    [72] Zheng S K, Xiang G, Wang T M, et al. Photocatalytic activity studies of TiO_2 thin films prepared by r.f. magnetron reactive sputtering. Vacuum, 2004, 72: 79-84.
    [73] Zhang W J, Li Y, Zhu S L, et al. Imfluence of argon flow rate on TiO_2 photocatalyst film deposited by dc reactive magnetron sputtering. Surface and Coatings Technology, 2003, 182:192-198.
    [74] 候亚奇,庄大明,张弓等.中频交流反应溅射TiO_2薄膜的制备及性能研究.真空科学与技术,2000,21(6):457-460.
    [75] 懂昊,张永熙,杨锡良等.直流反应磁控溅射制备二氧化钛薄膜的光催化性研究.真空科学与技术,2000,20(4):252-255.
    [76] Mills A, Lepre A, Elliott N. Characterisation of the photocatalyst Pilkington ActivTM: a reference film photocatalyst? Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160:213-224.
    [77] Sheel D W. McCurdy R J, Hurst S J. Method of depositing tin oxide and titanium oxide coatings on fiat glass and the resulting coated glass. Patent Application WO 98/06675.
    [78] Ha H Y, Nam S W, Lim T H. Properties of the TiO_2 membranes prepared by CVD of titanium tetraisopropoxide. Journal of Membrane Science, 1996, 111: 81-92.
    [79] Gauthier V, Bourgeois S, Sibillot P, et al. Growth and characterization of AP-MOCVD iron doped titanium dioxide thin films. Thin Solid Film, 1999, 340: 175-182.
    [80] O'neill S A, Parkin I P, Clark R J H, et al. Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass. J. Mater. Chem., 2003, 13: 56-60.
    [81] Mills A, Lee S K, Lepre A. Spectral and photocatalytic characteristics of TiO_2 CVD films on quartz. Photochem. Photobiol. Sci., 2002, 1: 865-868.
    [82] O'neill S A, Clark R J H and Parkin I P. Anatase thin films on glass from the chemical vapor deposition of titanium chloride and ethyl acetate. Chem. Mater., 2003, 15: 46-50.
    [83] 郭玉,张溪文,韩高荣.掺氮二氧化钛薄膜的常压化学气相沉积及其结构性能研究.真空科学与技术学报,2006,26(3)190-194.
    [84] 刘鹏.常压化学气相沉积法二氧化钛薄膜的制备与掺杂性能研究:(硕士论文).杭州:浙江大学,2004.
    [85] Byun D, Jin Y, Kim B, et al. Photocatalytic TiO_2 deposition by chemical vapor deposition. Journal of Hazardous Materials, 2000, B73:199-206.
    [86] 金海岩,黄长河.用MOCVD方法生长二氧化钛膜的研究.半导体学报,1997,18(2):97-102.
    [87] 崔丽萍,张建明.用MOCVD法制备TiO_2薄膜.太原理工大学学报,2003,34(2):222-225.
    [88] Zhang G, Griffin G L. Gas phase kinetics for TiO_2 CVD: hot wall results. Thin Solid Films, 1995, 263: 65-71.
    [89] Aarik J, Aidla A, Uustare T, et al. Morphololgy and structure of TiO_2 thin films grown by atomic layer depositon. Journal of Crystal Growth, 1995, 148: 268-275.
    [90] Aarik J, Aidla A, Mandar H, et al. Atomic layer growth of epitaxial TiO_2 thin films from TiCl_4 and H_2O on Al_2O_3 substrates. Journal of Crystal Growth, 2002, 242:189-198.
    [91] Matero R, Rahtu A, and Ritala M, In situ quadrupole mass spectrometry and quartz crystal microbalance studies on the atomic layer deposition of titanium dioxide from titanium tetrachloride and water. Chem. Mater., 2001, 13: 4506-4511.
    [92] Aarik J, Aidla A, Mandar H, et al. Atomic layer deposition of titanium dioxide from TiCl_4 and H_2O: investigation of growth mechanism. Applied Surface Science, 2001, 172:148-158.
    [93] Kukli K, Ritala M, Schuisky M, et al. Atomic layer deposition of titanium oxide from Til_4 and H_2O_2. Chemical Vapor Depositon, 2000, 6(6): 303-310.
    [94] Pore V, Rahtu A, Leskela M, et al. Atomic layer deposition of photocatalytic TiO_2 thin films from titanium tetramethoxide and water. Chemical Vapor Deposition, 2004, 10(3): 143-148.
