用户名: 密码: 验证码:
钙失敏在内毒素休克血管低反应性发生中的作用及TNF-α对其的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤性失血性休克、感染\脓毒性休克等各型休克的后期均存在血管低反应性,即血管对舒、缩血管药物的反应性显著下降甚至不反应,这种血管低反应性严重影响着休克的发生、发展和治疗,是导致休克后期血压难以回升,最后导致多脏器功能不全综合征的重要原因之一。关于休克血管低反应性的发生机制,研究表明它可能与血管平滑肌细胞膜受体失敏、细胞膜超极化等因素有关。针对这些机制采用相应的预防措施可部分改善休克后的血管低反应性。我们在研究失血性休克血管低反应性的发生机制时发现失血性休克后血管平滑肌细胞存在钙失敏(calcium desensitization),钙失敏参与了失血性休克血管低反应性的形成。内毒素休克是否也存在钙失敏,钙失敏是否也参与了内毒素休克后血管低反应性的发生?内毒素休克以全身炎症反应综合征为主要病生变化特征,大量炎性因子的失控性表达参与了内毒素休克的重要病理生理过程,研究表明利用TNF-α可以诱导出脓毒样休克模型。细胞因子TNF-α是否参与了内毒素休克血管平滑肌细胞钙敏感性的调节,参与了内毒素休克血管低反应性的形成?这方面目前国内外尚缺乏研究。
     据此,本研究利用家兔内毒素休克模型,以肠系膜上动脉(SMA)为研究对象,研究了内毒素休克后血管平滑肌是否存在钙失敏,钙失敏是否在内毒素休克血管低反应性的发生中起重要作用,内毒素休克血管平滑肌细胞(VSMC)钙敏感性是否受TNF-α的调节及其调节的可能机制。
     主要实验方法:
     取正常和内毒素休克家兔肠系膜上动脉(SMA),利用离体血管环张力测定技术,用血管环对梯度浓度去甲肾上腺素(NE)的收缩力反映血管反应性,用去极化状态下(120 mmol/L K+)血管环对梯度浓度Ca2+的收缩力反映血管的钙敏感性,用western blot测定MLC20磷酸化水平的变化,用ELISA法测定血浆炎性因子TNF-α的水平和Pho-激酶的活性。实验分三部分:第一部分实验观察内毒素休克低反应性血管是否存在钙敏感性的降低,以及通过观察钙敏感性调节剂精氨酸血管加压素(arginine vasopression,AVP)和胰岛素(insulin)是否可以通过调节钙敏感性来调节血管反应性,以证实钙失敏在内毒素休克血管低反应形成中的作用。第二部分观察家兔静注LPS后各时间点血浆中TNF-α浓度的变化及不同浓度的TNF-α对肠系膜上动脉钙敏感性的影响,以证实TNF-α对内毒素休克血管钙敏感性的调节作用。第三部分观察Rho激酶特异性抑制剂Y-27632、PKC的抑制剂Staurosporine对低浓度的TNF-α对肠系膜上动脉钙敏感性及Rho激酶活性的影响,以初步探讨TNF-α对内毒素休克血管钙敏感性调节的可能机制。
     主要研究结果:
     1.内毒素休克后肠系膜上动脉血管(SMA)存在钙失敏,表现为家兔LPS(1mg/kg)静注后,早期(即LPS后30min和1h)SMA血管环对NE和钙的反应性升高,量-效曲线左移,最大收缩力(Emax)升高(LPS1h后p<0.05或p<0.01);随着时间的延长,SMA血管环对NE和钙的反应性逐渐下降,到LPS后6h明显降低,其量-效曲线明显右移,最大收缩力(Emax)明显降低(p<0.01)。休克早期(LPS后0.5,1h)肠系膜上动脉MLC20磷酸化水平增加(P>0.05),LPS后2h MLC20磷酸化水平大幅度下降(p<0.01),而休克晚期(LPS后4,6h)又有小幅回升(p<0.05)。说明内毒素休克血管存在钙敏感性的降低。
     2.具有钙敏感性增强作用的AVP(1×10-9mmol/L)可使LPS后6hSMA血管环对NE和钙的量效曲线左移,使NE和Ca2+的Emax增高(p<0.05或p<0.01);而具有钙敏感性抑制作用的胰岛素则可使LPS后1h血管环对NE和钙的量效曲线右移,使NE和Ca2+的Emax降低(p<0.05或p<0.01),提示钙失敏在内毒素休克血管低反应性的发生中起重要作用。
     3.家兔LPS(1mg/kg)静脉注射后2h,血清中TNF-α的水平逐渐升高,4h达到高峰,6h有所降低但仍高于正常组(P <0.05,P <0.01)。其变化趋势与血管钙敏感性变化呈一定负相关关系。低浓度的TNF-α(20ng/ml)可明显升高SMA对钙的反应性,高浓度的TNF-α(200ng/ml)可明显降低SMA对钙的反应性(P <0.05,P <0.01)。提示TNF-α对内毒素休克血管的钙敏感性有重要的调节作用。
     4.Rho激酶特异性抑制剂Y-27632可明显降低低浓度TNF-α升高SMA对钙的反应性(P <0.05,P <0.01);而PKC的抑制剂Staurosporine无拮抗作用(P>0.05)。内毒素休克早期(即LPS后30min和1h)Rho激酶的活性升高(P <0.05);晚期(即LPS后6h)明显降低(P <0.01)。同时低浓度的TNF-α(20ng/ml)可明显升高肠系膜上动脉Rho激酶的活性(P <0.01)和MLC20磷酸化水平(P <0.05),高浓度的TNF-α(200ng/ml)可明显降低肠系膜上动脉Rho激酶的活性(P <0.05)和MLC20磷酸化水平(P <0.01),Rho激酶特异性抑制剂Y-27632可明显降低低浓度的TNF-α升高肠系膜上动脉Rho激酶的活性(P <0.01)MLC20磷酸化水平(P <0.01)。提示TNF-α对内毒素休克血管的钙敏感性的调节作用主要与Rho激酶有关,与PKC可能关系不大。
     结论:
     1.内毒素休克血管平滑肌细胞存在钙敏感性降低(钙失敏);血管平滑肌细胞的钙敏感性降低在内毒素休克血管低反应性的发生中起重要作用。
     2. TNF-α对内毒素休克血管平滑肌钙敏感性有重要的调节作用,低浓度TNF-α可明显升高SMA对钙的反应性,高浓度TNF-α可明显降低SMA对钙的反应性。
     3. TNF-α对内毒素休克血管平滑肌细胞的钙敏感性的调节与Rho-激酶有关。
There is vascular hyporeactivity in the prolonged period of various shock, including hemorrhagic shock and septic shock. Vascular hyporeactivity is that blood vessels are refractory to vasoconstrictors or vasodilatators, which plays an important role in the incidence,development and therapy of shock.Meanwhile, it is associated with the failure of boosting pressure leading to multiple organ dysfunction syndrome. The occurrence of vascular hyporeactivity after shock may be related to receptor desensitization, or the membrane hyperpolarization of vascular smooth muscle cell(VSMC). However, recovering the receptor sensitivity and improving the polarization state of the cell membrane only partially ameliorate the vascular reactivity. Our previous study showed that calcium desensitization existed in VSMC following hemorrhagic shock, and played important role in vascular hyporeactivity. Whether there is calcium desensitization and it also plays an important role in vascular hyporeactivity in endotoxic shock is not clear. The characteristic of the pathophysiology in endotoxic shock is systemic inflammatory response syndrome(SIRS). The continuing express of a great number of cytokines took part in the Pathophysiology of endotoxic shock.Previous study have demonstrated that sepsis-like shock can be induced by TNF-α.There is no report whether TNF-αtakes part in the regulation of calcium desensitization and the development of vascular hyporeactivity following endotoxic shock is not determined. To elucidate above issues we used endotoxic shock model of rabbits to investigate the role of calcium desensitization of vascular smooth muscle in vascular hyporeactivity, the regulatory effects and the possible mechanisms of TNF-αon calcium sensitivity following endotoxic shock.