    [95] Rahtu A and Ritala M. Reaction mechanism studies on titanium isopropoxide-water atomic layer deposition process. Chemical Vapor Deposition, 2002, 8(1): 21-28.
    [96] 申灿,刘雄英,黄光周.原子层沉积技术及其在半导体中的应用.真空,2006,43(4):1-6.
    [97] Battiston G A, Gregori R, Porchia M. PCVD of amorphous TiO_2 thin films: effect of growth temperature and plasma gas composition. Thin Solid Films, 2000, 371:126-131.
    [98] Maeda M, Watanabe T. Evaluation of photocatalytic properties of titanium oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films, 2005, 489: 320-324.
    [99] Ha H, Moon B K, Horiuchi Y. Structure and electric properties of TiO_2 films prepared by cold plasma torch under atmospheric pressure. Materials Science and Engineering, 1996, B41: 143-147.
    [100] Szymanowski H, Sobczyk A, Lipman G M. Plasma enhanced CVD deposition of titanium oxide for biomedical applications. Surface & Coatings Technology, 2005, 200: 1036-1040.
    [101] Nakamura M, Makino K, Sirghi L. Hydrophilic properties of hydro-oxygenated TiO_x films prepared by plasma enhanced chemical vapor deposition. Surface & Coatings Technology, 2003, 169/170: 690-702.
    [102] Furman P, Gluszek J, Masalski J. Titanium dioxide obtained using the MOCVD method on 316L steel. Jounal of Materials Science Letters, 1997, 16: 471-472.
    [103] Masalski J, Gluszek J and Furman P. Titanium dioxide film obstained using the PACVD method on 316L steel. Journal of Materials Science Letters, 1995, 14: 587-588.
    [104] Gluszek J, Masalski J, Furman P, et al. Structural and electrochemical examinations of PACVD TiO_2 films in ringer solution. Biomaterials, 1997, 18(11): 789-794.
    [105] Karches M, Morstein M, Rohr P R. Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catalysis Today, 2002, 72: 267-279.
    [106] Morstein M, Karches M, Bayer C. Plasma CVD of ultrathin TiO_2 film on powders in a circulating fluidized bed. Chem. Vap. Deposition, 2000, 6(1): 16-20.
    [107] Nakamura M, Kato S, Aoki T. Formation mechanism for TiO_X thin film obtained by remote plasma enchanced chemical vapor deposition in H_2-O_2 mixture gas plasma. Thin Solid Films, 2001, 401: 138-144.
    [108] 刘东平.介质阻挡放电制备类金刚石薄膜及沉积机制研究.(博士论文).大连:大连理工大学,2000.
    [109] 曹亚安,谢腾峰,张昕彤等.TiO_2纳米粒子膜表面性质的研究.物理化学学报,1999,15(8):680-683.
    [110] 曹亚安,丁兰,马颖等.TiO_2纳米粒子膜的表面态性质对光催化活性的影响.高等学校化学学报,1999,20(11):1787-1789.
    [111] Cao Y A, Meng Q J, Yang W S, et al. Effent of plasma treatment on surface properties of TiO_2 nanoparticulate films. Colloids and Surface A: Physicochem. Eng. Aspects, 2005, 262: 181-186.
    [112] Moriya T, Matsuyama T, Yamamoto H. A hybrid process of EFCM (electrostatic formation of ceramic membrane) and SPCP (surface corona discharge induced plasma chemical process). Journal of Electrostatics, 2003, 58:185-195.
    [113] 徐学基,诸定昌编著.气体放电物理.上海:复旦大学出版社,1996,309-335.
    [114] Pashaie B, Dhall S K, Honea F L. Electrical characteristics of a coaxial dielectric barrier discharge. J Phys. D: Appl. Phys., 1994, 27:2107-2110.
    [115] Kogelschatz U, Eliasson B, Egli W. Dielectric barrier discharge principle and applications. J Phys Ⅳ France, 1997, 7: C4-46-66.
    [116] 凌一鸣,徐建军.介质阻挡无声放电中电子温度和电子能量分布的探针诊断.电子学报,2001,29:218-221.
    [117] 刘钟阳,吴彦,王会宁.等离子体反应器放电功率测里的研究.仪器仪表学报,2001,22:78-83.
    [118] 徐学基,揭亚雄.介质阻挡放电击穿过程的研究.复旦学报(自然科学版)1997,36:268-274.
    [119] Xu X J. Dielectric barrier discharge-properties and applications. Thin solid Film, 2001, 390: 237-242.
    [120] Gibalov V I, Pietsch G J. The development of. dielectric barrier discharge in gas gaps and on surfaces. J. Phys. D: Appl. Phys., 2000, 33:2618-2636.
    [121] He F, Feng S, Wang J Q, et al. Observation of self-erase of wall charge in coplanar DBD. J. Phys. D: Appl. Phys., 2006, 39 (16): 3621-3624.
    [122] Stefecka M, Kando M, Cernak M, et al. Spatial distribution of surface treatment efficiency in coplanar barrier discharge operated with oxygen-nitrogen gas mixtures. Surface & Coatings Technology, 2003, 174: 553-558.
    [123] Engeman J, Korzec D. Assessment of discharges for large area atmospheric pressure plasma-enhanced chemical vapor deposition. Thin Solid Films, 2003, 442: 36-39.
    [124] Wang C Q, He X N. Effect of atmospheric pressure dielectric barrier discharge air plasma on electrode surface. Appl. Surf. Sci., 2006, 253(2): 926-929.
    [125] Thyen R, Hopfner K, Klake N. Cleaning of silicon and steel surfaces using dielectric barrier discharges. Plasmas and Polymers, 2000, 5(2): 91-102.
    [126] Liu D P, et al. Plasma-assisted CVD of hydrogenated diamond-like carbon films by low-pressure dielectric barrier discharge. J. Phys. D: Appl. Phys., 2001, 34:1651-1656.
    [127] Schmidt S K, et al. Thin films deposition from hexamethyldisiloxane and hexame-thyldisilazane under dielectric-barrier discharge (DBD) conditions. Plasmas and Polymers, 2000, 5(3/4): 173-190.
    [128] Lee Y H, Yeom G Y. Properties and applications of a modified dielectric barrier discharge generated at atmospheric pressure. Japanese J. of Appl. Phys. part 1-Regular Papers Short Notes & Review Papers, 2005, 44 (2): 1076-1080.
    [129] Scott S J, Figgures C C, Dixon D G. Dielectic barrier discharge processing of aerospace materials. Plasma Soures Science & Technology, 2004, 13(3): 461-465.
    [130] Shi X M, Yuan Y K, Sun Y Z, et al. Experimental research of inactivation effect of low-temperature plasma on bacteria. Plasma Science & Technology, 2006, 8(5): 569-572.
    [131] Ono R, Oda T. Ozone production process in pulsed positive dielectric barrier discharge. J. Phys. D: Appl. Phys., 2007, 40(1): 176-182.
    [132] Kozlov K V, Michel P and Wagne H E. Synthesis of organic compounds from mixtures of methane with carbon dioxide in dielectric-barrier discharges at atmospheric pressure. Plasma and polymers, 2000.5(3-4): 129-150.
    [133] Rosocha L A, Kim Y, Anderson G K, et al. Decomposition of ethane in atmospheric-pressure dielectric barrier discharge: experiments. IEEE Transactions on Plasma Science, 2006, 34(6): 2526-2531.
    [134] Mok Y S, Jo J. Degradation of organic contaminant by using dielectric barrier discharge reactor. IEEE Transactions on Plasma Science, 2006, 34 (6): 2624-2629.
    [135] Borcia G, Chiper A, Rusu I. Using a He+N_2 dielectric barrier discharge for the modification of polymer surface properties. Plasma Sources Science & Technology, 2006, 15(4): 849-857.
    [136] Bogdanov E A, Kudryavtsev A A. 2D Simulations of short-pulsed dielectric barrier discharge xenon excimer lamp. Contributions to Plasma Physics, 2006. 46 (10): 807-816.
    [137] Choi K C, Shin N H. Lee K S, et al. Study of vaious coplanar gaps discharges in ac plasma display panel. IEEE Transations on Plasma Science, 2006: 34 (2), 385-389.
    [138] Ganter R, Ouyang J, Callegari T, et al. Physical phenomena in a coplanar macroscopic plasma display cell II: comparisons between experiments and models. J. Appl. Phy., 2002, 91(3): 1000-1007.
    [139] Bugaev S P, Korotaev A D, Oskomov K V. α-C:H films deposited in the plasma of barrier and surface discharge at atmospheric pressure. Surface & Coating Technology, 1997, 96: 123-128.