     Methods:
     The superior mesenteric artery(SMA) from normal and LPS induced endotoxic shock rabbits was adopted to assay the vascular reactivity and calcium sensitivity via observing the contraction initiated by norepinephrine(NE) and Ca2+ under depolarizing conditions(120mmol/LK+)with isolated organ perfusion system.Meanwhile,the phosphorylation of MLC20 was measured by western blot. Rho kinase activity and plasma TNF-αlevels were measured by ELISA. The experiments were conducted in three parts. In the first part, we observed whether calcium desensitization was existed in the hyporesponsive blood vessels following endotoxic shock or not, and if calcium desensitization of blood vessel played an important role in vascular hyporeactivity by observing AVP and insulin, the calcium sensitivity regulating agents could regulate the vascular reactivity through regulating the calcium sensitivity. In the second part,in order to confirm the regulatory effect of TNF-αon the calcium sensitivity of blood vessels following endotoxic shock,we observed serum TNF-αlevels from rabbits at different time after 1mg/kg LPS intravenous injection and the regulatory effect of different concentration of TNF-αon calcium sensitivity of SMA. In the third part, in order to study the possible mechanisms of TNF-αon calcium sensitivity of blood vessels following endotoxic shock, we observed the role of Y-27632,a specific inhibitor of Rho-kinase, and PKC inhibitor Staurosporine on calcium sensitivity of SMA incubating with low concentration of TNF-αand effects of TNF-αon the activity of Rho kinase .
     Results:
     1. As compared with the normal control group , the vascular reactivity of SMA to NE and Ca2+ was increased in the early period at 30 min and 1 hour following 1mg/kg LPS intravenous injection, the cumulative dose-response curves of SMA to NE and Ca2+ were shifted to the left, the maximal contraction (Emax) of NE and Ca2+ was significantly increased (P<0.05 or p<0.01).But the vascular reactivity of SMA to NE and Ca2+ was decreased in the later period, the cumulative dose-response curves of SMA to NE and Ca2+ were shifted to the right, the maximal contraction (Emax) of NE and Ca2+ were significantly decreased (p<0.01).Meanwhile, the phosphorylation of MLC20 to SMA was increased in the early period at 30 min and 1 hour following 1mg/kg LPS intravenous injection, the phosphorylation of MLC20 to SMA was greatly decreased at 2 hour after 1mg/kg LPS intravenous injection(P<0.01),but was slightly increased in the later period at 4 hour and 6 hour following 1mg/kg LPS intravenous injection(P<0.05).All these results suggested that the calcium sensitivity was decreased following endotoxic shock.
     2. Calcium sensitivity regulating agent AVP(1×10-9mol/L) made the cumulative dose-response curve of SMA to NE and Ca2+ shift to the left, and increased the maximal contraction (Emax) of SMA to NE and Ca2+(p<0.05 or p<0.01);however, insulin(1×10-7mol/L) made the cumulative dose-response curve of SMA to NE and Ca2+ shift to the right and decreased the contractile response of NE and Ca2+(p<0.05 or p<0.01). These results suggested that calcium desensitization played an important role in the development of vascular hyporeactivity.
     3. As compared with the normal control group,serum TNF-αbegan to increase at 2 hours and reached the peak at 4 hour after LPS administration and almost decreased to the normal control level at 6 hour following LPS administration (P<0.05,P<0.01). Lower concentration of TNF-α(20ng/ml) incubated with SMA significantly increased the vascular reactivity of SMA to Ca2+, while higher concentration of TNF-α(200ng/ml) significantly decreased the vascular reactivity of SMA to Ca2+ (P<0.05,P<0.01).These results showed that TNF-αcan regulate the calcium sensitivity of vascular smooth muscle in endotoxic shock rabbits.
     4. Rho-kinase inhibitor Y-27632 could abolish TNF-α(20ng/ml) induced increase of vascular reactivity of SMA to Ca2+. PKC inhibitor Staurosporine had no effect on this effect of TNF-α(20ng/ml) (P>0.05). As compared with the normal control group, the Rho kinase activity of SMA was increased in the early period (at 30 min and 1 hour) following 1mg/kg LPS intravenous injection(P<0.05), but the Rho kinase activity of SMA was significantly decreased in the later period (at 6 hour) following 1mg/kg LPS intravenous injection(P<0.01). Meanwhile,lower concentration of TNF-α(20ng/ml) significantly increased the Rho kinase activity and phosphorylation of MLC20 of SMA(P<0.05,P<0.01),but higher concentration of TNF-α(200ng/ml) significantly decreased the Rho kinase activity and phosphorylation of MLC20(P<0.05,P<0.01), meanwhile Y-27632(10-5mol/L) abolished the TNF-α(20ng/ml) induced increase of Rho kinase activity and MLC20 phosphorylation(P<0.01).These results suggested the regulatory effect of TNF-αon the calcium sensitivity of SMA following endotoxic shock rabbits were closely related to Rho-kinase but not to PKC.
     Conclusion:
     1. Calcium desensitization existed in the vascular smooth muscle following endotoxic shock,which played an important role in vascular hyporeactivity endotoxic shock.
     2. TNF-αplayed an important role in the regulation of calcium sensitivity of vascular smooth muscle following endotoxic shock. Lower concentration of TNF-αsignificantly increased the vascular reactivity of SMA to Ca2+, while higher concentration of TNF-αsignificantly decreased the vascular reactivity of SMA to Ca2+.
     3. The regulatory effect of TNF-αon the calcium sensitivity of vascular smooth muscle following endotoxic shock rabbits was closely related to Rho-kinase.
引文
1. Yang, G, Liu, L, Xu, J, et al. Effect of arginine vasopressin on vascular reactivity and calcium sensitivity after hemorrhagic shock in rats and its relationship to Rho-kinase. J Trauma, 2006;61:1336-42
    2. Divilla Bianca RD,Sorrention R,Mitidieri E,et al.Recombinant human erythropoietin prevents lipopolysaccharide-induced vascular hyporeactivity in the rats.Shock,2008; 31(5):529-534.
    3. Anuar, F, Whiteman, M, Bhatia, M, et al. Flurbiprofen and its nitric oxide-releasing derivative protect against septic shock in rats. Inflamm Res, 2006;55:498-503
    4. Simper D, Strobel WM, Linder L, et al. Indirect evidence for stimulation of nitric oxide release by tumor necrosis factor-alpha in human veins in vivo. Cardiovacular Res,1995;30:960-964.
    5. Zingarelli B, Squadrito F,Altavilla D, et al. Role of tumor necrosis factor- alpha in acute hypovolemic hemorrhagic shock in rats. Am J Physiol,1994, 266:H1512-1515.
    6. Robert R, Chapelain B, Jean T, et al. Interleukin-1 impairs both vascular contraction and relaxation in rabbit isolated aorta. Biochem Biophys Res Commun,1992; 182:733-739.
    7. Shan, Q, Bourreau, J. Cardiac and vascular effects of nitric oxide synthase inhibition in lipopolysaccharide-treated rats. Eur J Pharmacol, 2000,406:257-64
    8. Ishimaru S; Shichiri M; Mineshita S,et al. Role of endothelin-1/endothelin receptor system in endotoxic shock rats. Hypertens Res. 2001; 24(2): 119- 126.
    9. Bucher M; Ittner KP; Hobbhahn J,et al. Downregulation of angiotensinⅡtype 1 receptors during sepsis. Hypertension.2001;38(2):177-182.
    10. Bucher,-M; Hobbhahn,-J; Taeger,-K,et al. Cytokine-mediated downregulation of vasopressin V(1A) receptors during acute endotoxemia in rats. Am J Physiol Regul Integr Comp Physiol.2002;282(4):R979-984.
    11. Takakura, K, Xiaohong, W, Takeuchi, K, et al. Deactivation of norepinephrine by peroxynitrite as a new pathogenesis in the hypotension of septic shock. Anesthesiology, 2003,98:928-34
    12. Macarthur, H, Couri, D M, Wilken, G H, et al. Modulation of serum cytokine levels by a novel superoxide dismutase mimetic, M40401, in an Escherichia coli model of septicshock: correlation with preserved circulating catecholamines. Crit Care Med, 2003,31:237-45
    13. Macarthur, H, Westfall, T C, Riley, D P, et al. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc Natl Acad Sci U S A, 2000,97:9753-8.
    14. Chen SJ,Wu CC,Yang SN,et al. Hyperpolarization contributes to vascular hyporeactivity in rats with LPS-induced endotoxic shock. Life Sci, 2000, 68(6): 659-668.
    15.开丽,胡德耀,王中峰,等.失血性休克引起大鼠肠系膜动脉血管平滑肌钾通道活动变化.生理学报,2001,53(4):291-295.
    16. Zhao, K, Liu, J, Jin, C. The role of membrane potential and calcium kinetic changes in the pathogenesis of vascular hyporeactivity during severe shock. Chin Med J (Engl), 2000,113:59-6
    17. Zhao KS; Liu J; Yang GY,et al. Peroxynitrite leads to arteriolar smooth muscle cell membrane hyperpolarization and low vasoreactivity in severe shock. Clin Hemorheol Microcirc. 2000; 23(2-4):259-267.
    18. Chen, S J, Chen, K H, Wu, C C. Nitric oxide-cyclic GMP contributes to abnormal activation of Na+-K+-ATPase in the aorta from rats with endotoxic shock. Shock, 2005,23:179-85
    19. Chen, S J, Wu, C C, Yang, S N, et al. Abnormal activation of K(+) channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence. Br J Pharmacol, 2000,131:213-22
    20. Emmanuele di Villa Bianca, R, Lippolis, L, Autore, G, et al. Dexamethasone improves vascular hyporeactivity induced by LPS in vivo by modulating ATP-sensitive potassium channels activity. Br J Pharmacol, 2003,140:91-6
    21. Kai L Wang ZF,Shi YL,et al. Opioid receptor antagonists increase [Ca2+]i in rat arterial smooth muscle cells in hemorrhagic shock.. Acta Pharmacol Sin.2004; 25(3): 395-400.
    22. Jing Xu, Liangmin Liu. The role of calcium desensitization in vascular hyporeactivity and its regulation following hemorrhagic shock. Shock,2005;23(6): 576-581.
    23.杨光明,等. MC I- 154对失血性休克大鼠血管平滑肌钙敏感性的影响及其机制〔J〕中国危重病急救医学, 2005, 17 (1) :7- 11.
    24. Li T,Liu LM,Xu J,Yang GM,Ming J:Changes of Rho kinase activity after hemorrhagic shock and its role in shock-induced biphasic response of vascular reactivity and calcium sensitivity.Shock 2006,26:504-509.
    25. Cauwels A, Van Molle W, Janssen B, Everaerdt B, Huang P, Fiers W, Brouckaert P. Protection against TNF-induced lethal shock by soluble guanylate cyclase inhibition requires functional inducible nitric oxide synthase. Immunity 2000,13:223-231,.
    26. MichaelBucher,JonnyHobbhahn,Ka Taeger, and Armin Kurtz.Cytokine-mediated downregulation of vasopressin V1A receptors during acute endotoxemia in rats. Am J Physiol Regul Integr Comp Physiol. 2002 Apr;282(4):R979-84.