    [140] Liu D P, et al. Deposition of diamond-like carbon films by barrier discharge plasma with 1.4 and 20 kHz power sources. Thin Solid Film, 2002, 414: 163-169.
    [141] Liu D P, et al. Diagnosis of dielectric barrier discharge CH_4 plasma for diamond-like carbon film deposition. Diamond and Related Materials. 2002, 11: 1491-1495.
    [142] Liu D P, et al. Surface Roughness of various diamond-like carbon films. Plasma Science & Technology. 2006, 8(6): 701-708.
    [143] 刘艳红,张家良,王卫国.CH_4或CH_4+Ar介质阻挡放电中的离子能量和类金刚石膜制备.物理学报,2006,55(3):1458—1463.
    
    [144] Thyen R, et al. Plasma-enhanced chemical-vapour-deposition of thin films by corona discharge at atmospheric pressure. Surface and Coatings Technology, 1997, 97: 426-434.
    [145] Sonnenfeld, et al. Deposition process based on organosilicon precursors in dielectric barrier discharges at atmospheric pressure-a comparison. Plasmas and Polymers, 2001, 6(4): 237-266.
    [146] Sabine P, Robby R, Olivier G, et al. Physical and chemical properties of hybrid barrier coatings obtained in an atmospheric pressure dielectric barrier discharge. J. Phys. D: Appl. Phys., 2005, 38: 568-575.
    [147] Jurgen S. Plasma-assisted deposition at atmospheric pressure. Surface and Coatings Technology, 1996,80: 1-7.
    [148] Jiang N, Qian S F. Wang L, et al. Localized material growth by a dielectric barrier discharge. Thin and Solid Film, 2001, 390: 119-122.
    [149] Vinogradov, I P, Lunk A. Dependence of surface tension and deposition rate of fluorocarbon polymer films on plasma parameters in a dielectric barrier discharge. Surface & Coatings Technology, 2005, 200: 695-699.
    [150] Vinogradov, I P, Lunk A. Spectroscopic diagnostics of DBD in Ar/fluorocarbon mixtures-correlation between plasma parameters and properties of deposited polymer films. Plasma Processes and Polymers, 2005, 2: 201-208.
    [151] Kim J, Byun K, Kin J. Low-temperature growth of GaN by atomic nitrogen based on a dielectric barrier discharge. Journal of Crystal Growth, 2000, 210: 478-486.
    [152] 祁英昆,张溪文,徐世友.BN薄膜的制备及BP_XN_(1-X)薄膜的紫外光敏特性.功能材料与器件学报,2003,9(3):253-257.
    [153] 徐世友编著,祁英昆,张溪文.BP_XN_(1-X)薄膜的制备及磷元素及对光学能隙的影响.材料科学与工程学报,2003,2l(3):335-339.
    [154] Xu S K, Xu J Z, Peng X B. Deposition of thin titania films by dielectric barrier discharge at atmospheric pressure. Plasma Science & Technology, 2006, 8(3): 293-296.
    [1] 宋爱军.国内钛白粉的应用、生产工艺和市场.中国氯碱,2005,8:18-20.
    [2] Pratsinis S E, Bai H, Biswas P, et al. Kinetics of titanium chloride oxidation. J. Am. Ceram. Soc., 1990, 73(7): 2158-2162.
    [3] Alexandrescu R, Dumitrache F, Morjan I, et al. TiO_2 nanosized powders by TiCl_4 laser pyrolysis. Nanotechnology, 2004, 15: 537-545.
    [4] Xia B, Li W B, Zhang B. Low temperature vapor-phase preparation of TiO_2 nanopowders. Journal of Materials Science, 1999, 34: 3505-3511.
    [5] Oh S M, Park D W. Production of ultrafine titanium dioxde by dc plasma jet. Thin Solid Films, 2001, 386: 233-238.
    [6] Oh S M, Kim S S, Lee J E. Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma. Thin Solid Films, 2003, 435: 252-258.
    [7] Kato Y, Yokobayashi H, Kasuya A. Oxygen-deficient anatase precipitated from high-temperature plasma. J. Am. Ceram. Soc., 2004, 87: 166-169.
    [8] 徐海萍,孙彦平,王俊文等.TiO_2纳米微晶的RF-PCVD法制备及表征.材料科学与工艺,2005,13(4):411-414.
    [9] 展红全,孙彦平,徐海萍.RF-PCVD法制备条件对纳米TiO_2微晶的影响.钛工业进展,2004,21(5):29-33.