    27. Singh M,Notterman DA,Metakis Tumor Necrosis Factor produces homologous desensitization of lymphocytesβ2-adrenecgic responses.Circ Shock.1993,39:275
    28.李涛,杨光明,等.Rho激酶在失血性休克大鼠血管低反应性中的作用.创伤外科杂志,2006;2:116-119
    29.李涛,刘建仓,等.蛋白激酶C和蛋白激酶G对失血性休克大鼠血管平滑肌细胞钙敏感性的调节作用.中国危重病急救医学,2007;5:257-260
    30. Yang GM,Li T,Xu J,Chen W,Liu LM.Isoforms of PKC involved in AVP improving hemorrhage-induced vascular hyporesponsiveness and calcium desensitization and its mechanisms.In perss.
    31. Kenna TM,Clegg JM,Williams TJ.Protein kinase C is a mediator of lipopolysaccharide- induced vascular suppression in the rat aorta. Shock,1994;2(2): 84-89.
    32. Ya D,Maupoil V,Schott C,et al.Temporal relationships between levels of circulating NO derivatives, vascular NO production and hyporeactivity to noradrenaline induced by endotoxin in rats. Cardiovascular res,1995;30(6):952-959.
    33.杰裕,肖能坎,黄巧亮,等.蛋白激酶对内毒素休克后内皮细胞骨架的作用.中华外科杂志,2003;41(3):193-196.
    34. Allett MA,Dagher PC,Atkinson SJ.Rho GTPases show differential sensitivity to nucleotide triphosphate depletion in a model of ischemic cell injury. Am J Physiol Cell Physiol,2003;285(1):C129-138.
    35. Liu LM, Dubick MA. Hemorrhagic shock-induced vascular hyporeactivity in the rat: relationship to gene expression of nitric oxide synthase, endothelin-1, and select cytokines in corresponding organs. J Surg Res, 2005;125(2):128-36
    36. Parsons SJ,Sumner MJ,Garland CJ.Phospholopase A2 and protein kinase C contributeto myofilament sensitization of 5-HT in the rabbit mesenteric artery. J Physiol,1996; 491:447-453
    37. Mansi G,Serio M,Potenza MA,et al.Involvement of nitric oxide in hyporeactivity of rat mesenteric vascular bed during endotoxic shock: effect of dexamethasone and endothelin-I. Boll Soc Ital Biol Sper,1996;72(5-6):155-162.
    38. Ho KH,Kwan CY,Bourreau JP,et al.Hyporesponsiveness to Ca2+ of aortic smooth muscle in endotoxin-treated rats: no-dependent and -independent in vitro mechanisms. Res Commun Mol Pathol Pharmacol,1996;92(3):275-284.
    39. Oberholzer A.Increased survival in sepsis by in vivo adenovirus induced expression of IL-10 in dendritic cells[J].J Immunol,2002;168(4):3412-3418.
    40.姚咏明.脓毒症动物模型的选择与评价.继续医学教育,2008;22(1):29-31.
    41. BONE RC.Immunologic dissonance: A continuing evolution in our understanding of the systemic inflammatory response syndrome(SIRS) and the multiple organ dysfunction syndrome(MODS)[J] .Ann intern Med,1996;125(8):680.
    42. Fink Mp,Facs Heard SO.Laboratory models of sepsis and septic shock [J].J Surg Res,1990;49:186.
    43.胡同增,主编.实验外科学[M].北京:人民卫生出版社,1991,259-262.
    44. Anje Cauwels, Peter Brouckaert. Critical Role for Small and Large Conductance Calcium-Dependent Potassium Channels in Endotoxemia and Tnf Toxicity. Shock,2008;29(5): 577-582
    45. Peter K,Unger RE,Brunner J,and Kirpatrick CJ.Molecular basis of endothelial dysfunction in sepsis.Cardiovasc Res, 2003, 60:49-57
    46. El-Bassossy HM, El-Maraghy NN, El-Fayoumi HM, Watson ML. Haem oxygenase-1 induction protects against tumour necrosis factor alpha impairment of endothelial-dependent relaxation in rat isolated pulmonary artery. Br J Pharmacol, 2009;158(6):1527-35.
    47. Corder R, Carrier M, Khan N, Klemm P, and Vane JR. Cytokine regulation of endothelin-1 release from bovine aortic endothelial cells.J Cardiovasc Pharmacol, 1995;26: S56–S58.
    48. Michael Bucher, Jonny Hobbhahn, Kai Taeger and Armin Kurtz. Cytokine-mediated downregulation of vasopressin V1A receptors during acute endotoxemia in rats. Am JPhysiol Regulatory Integrative Comp Physiol,2002;282: R979–R984.
    49. Amano M,Ito M,Kimura K,et al.Phosphorylation and activation of myosin by Rho-associated kinase(Rho-kinase). J Boil Chem,1996;271:20246-20249.
    50. Najma B,Noreen D,Oana S,et al.Regulation of Myosin-bound protein phosphatase by Insulin in vascular smooth muscle cells:evaluation of the role of Rho kinase and phosphatidylinositol-3-kinase-dependent signaling pathways. Molecular endocrinology, 2000;14(9):1365-1376.
    51. Tadashi K,Hiroaki S,Yasushi M,et al.Involvement of Rho-kinase in agonists- induced contractions of arteriosclerotic human arteries.Arterioscler Thromb Vasc Biol,2002; 22:243-248.
    52. Kitazawa T,EtoM,Woodsome TP,et al.Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem,2000;275(14):9897-9900.
    53. Ohki S,Eto M,Kariya E,et al.Solution NMR structure of the myosin phosphatase inhibitor protein CPI-17 shows phosphorylation-induced conformati- onal changes responsible for activation. J Mol Biol,2001;314(4):839-849.
    54. Somlyo AV.New roads leading to Ca2+ sensitization. Cir Res,2002;91(2):83-84.
    55. Kitazawa T,Takizawa N,Ikebe M,et al.Reconstitution of protein kinase C- induced contractile Ca2+ sensitization in triton X-100-demembranated rabbit arterial smooth muscle. J Physiol,1999;520(Pt1):139-152.
    56. Cain AE,Tanner DM,Khalil RA.Endothelin-1--induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK-independent [Ca2+]i sensitization pathways. Hypertension,2002;39(2 Pt 2):543-549.
    57. Kenna TM,Clegg JM,Williams TJ.Protein kinase C is a mediator of lipopolysaccharide-induced vascular suppression in the rat aorta. Shock,1994;2(2): 84-89.
    58. Li T, Liu LM, Liu JC,et al. Mechanisms of Rho kinase regulation of vascular reactivity following hemorrhagic shock.Shock, 2008,29(1):65-70.
    1. Sompamit K, Kukongviriyapan U, Nakmareong S, Pannangpetch P, Kukongviriyapan V. Curcumin improves vascular function and alleviates oxidative stress in non-lethal lipopolysaccharide-induced endotoxaemia in mice. Eur J Pharmacol, 2009;616(1-3): 192-9.
    2. El-Awady MS, Smirnov SV, Watson ML. Voltage-independent calcium channels mediate lipopolysaccharide-induced hyporeactivity to endothelin-1 in the rat aorta. Am J Physiol Heart Circ Physiol, 2009;296(5):H1408-15.
    3. Chen SJ, Li SY, Shih CC, Liao MH, Wu CC. Nitric oxide contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats, Shock. 2009 Sep 4.
    4. Cena JJ, Lalu MM, Cho WJ, Chow AK, Bagdan ML, Daniel EE, Castro MM, Schulz R. Inhibition of matrix metalloproteinase activity in vivo protects against vascular hyporeactivity in endotoxemia. Am J Physiol Heart Circ Physiol,2010;298(1):H45-51.
    5. Sp Spillmann Frank , Van Linthout Sophie, Subasigueller Aysun, et al. Novel endothelial-protective effect of high density lipoprotein: Down-regulation of toll-like receptor 4. Circulation,2007;116(16):194.
    6. BONE RC.Immunologic dissonance: A continuing evolution in our understanding of the systemic inflammatory response syndrome(SIRS) and the multiple organ dysfunction syndrome(MODS)[J] .Ann intern Med,1996,125(8):680.
    7. Fink Mp,Facs Heard SO.Laboratory models of sepsis and septic shock [J].J Surg Res,1990,49:186.
    8.胡同增,主编.实验外科学[M].北京:人民卫生出版社,1991,259-262.
    9. Kato T, Hussein MH, Sugiura T, Suzuki S, Fukuda S, Tanaka T, Kato I, Togari H: Development and characterization of a novel porcine model of neonatal sepsis. Shock, 2004;21:329–335.
    10. Schwacha MG, Chaudry IH: The cellular basis of post-burn immunosuppression: Macrophages and mediators (Review). Int J Mol Med,2002;10:239–243.
    11. Schneider CP, Nickel EA, Samy TS, Schwacha MG, Cioffi WG, Bland Kl, Chaudry IH: The aromatase inhibitor, 4-hydroxyandrostenedione, restores immune responsesfollowing trauma-hemorrhage in males and decreases mortality from subsequent sepsis. Shock, 2000;14:347–353.
    12. Diodato MD, Kno ferl MW, Schwacha MG, Bland KI, Chaudry IH: Gender differences in the inflammatory response and survival following haemorrhage and subsequent sepsis. Cytokine, 2001;14:162–169.
    13. Wang P, Ba ZF, Cioffi WG, Bland Kl, Chaudry IH: Salutary effects of ATPMgCl2 on the depressed endothelium-dependent relaxation during hyperdynamic sepsis. Crit Care Med, 1999;27:959–964.
    14. Ayala A, Herdon CD, Lehman DL, Ayala CA, Chaudry IH: Differential induction of apoptosis in lymphoid tissues during sepsis: variation in onset,frequency, and the nature of the mediators. Blood, 1996;87:4261–4275.
    15. Oberholzer A.Increased survival in sepsis by in vivo adenovirus induced expression of IL-10 in dendritic cells[J]. J Immunol,2002,168(4):3412-3418.
    16.姚咏明.脓毒症动物模型的选择与评价.继续医学教育,2008;22(1):29-31.
    17. d'Emmanuele di Villa Bianca R, Lippolis L, Autore G, et al. Dexamethasone improves vascular hyporeactivity induced by LPS in vivo by modulating ATP-sensitive potassium channels activity. Br J Pharmacol, 2003;140(1):91-6.
    18. Li T, Liu L, Liu J, et al. Mechanisms of rho kinase regulation of vascular reactivity following hemorrhagic shock in rats. Shock, 2008;29(1):65-70.
    19.陈玮,明佳,徐竞,杨光明,等.内毒素休克后家兔血管反应性的变化规律及器官差异.创伤外科杂志,2008;10(5):456-459.
    20.贺教江,李涛,徐竞,杨光明,等.钙失敏在家兔内毒素休克血管低反应性中的作用[J]创伤外科杂志, 2009;11(6):544-547.
    21. Li T, Croce K, Winquist RJ. Regional differences in the effects of septic shock on vascular reactivity in the rabbit. J Pharmacol Exp Ther,1992;261(3):959-63.
    22. Piepot HA, Groeneveld AB, van Lambalgen AA, et al. The role of inducible nitric oxide synthase in lipopolysaccharide-mediated hyporeactivity to vasoconstrictors differs among isolated rat arteries. Clin Sci (Lond), 2002;102(3):297-305.
    23. Boffa JJ, Arendshorst WJ. Maintenance of renal vascular reactivity contributes to acute renal failure during endotoxemic shock. J Am Soc Nephrol, 2005;16(1):117-24.
    24. Raquel Hernanz, Mar? a J. Alonso, et al. Mechanisms involved in the early increase ofserotonin contraction evoked by endotoxin in rat middle cerebral arteries. British Journal of Pharmacology 2003; 140: 671–680.
    25. Atta BF, Stow PJ. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth, 1996;76(6):790-4.
    26. Martin CM, Yaghi A, Sibbald WJ, et al. Differential impairment of vascular reactivity of small pulmonary and systemic arteries in hyperdynamic sepsis. Am Rev Respir Dis, 1993;148(1):164-72.
    27. Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR, Stoclet JC: Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway.Am J Physiol,1990;259:H1038-H1043.
    28. Gray GA, Schoot C, Julou-Schaeffer G, Fleming I, Parratt JR, Stoclet JC: The effect of inhibitors of the L-arginine/nitric oxide pathway on endotoxininduced loss of vascular responsiveness in anaesthetized rats. Br J Pharmacol,1991;103:1218-1224.
    29. Gardiner SM, Kemp PA, March JE, Bennett T: Cardiac and regional haemodynamics, inducible nitric oxide synthase (NOS) activity, and the effects of NOS inhibitors in conscious, endotoxaemic rats. Br J Pharmacol, 1995;116:2005-2016.
    30. Silva-Santos JE, Terluk MR, Assreuy J: Differential involvement of guanylate cyclase and potassium channels in nitric oxide-induced hyporesponsiveness to phenylephrine in endotoxemic rats. Shock, 2002;17:70-76.