    [10] 徐海萍,孙彦平,王俊文.RF-PCVD法TiO_2纳米晶的粒径与晶型控制.稀有金属材料与工程,2005,34(7):1089-1093.
    [11] 郑国梁,程如烟.常压微波等离子体气相法制取纳米二氧化钛.钛工业进展,2001,5:22-24.
    [12] 朱新河,严立,徐久军.常压非平衡等离子体辅助TiO_2纳米粉的制备.大连海事大学学报,2003,29(2):78-81.
    [13] Miao L, Tanemura S, Jin P. Simultaneous epitaxial growth of anatase and rutile TiO_2 thin films by RF helicon magnetron sputtering. Journal of Crystal Growth, 2003, 254: 100-106.
    [14] Karlemo B, Koukkari P, Paloniemi J. Formation of gaseous intermediates in titanium chloride plasma oxidation. Plasma Chemistry and Plasma Processing, 1996, 16(1): 59-77.
    [15] Szymanowski H, Sobczyk A, Gazicki-Lipman W, et al. Plasma enhanced CVD deposition of titanium oxide for biomedical applications. Surface & Coatings Technology, 2005, 200: 1036-1040.
    [16] Song Z, Hrbek J, Osgood R. Formation of TiO_2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STM. Nano Lett., 2005, 5: 1327-1332.
    [17] McCafferty E, Wightman J P. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal., 1998, 26: 549-563.
    [18] Li F B, Li X Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis A: General, 2002, 228: 15-27.
    [19] Karches M, Morstein M, Rohr P R V. Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catalysis Today, 2002, 72: 267-279.
    [20] Mills A, Lepre A, Elliott N. Characterisation of the photocatalyst Pilkington ActivTM: a reference film photocatalyst? Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160: 213-224.
    [21] 范国强,刘幽若.无机纳米粉体国家表征中粉体粒度表征研究.中国石油和化学工业协会,2006,9:30-33.
    [22] 肜建娜,赵修建,刘保顺.锐钛矿型TiO_2水溶胶的低温制备及其表征.无机化学学报,2006,22(3):546-550.
    [23] Gregory K L, Goh C P-K. Struture and optical properties of solution deposited TiO_2 films. Journal of Crystal Growth, 2006, 291: 94-99.
    [24] Wierda D A, Reddy C M, Amato-Wierda C C. Gas phase analysis of TiCl_4 plasma processes by molecular beam mass spectrometry. Surface and Coatings Technology, 2001, 148: 256-261.
    [25] Tochikubo F, Teich T. Opitcal emission from pulsed corona discharge and its associated reactions. Jpn. J. Appl. Phys., 2000, 39: 1343-1350.
    [26] Nahorny J, Ferreira M, Gordiets B et al. Experimental and theoretical investigation of a N_2-O_2 dc flowing glow discharge. J Phys. D: Appl. Phys., 1995, 28: 738-747.
    [27] Peter S, Richter F, Tabersky R. Optical emission spectroscopy of a PCVD process used for the deposition of TiN on cemented carbides. Thin Solid Films, 2000, 377-378: 430-435.
    [28] NIST database, website: http://www.nist.gov.
    [29] 罗渝然编著.化学键能数据手册.北京:科学出版社,2005.
    [30] Takechi K, Lieberman M A. Effect of Ar addition to an O_2 plasma in an inductively coupled, traveling wave driven, large area plasma source: O_2/Ar mixture plasma modeling and photoresist etching. Journal of Appled Physics, 2001, 90(7): 3206-3211.
    [31] Hippler H, Troe J. Flash photolysis study of the recombination of chlorine atoms in the presence of various inert gases and NO. Int. J. Chem. Kinet., 1976, 8: 501-510.
    [32] Zhu, R.S.; Lin, M.C. Ab initio studies of ClO_x reactions. Ⅳ. Kinetics and mechanism for the self-reaction of ClO radicals. J. Chem. Phys., 2003, 118: 4094-4106.
    [33] Hideo O, Photochemistry of small molecular, John Wiley & Sons. Inc. U.S.A. 1978.
    [34] Nancy L, Bassett, Economou D J. Effect of Cl_2 additions to an argon glow discharge. J. Appl. Phys., 1994, 75(4): 1931-1939.
    [35] Penetrante B M, et al. Pulsed corona and dielectric-barrier discharge processing of NO in N_2. Appl. Phys. Lett., 1996, 68: 3719-3721.