    31. Silva-Santos JE, Assreuy J: Long-lasting changes of rat blood pressure to vasoconstrictors and vasodilators induced by nitric oxide donor infusion: involvement of potassium channels. J Pharmacol Exp Ther,1999;290:380-387.
    32. Liaudet L, Soriano FG, Szabo C: Biology of nitric oxide signaling. Crit Care Med,2000;4:N37-N52,.
    33. Feihl F, Waeber B, Liaudet L: Is nitric oxide overproduction the target of choice for the management of septic shock? Pharmacol Ther, 2001;91: 179-213.
    34. Cheng X, Pang CC: Pressor and vasoconstrictor effects of methylene blue in endotoxaemic rats. Naunyn Schmiedebergs Arch Pharmacol,1998;357: 648- 653.
    35. Keaney JF Jr, Puyana JC, Francis S, Loscalzo JF, Stamler JS, Loscalzo J:Methylene blue reverses lipopolysaccharide-induced hypotension. Circ Res, 1994;74:1121-1125.
    36. Zhang H, Rogiers P, Preiser JC, Spapen H, Manikis P, Metz G, Vincent JL:Effects of methylene blue on oxygen availability and regional blood flow during endotoxic shock. Crit Care Med, 1995;23:1711-1721.
    37. Schneider F, Lutun P, Hasselmann M, Stoclet JC, Tempe JD: Methylene blue increases systemic vascular resistance in human septic shock. Preliminary observations. Intensive Care Med, 1992;18:309-311.
    38. Gachot B, Bedos JP, Veber B, Wolff M, Regnier B: Short-term effects of methylene blue on hemodynamics and gas exchange in humans with septic shock. Intensive Care Med,1995;21:1027-1031.
    39. Weingartner R, Oliveira E, Oliveira ES, Sant’Anna UL, Oliveira RP, Azambuja LA, Friedman G: Blockade of the action of nitric oxide in human septic shock increases systemic vascular resistance and has detrimental effects on pulmonary function after a short infusion of methylene blue. Braz J Med Biol Res,1999;32:1505-1513.
    40. Memis D, Karamanlioglu B, Yuksel M, Gemlik I, Pamukcu Z: The influence of methylene blue infusion on cytokine levels during severe sepsis. Anaesth Intensive Care,2002;30:755-762.
    41. Donati A, Preiser JC: Methylene blue: An old-timer or a compound ready for revival. Crit Care Med, 2006;34:2862-2863.
    42. Fernandes D, Silva-Santos JE, Duma D, Villela CG, Barja-Fidalgo C, Assreuy J: Nitric oxide-dependent reduction in soluble guanylate cyclase functionality accounts for early lipopolysaccharide-induced changes in vascular reactivity.Mol Pharmacol,2006; 69:983-990.
    43. De Kimpe SJ, Van Heuven-Nolsen D, van Amsterdam JG, Radomski MW, Nijkamp FP: Induction of nitric oxide release by interferon-gamma inhibits vasodilation and cyclic GMP increase in bovine isolated mesenteric arteries.J Pharmacol Exp Ther,1994;268:910-915.
    44. Takata M, Filippov G, Liu H, Ichinose F, Janssens S, Bloch DB, Bloch KD:Cytokines decrease sGC in pulmonary artery smooth muscle cells via NOdependent and NO-independent mechanisms. Am J Physiol Lung Cell Mol Physiol,2001;280:L272-L278.
    45. Kitazono T, Faraci FM, Taguchi H, Heistad DD: Role of potassium channels incerebral blood vessels. Stroke,1995;26:1713-1723.
    46. Wu CC, Chen SJ, Yen MH: Nitric oxide-independent activation of soluble guanylyl cyclase contributes to endotoxin shock in rats. Am J Physiol, 1998;275:H1148-H1157.
    47. andry DW, Oliver JA: The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest,1992;89:2071-2074.
    48. Chen SJ, Wu CC, Yang SN, Lin CI, Yen MH: Abnormal activation of K(+) channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence. Br J Pharmacol,2000;131:213-222.
    49. Chen SJ, Wu CC, Yen MH: Role of nitric oxide and K+-channels in vascular hyporeactivity induced by endotoxin. Naunyn Schmiedebergs Arch Pharmacol,1999; 359:493-499.
    50. Chen CC, Lin YC, Chen SA, Luk HN, Ding PY, Chang MS, Chiang CE: Shortening of cardiac action potentials in endotoxic shock in guinea pigs is caused by an increase in nitric oxide activity and activation of the adenosine triphosphate-sensitive potassium channel. Crit Care Med,2000;28:1713-1720.
    51. Terluk MR, Silva-Santos JE, Assreuy J: Involvement of soluble guanylate cyclase and calcium-activated potassium channels in the long- lasting hyporesponsiveness to phenylephrine induced by nitric oxide in the rat aorta.Naunyn Schmiedebergs Arch Pharmacol, 2000;361:477-483.
    52. Fernandes D, Assreuy J: Involvement of guanylate cyclase and potassium channels on the delayed phase of mouse carrageenan-induced paw oedema.Eur J Pharmacol, 2004;501:209-214.
    53. Vanelli G, Hussain SN, Dimori M, Aguggini G: Cardiovascular responses to glibenclamide during endotoxaemia in the pig. Vet Res Commun, 1997;21:187-200.
    54. Preiser JC, Zhang H, Debelle F, Fesler P, Kafi SA, Naeije R, Vincent JL:Hemodynamic effects of glibenclamide during endotoxemia: contrasting findings in vitro versus in vivo.Shock,2003;19:223-228.
    55. Warrilow S, Egi M, Bellomo R: Randomized, double-blind, placebo-controlled crossover pilot study of a potassium channel blocker in patients with septic shock. Crit Care Med,2006;34:980-985.
    56. Morelli A, Lange M, Ertmer C, Broeking K, Van Aken H, Orecchioni A, Rocco M,Bachetoni A, Traber DL, Landoni G, et al.: Glibenclamide dose response in patients with septic shock: effects on norepinephrine requirements,cardiopulmonary performance, and global oxygen transport.Shock,2007;28:530-535.
    57. Cauwels A, Brouckaert P: Critical role for small and large conductance calcium- dependent potassium channels in endotoxemia and TNF toxicity.Shock, 2007; 29:577-582.
    58. Riedmann NC, Guo RF, and Ward PA. Novel strategies for the treatment of sepsis. Nat Med, 2003;9:517–524.
    59. Peters K, Unger RE, Brunner J, and Kirpatrick CJ. Molecular basis of endothelial dysfunction in sepsis. Cardiovasc Res,2003;60: 49–57
    60. Elisabet Vila and Mercedes Salaices. Cytokines and vascular reactivity in resistance arteries. Am J Physiol Heart Circ Physiol 2005;288: H1016–H1021.