    [36] Mahawli I, Weingerg F J. A study of TiCl_4 oxidation in a rotating arc plasma jet. AICHE Symp. Ser., 1979, 75(186): 11-24.
    [37] Hildenbrand D L, Lau K H, Mastrangelo S V R. Gaseous species in the Ti-Al-Cl system and reaction with H_2O. J. Phys. Chem., 1991, 95: 3435-3437.
    [1] Lei L H, Chu H P, Hu X J. Preparation of heterogeneous photocatalyst (TiO_2/alumina) by metallo-organic chemical vapor depositon. Ind. Eng. Chem. Res., 1999, 38: 3381-3385.
    [2] Zhang X W, Zhou M H, Lei L C. TiO_2 photocatalyst deposition by MOCVD on activated carbon. Carbon, 2006, 44: 325-333.
    [3] Zhang X W, Zhou M H, Lei L H. Enhancing the concentration of TiO_2 photocatalyst on the external surface of activated carbon by MOCVD. Materials Rearch Bulletin, 2005, 40:1899-1904.
    [4] Zhang X W, Zhou M H, Lei L H. Preparation of anatase TiO_2 supported on alumina by different metal organic chemical vapor deposition methods. Applied Catalysis A: General, 2005, 282: 285-293.
    [5] Ding Z, Hu X J, Lu G Q. Novel silica gel supported TiO_2 photocatalyst synthesized by CVD method. Langmuir, 2000, 16: 6216-6222.
    [6] Ding Z, Yue P L. Synthesis of anatase TiO_2 supported on porous solids by chemical vapor deposition. Catalysis Today, 2001, 68: 173-182.
    [7] Moriya T, Matsuyama T, Yamamoto H. A hybrid process of EFCM (electrostatic formation of ceramic membrane) and SPCP (surface corona discharge induced plasma chemical process). Journal of Electrostatics, 2003, 58:185-195.
    [8] Matsumoto A, Tsutsumi K, and Kaneko K. Titania coating of a microporous carbon surface by molecular adsorption-deposition. Langmuir, 1992, 8:2515-2520.
    [9] Schrijnemakers K, Impens N R E N, Vansant E F. Deposition of a titania coating on silica by means of the chemcil surface coating. Langmuir, 1999, 15:5807-5813.
    [10] 朱洪法编.催化剂载体.北京:化学工业出版社,1980.
    [11] Jackson N B, Wang C M. Activity of the TiO_2-coated beads in the photoassisted to acetaldehyde. J. Electrochem. Soc., 1991, 138(12): 3660-3664.
    [12] Lide D R., Editor-in Chief. Handbook of Chemistry Physics. 74~(TH) edition 1993-1994.
    [13] 王国庆,孙剑平,吴峰等.沸石分子筛对甲醛气体吸附性能的研究.北京理工大学学报,2006,26(7):643-647.
    [14] 丁云龙.国产5A分子筛小球吸附剂用于液蜡生产.石油炼制与化工,2003,34(11):27-30.
    [15] 李德伏,王金渠.C_2H_4、CO_2在分子筛上的吸附与分离.石油炼制与化工,1999,30(7):18-21.
    [16] Liu D P, et al. Diagnosis of dielectric barrier discharge CH_4 plasma for diamond-like carbon film deposition. Diamond and Related Materials, 2002, 11: 1491-1495.
    [17] Ji Hun Kim, Yoon Ho Choi. Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasma. Physics of Plasma, 2006, 13: 093501-093507.
    [18] 赵化侨,编著.等离子体化学与工艺.合肥:中国科学技术大学出版社,1993,90-93.
    [19] 周洁,张昱.Al_2O_3在脉冲等离子体降解CFC-113中提高转化率的作用机理.工业催化,2005,13(3):26-30.
    [20] 谭凯.冷等离子体固体表面改性的物理化学机理.哈尔滨学院学报,2002,23(8):27-28.
    [21] 李兴鳌.低温等离子体对固体材料表面改性的机理分析.湖北民族学院学报,1999,17(1):74-76.
    [22] Li C Z, He J H. Easy replication of pueraria lobata toward hierarchically ordered porous γ-Al_2O_3. Langmuir, 2006, 22:2827-2831.
    [23] 宋晓岚,邱冠周,王海波.高纯活性纳米型γ-氧化铝的化学沉积法合成及其性能表征.材料导报,2004,18(8):64-67.
    [24] Sherman A. Chemical vapor deposition for microelectronics: principle, technology and application. Noyes publications, Park Ridge, NJ, 1987.
    [1] Schaub R, Wahlstrom E, Ronnau A. Oxygen-mediated diffusion of oxygen vacancies on the TiO_2(110) surface. Science, 2003, 299: 377-379.
    [2] McFarland E W, Tang J. A photovoltaic device structure based on internal electron emission. Nature, 2003, 421: 616-618.
    [3] Daoud W A, Xin J H. Nucleation and growth of anatase crystallites on cotton fabrics at low temperatures. J Am. Ceram. Soc., 2004, 87(5): 953-955.
    [4] Daoud W A, Xin J H, Zhang Y H, et al. Surface characterization of thin titania films prepared at low temperatures. Journal of Non-Crystalline Solids, 2005, 351: 1486-1490.
    [5] Kim K J, Benkstein K D, Lagemaat J V D. Characteristics of low-temperature annealed TiO_2 films deposited by precipitation from hydrolyzed TiCl_4 solutions. Chem. Mater., 2002, 14: 1042-1047.
    [6] Matsuda A, Matoda T. Formation of anatase nanocrystals-precipitated silica coatings on plastic substrates by the sol-gel process with hot water treatment. Journal of Sol-Gel Science and Technology, 2003, 27: 61-69.
    [7] Shimizu K, Imai H, Hirashima H, et ah Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films, 1999, 351: 220-224.
    [8] Peiro A M, Petal J, Concepcion D. Low-temperature deposition of TiO_2 thin films with photo-catalytic activity from colloidal anatase aqueous solutions. Chem. Mater., 2001, 13: 2567-2573.
    [19] Backman U, Auvinen A, Jokiniemi J K. Deposition of nanostructured titania films by particle-assised MOCVD. Surface and Coatings Technology, 2005, 192: 81-87.
    [10] O'Neill S A, Parkin I P, Clark R J H. Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass. Journal of Materials Chemistry, 2003, 13: 56-60.
    [11] Mills A, Lee S K, Lepre A. Spectral and photocatalytic characteristics of TiO_2 CVD films on quartz. Photochem. Photobioh Sci., 2002, 1: 865-868.
    [12] Lide D R. Editor-in Chief. Handbook of Chemistry Physics. 74~(TH) edition 1993-1994.
    [13] Choy K L. Chemical vapour deposition of coatings. Prog. Mater. Sci., 2003, 48:57-170.
    [14] Busani T, Devine R A B. Dielectric and infrared properties of TiO_2 films containing anatase and rutile. Semicond. Sci. Technol., 2005, 20: 870-875.
    [15] Hodgkinson J L, Sheel D W, Heather M. Atmospheric pressure glow discharge CVD of Al_2O_3 thin films. Plasma Process Polym., 2006, 3: 597-605.
    [16] Szymanowski H, Sobczyk A, Lipman G M. Plasma enhanced CVD deposition of titanium oxide for biomedical applications. Surface & Coatings Technology, 2005, 200:1036-1040.
    [17] Furman P, Gluszek J, Masalski J. Titanium dioxide obtained using the MOCVD method on 316L steel. Jounal of Materials Science Letters, 1997, 16: 471-472.
    [18] Zhou W, Zhong X X, Wu X C. Low temperature deposition of nanocrystalline TiO_2 films: enchancement of nanocrystal formation by energetic particle bombardment. J. Phys. D: Appl. Phys. 2007, 40: 219-226.
    [19] Izumi T, Teraji T, lto T. Room-temperature growth of single-crystalline TiO_2 thin films on nanometer-scaled substrates by dc magnetron sputtering deposition. Journal of Crystal Growth, 2007, 299: 349-357.
    [20] Moriya T, Matsuyama T, Yamamoto H. A hybrid process of EFCM (electrostatic formation of ceramic membrane) and SPCP (surface corona discharge induced plasma chemical process). Journal of Electrostatics, 2003, 58:185-195.
    [21] Xu S K, Xu J Z, Peng X B. Deposition of thin titania films by dielectric barrier discharge at atmospheric pressure. Plasma Science & Technology, 2006, 8(3): 293-296.
    [22] Stefecka M, Kando M, Cernak M, et al. Spatial distribution of surface treatment efficiency in coplanar barrier discharge operated with oxygen-nitrogen gas mixtures. Surface & Coatings Technology, 2003, 174: 553-558.