    61. Iversen PO, Nicolaysen A, Kvernebo K, Benestad HB, and Nicolaysen G. Human cytokines modulate arterial vascular tone via endothelial receptors. Pflu¨gers Arch,1999;439: 93–100.
    62. Pickkers P, Netea MG, van der Meer JW, and Smits P. TNF-αand IL-1 exert no direct vasoactivity in human isolated resistance arteries.Cytokine,2002;20: 244–246.
    63. Wagner EM. TNF-induced bronchial vasoconstriction. Am J Physiol Heart Circ Physiol,2000;279: H946–H951.
    64. Corder R, Carrier M, Khan N, Klemm P, and Vane JR. Cytokine regulation of endothelin-1 release from bovine aortic endothelial cells.J Cardiovasc Pharmacol,1995; 26: S56–S58.
    65. Virdis A and Schiffrin EL. Vascular inflammation: a role in vascular disease in hypertension? Curr Opin Nephrol Hypertens,2003;12:181–187
    66. Klemm P, Warner TD, Hohlfeld T, Corder R, and Vane JR. Endothelin-1 mediates ex vivo coronary vasoconstriction caused by exogenous and endogenous cytokines. Proc Natl Acad Sci USA,1995;92: 2691–2695.
    67. Nakamura M, Yoshida H, Arakawa N, Saitoh S, Satoh M, and Hiramori K. Effects of tumor necrosis factor on basal and stimulated endothelium-dependent vasomotion in human resistance vessel. J Cardiovasc Pharmacol,2000;4: 487–492.
    68. Icaut E, Rasetti C, and Baudry N. Effects of tumor necrosis factor and interleukin-1 onthe constriction induced by angiotensin II in rat aorta.J Appl Physiol,1996;80: 1891–1897.
    69. Bernard C and Tedgui A. Cytokine network and the vessel wall. Insightsinto septic shock pathogenesis. Eur Cytokine Netw,1992;3: 19–33.
    70. Brian JE Jr and Faraci FM. Tumor necrosis factor-_-induced dilatationof cerebral arterioles. Stroke,1998;29: 509–515.
    71. Hernanz R, Briones AM, Alonso MJ, Vila E, and Salaices M. Hypertension alters role of iNOS, COX-2, and oxidative stress in bradykinin relaxation impairment after LPS in rat cerebral arteries. Am J Physiol Heart Circ Physiol,2004;287: H225–H234.
    72. Maguire JJ, Johnson CM, Mockridge JW, Davenport AP. Endothelin converting enzyme (ECE) activity in human vascular smooth muscle. Br J Pharmacol 1997; 122: 1647-54.
    73. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990; 348: 730-2.
    74. Iwasaki T, Hayasaki-Kajiwara Y, Shimamura T, Naya N, Nakajima M. Endothelin receptor subtype antagonist activity of S-0139 in various isolated rabbit and canine arteries. Eur J Pharmacol 2000; 400:255–262.
    75. Seo B, Oemar BS, Siebenmann R, von Segesser L, Luscher TF: Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels.Circulation, 1994;89(3):1203-1208.
    76. Weitzberg E. Circulatory responses to endothelin-1 and nitric oxide with special reference to endotoxin shock and nitric oxide inhalation. Acta Physiol Scand Suppl, 1993;61: 11-72.
    77. Hirata Y, Ishimaru S. Effects of endothelin receptor antagonists on endothelin-1 and inducible nitric oxide synthase genes in a rat endotoxic shock model. Clin Sci (Lond), 2002;103 48:332S-335S.
    78. Alonso D, Radomski MW. The nitric oxide-endothelin-1 connection. Heart Fail Rev, 2003;8(1):107-15.
    79. Johann K.Scicluna, Arnaud Mansart,Jonathan J.Ross, et al. Reduced Vascular Response To Phenylephrine During Exposure To Lipopolysaccharide in Vitro Involves Nitric Oxide and Endothelin 1. Shock, 2008;29(3):417-421.
    80. Pittet JF, Morel DR, Hemsen A, Gunning K, Lacroix JS, Suter PM, Lundberg JM: Elevated plasma endothelin-1 concentrations are associated with the severity of illness in patients with sepsis. Ann Surg,1991;213(3):261-264.
    81. Giardina JB, Green GM, Rinewalt AN, Granger JP, Khalil RA: Role of endothelin B receptors in enhancing endotheliumYdependent nitric oxideY mediated vascular relaxation during high salt diet. Hypertension,2002;37(2 Part 2):516-523.
    82. Wanecek M, Oldner A, Rudehill A, Sollevi A, Alving K, Weitzberg E: Cardiopulmonary dysfunction during porcine endotoxin shock is effectively counteracted by the endothelin receptor antagonist bosentan. Shock,1997;7:364-370.
    83. Gardiner S, March J, Kemp P, Bennett T: Effects of the novel selective endothelin ETA receptor antagonist, SB 234551, on the cardiovascular responses to endotoxemia in conscious rats. Br J Pharmacol, 2001;133(8):1371-1377.
    84. Wanecek M, Oldner A, Sundin P, Alvin K, Weitzberg E, Rudehill A: Effects on hemodynamics by selective endothelin ETB receptor and combined endothelin ETA and ETB receptor antagonism during endotoxin shock. Eur J Pharmacol, 1999;386:235-245.
    85. Hirata Y, Ishimaru S: Effects of endothelin receptor antagonists on endothelin-1 and inducible nitric oxide synthase genes in a rat endotoxic shock model.Clin Sci (Lond),2002;103(Suppl 48):332-335.
    86. Gendzwi A. Akademia Medyczna w Gdańsku, Katedra i Zak?ad Farmakologii, et al. Reactive oxygen species and vascular hyporeactivity in septic shock. Part II--scavengers and vascular hyporeactivity in septic shock. Pol Merkur Lekarski. 2007;23(136):284-7.
    87. Meziani F, Kremer H, Tesse A, Baron-Menguy C, et al. Human serum albumin improves arterial dysfunction during early resuscitation in mouse endotoxic model via reduced oxidative and nitrosative stresses. Am J Pathol. 2007;171(6):1753-61.
    88. Takakura K, Taniguchi T, Muramatsu I, et al. Modification of alpha1 -adrenoceptors by peroxynitrite as a possible mechanism of systemic hypotension in sepsis. Crit Care Med, 2002;30(4):894-9.
    89. Macarthur H, Westfall TC, Riley DP, et al. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc Natl Acad SciUSA. 2000;97(17):9753-8.