    [23] Engeman J, Korzec D. Assessment of discharges for large area atmospheric pressure plasma-enhanced chemical vapor deposition. Thin Solid Films, 2003, 442: 36-39.
    [24] Sreemany M, Sen S. A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO_2 thin films. Mater. Chem. Phys., 2004, 83: 169-177.
    [25] Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep., 2003, 48: 53-229.
    [26] Anpo M, Che M. Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis. Adv. Catal., 1999, 44:119-257.
    [27] JCPDS国际中心晶体衍射数据库,粉末衍射卡,卡号:A:21-1272,R:21-1276.
    [28] 殷竟洲,徐勇.TiO_2薄膜的制备及其在自然光下对甲基蓝溶液降解的研究.淮阴师范学院学报,2006,5(1):46-48.
    [29] 刘敬肖,杨大智,史非.医用金属表面溶胶-凝胶法和离子束合成TiO_2薄膜的结构、性能比较.无机材料学报,2002,17(4):797-804.
    [30] Zheng S K, Wang T M, Hao W C. Improvement of photocatalytic activity of TiO_2 thin film by Sn ion implantation. Vacuum, 2002, 65:155-159.
    [31] Wang H Y, Wang T M, Xu P. Effects of substrate temperature on the microstructure and photocatalytic reactivity of TiO_2 films. Journal of materials science: materials in electronics, 1998, 9: 327-330.
    [32] Wu X H, Jiang Z H, Liu H L. TiO_2 ceramic films by micro-plasma oxidation method for photodegradation of rhodamine B. Materials Chemistry and Physics, 2003, 80: 39-43.
    [33] 孔令红,熊予莹,符斯列.用ECR氮等离子体对纳米TiO_2薄膜光谱响应改性的研究.功能材料和器件学报,2004,10(3):379-382.
    [34] 郭玉,张溪文,韩高荣.掺氮二氧化钛薄膜的常压化学气相沉积及其结构性能研究.真空科学与技术学报.2006,26(3):190-194.
    [35] Lee C, Choi H, Lee C. Photocatalytic properties of nano-structured TiO_2 plasma sprayed coating. Surface and Coatings Technology, 2003, 173: 192-200.
    [36] Zeman P, Takabayashi S. Nano-scaled photocatalytic TiO_2 thin films prepared by magnetron sputtering. Thin Solid Films, 2003, 433: 57-62.
    [37] Baba K, Hatada R. Sythesis and properties of TiO_2 thin films by plasma source ion implantation. Surface and Coatings Technology, 2001, 136:241-243.
    [38] Syarif D G, Miyashita A, Yamaki T. Preparation o anatase and rutile thin films by controlling oxygen partial pressure. Applied Surface Science, 2002, 193: 287-292.
    [39] Takeda S, Suzuki S, Odaka H. Photocatalytic TiO_2 thin film depostited onto glass by DC magnetron sputtering. Thin Solid Films, 2001, 392: 338-344.
    [40] Chiba Y, Kokai H, Kashiwagi K. Effect of the plasma surface treatment on an anatase TiO_2 film. Journal of Materials Science: Materials in electronics, 2005, 16: 645-648.
    [41] Jackson N B, Wang C M. Activity of the TiO_2-coated beads in the photoassisted to acetaldehyde. J. Electrochem. Soc., 1991, 138(12): 3660-3664.
    [42] Sheng J, Karasawa J, Fukami T. Thickness dependence of photocatalytic activity of anatase film by magnetron sputtering. Journal of materials science letters, 1997, 16: 1709-1711.
    [43] Mills A, Lepre A, Elliott N. Characterisation of the photocatalyst Pilkington ActivTM: a reference film photocatalyst? Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160: 213-224.
    [44] Luo Y P, Rabenberg Z L, Heller A. Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res., 1995, 10: 2842-2848.
    [45] Paz Y, Heller A. Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. J. Mater. Res., 1997, 12: 2759-2766.
    [46] Sawunyama P, Jiang L, Fujishima A, et al. Photodecomposition of a Langmuir-Blodett film of stearic acid on TiO_2 film observed by in situ atomic force microscopy and FT-IR. J. Phys. Chem. B, 1997, 101: 11000-11003.
    [47] Sitkiewitz S, Heller A. Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO_2 thin films attached to glass. New J. Chem. 1996, 20: 233-241.
    [48] Minabe T, Tryk D A, Sawunyama P. TiO_2-mediated photodegradation of liquid and solid organic compounds. J. Photochem. Photobiol. A: Chem., 2000, 137: 53-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700