    90. Zingarelli B, Day BJ, Crapo JD,et al. The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br J Pharmacol, 1997; 120(2):259-67.
    91. Wen-Jinn Liaw,Tai-Hao Chen et al. Effect of a membrane-permeable radical scavenger,tempol,on intraperitioneal sepsis-induced organ injury in rats.Shock. 2005;23(1):88–96.
    92. Celotto AC, Capellini VK, Baldo CF, et al. Effects of acid-base imbalance on vascular Reactivity. Brazilian Journal of Medical and Biological Research.2008;41(6):439-45.
    93. Wu CC, Szabo C, Chen SJ, et al. Activation of soluble guanylyl cyclase by a factor other than nitric oxide or carbon monoxide contributes to the vascular hyporeactivity to vasoconstrictor agents in the aorta of rats treated with endotoxin. Biochem Biophys Res Commun, 1994;201(1):436-42.
    94. Kojima H, Sakurai S, Uemura M, et al. Adrenomedullin contributes to vascular hyporeactivity in cirrhotic rats with ascites via a release of nitric oxide. Scand J Gastroenterol, 2004;39(7):686-93.
    95. Bermejo, A., Zarzuelo, A., Duarte, J., In vivo vascular effects of genistein on a rat model of septic shock induced by lipopolysaccharide. J. Cardiovasc.Pharmacol, 2003;42, 329–338.
    96. Ruetten H, Thiemermann C. Effects of tyrphostins and genistein on the circulatory failure and organ dysfunction caused by endotoxin in the rat: a possible role for protein tyrosine kinase. Br J Pharmacol, 1997;122(1):59-70.
    97. Kox M, Wijetunge S, Pickkers P, et al. Inhibition of Src family tyrosine kinases prevents lipopolysaccharide-induced hyporeactivity in isolated rat tail arteries. Vascul Pharmacol, 2007;46(3):195-200.
    98. Szabo C, Southan GJ, Thiemermann C. Beneficial effects and improved survival in rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA, 1994; 91(26):12472-6.
    99. Ruetten H, Southan GJ, Abate A, et al. Attenuation of endotoxin-induced multiple organ dysfunction by 1-amino-2-hydroxy-guanidine, a potent inhibitor of induciblenitric oxide synthase. Br J Pharmacol, 1996;118(2):261-70.
    100. Mariano F,Bussolati B, Migliori M, Russo S, Triolo G, Camussi G. Platelet-activating factor synthesis by neutrophils, monocytes, and endothelial cells is modulated by nitric oxide production. Shock., 2003;19(4):339-44.
    101. Kim HW, Greenburg AG. Nitric oxide scavenging, alone or with nitric oxide synthesis inhibition, modulates vascular hyporeactivity in rats with intraperitoneal sepsis. Shock.,2002;17(5):423-6.
    102. Giusti-Paiva A, Martinez MR, Felix JV, et al. Simvastatin decreases nitric oxide overproduction and reverts the impaired vascular responsiveness induced by endotoxic shock in rats. Shock, 2004;21(3):271-5.
    103. Snyder JG, Prewitt R, Campsen J, Britt LD. PDTC and Mg132, inhibitors of NF-kappaB, block endotoxin induced vasodilation of isolated rat skeletal muscle arterioles. ,2002;17(4):304-7.
    104. Kang YJ, Lee YS, Lee GW, et al. Inhibition of activation of nuclear factor kappaB is responsible for inhibition of inducible nitric oxide synthase expression by higenamine, an active component of aconite root. J Pharmacol Exp Ther, 1999;291(1):314-20.
    105. Sakamoto A, Matsumura J, Mii S, et al. A prostaglandin E2 receptor subtype EP4 agonist attenuates cardiovascular depression in endotoxin shock by inhibiting inflammatory cytokines and nitric oxide production. Shock, 2004;22(1):76-81.
    106. Araujo CV, Barbosa Filho JM, Cordeiro RS, et al. Protective effects of yangambin on cardiovascular hyporeactivity to catecholamines in rats with endotoxin-induced shock. Naunyn Schmiedebergs Arch Pharmacol, 2001;363(3):267-75.
    107. De Kimpe SJ, Thiemermann C, Vane JR. Role for intracellular platelet-activating factor in the circulatory failure in a model of gram-positive shock. Br J Pharmacol, 1995;116(8):3191-8.
    108. Musser JB, Bentley TB, Griffith S, et al. Hemorrhagic shock in swine: nitric oxide and potassium sensitive adenosine triphosphate channel activation. Anesthesiology, 2004;101(2):399-408.
    109. Macarthur H, Couri DM, Wilken GH, et al. Modulation of serum cytokine levels by a novel superoxide dismutase mimetic, M40401, in an Escherichia coli model of septic shock: correlation with preserved circulating catecholamines. Crit Care Med,2003;31(1):237-45.
    110. Liaw WJ, Chen TH, Lai ZZ, Chen SJ, Chen A, Tzao C, Wu JY, Wu CC. Effects of a membrane-permeable radical scavenger, Tempol, on intraperitoneal sepsis-induced organ injury in rats. Shock, 2005;23(1):88-96.
    111. d'Emmanuele di Villa Bianca R, Marzocco S, Di Paola R, et al. Melatonin prevents lipopolysaccharide-induced hyporeactivity in rat. J Pineal Res, 2004;36(3):146-54.
    112. Altavilla D, Squadrito F, Serrano M, et al. Inhibition of tumour necrosis factor and reversal of endotoxin-induced shock by U-83836E, a 'second generation' lazaroid in rats. Br J Pharmacol, 1998;124(6):1293-9.
    113. Meziani F, Kremer H, Tesse A, et al. Human Serum Albumin Improves Arterial Dysfunction during Early Resuscitation in Mouse Endotoxic Model via Reduced Oxidative and Nitrosative Stresses. Am J Pathol, 2007;171(6):1753-61.
    114. Gupta A, Berg DT, Gerlitz B, Richardson MA, Galbreath E, Syed S, Sharma AC, Lowry SF, Grinnell BW Activated protein C suppresses adrenomedullin and ameliorates lipopolysaccharide-induced hypotension. Shock,2007;28(4):468-76.
    115. Ruetten H, Thiemermann C. Effect of selective blockade of endothelin ETB receptors on the liver dysfunction and injury caused by endotoxaemia in the rat. Br J Pharmacol, 1996;119(3):479-86.
    116. Tsuneyoshi I, Yamada H, Kakihana Y, et al. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med, 2001;29(3):487-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700