用户名: 密码: 验证码:
长江口及杭州湾泥沙输运研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文就国内外泥沙数值模拟研究的历史和现状,特别是长江口及杭州湾海域的泥沙研究进行回顾,在前人工作的基础上针对长江口及杭州湾的实际工程需求和科学问题提出了三个有待深入研究的颗题:深水航道工程风暴回淤研究、深水航道治理二期工程后航道在W23段过度淤积问题以及长江口、杭州湾这两大河口作为统一系统的泥沙数值模拟研究。主要工作简述如下:
     1、论文首先改进和优化了华东师范大学河口海岸国家重点实验室的长江口南港冲淤预测模型系统。通过建立底床泥沙起动分层模型,使底沙输运计算更加合理,同时为方便模型的使用将台风场、波浪场、流场、盐度场、全沙场等各子模型进行集成和嵌套。利用改进后的模型系统对近五年影响长江口主要台风引起北槽航道冲淤变化逐个进行后报检验与分析,进一步率定了模型中的有关参数,深化了对长江口北槽航道风暴冲淤的认识,大大提高了长江口北槽航道风暴冲淤的预测精度。通过这一工作得到以下结论:台风过程均能不同程度地引起航道内淤积;航道自然回淤量(不受风暴和工程等影响)呈现大小潮规律的变化;航道总淤积量除受台风过程影响外,还受大小潮汛、滩地泥沙供给、水深地形、整治工程以及疏浚抛泥等多种因子影响,为各因素共同作用的结果。
     2、利用长江口南港冲淤预测模型系统从工程前后流场、泥沙场和滩槽地形变化三方面对深水航道二期整治工程后航道在W23段过度淤积问题展开初步成因分析。通过实测数据资料的整理分析和数值模拟,发现二期工程后,由于北槽下段的整治建筑物工程已经完成,所以航道上段至下段水面比降减小,使得航道上中段之间即W23的流速减弱,流向与航槽夹角变大;从工程前后的泥沙场变化总的趋势来讲,由于双导堤对两边浅滩起拦沙作用,泥沙来源得到控制,因此悬沙浓度呈减小趋势;但二期工程后含沙量相对高值区出现在航道中上段即W23段,同时利用通量分析方法计算悬沙的输运能力,发现二期后航道中部悬沙输运能力跟以前相比减弱,即悬沙向下游输移的少,有在本区段增加淤积的趋势;底沙的模拟结果也显示二期后航道中上段的淤积为最强。双导堤内滩槽地形变化的分析结果显示,工程进展过程中深槽始终都在变宽,应该有利于人工航道的维护。但二期工程后航道上段7米等深线宽度变大不大,而8和9米等深线之间的间距反而随着工程进展变小,使得上段双导堤内滩槽高程差变大。而下段航道7、8和9米等深线宽度始终维持变宽的趋势,滩槽环境呈冲刷趋势,从而造成航道中上段滩槽高程差变大,地形变陡,泥沙容易落入航槽中而不容易被冲起带走,W23段相当于形成了一个“蜂腰捕沙器”,泥沙容易淤积。
     3、长江口为我国第一大河口,杭州湾为我国著名的强潮海湾。在前面研究工作中发现长江口、杭州湾海域的悬沙平面分布特征迥异,垂向分布结构类型也有所不同,三维特点明显。对于深水航道整治工程、洋山港工程和东海大桥等长江口、杭州湾海域大型重大工程来说,三维悬沙数值模式的研究更符合实际情况和工程需求,因此本论文基于ECOMSED模式的改进和优化,建立长江口、杭州湾三维泥沙数值模型系统,通过依托“长江口及毗邻海域生态环境调查科研项目”和“国家重点基础研究发展规划项目——长江口及其邻近海域细颗粒泥沙沉积动力过程”等科研项目的数据对模型系统进行率定验证,进行长江口、杭州湾海域三维悬沙数值模拟的初步研究。基于改进后ECOMSED模式的数值实验发现,波浪在近岸潮滩区域对泥沙启动的作用不可忽视,模拟结果还表明杭州湾悬沙浓度平面分布表现为西高东低,大—小潮周期变化显著,潮周期内悬沙浓度呈明显的周期变化,较好地反映了该海区悬沙浓度的变化过程。悬沙模拟计算结果量级、潮周期变化过程跟观测值一致,同时泥沙平面时空分布跟已有观测资料和结论符合,表明本文的三维泥沙数值模式能够应用于长江口和杭州湾海区。
Researches about numerical model of sediment transport, especially in the Yangtze Estuary and Hangzhou Bay, are reviewed in this thesis. And three questions such as Siltation in YEDWC (Yangtze Estuary Deep Water Channel)、excessive siltation in the upside of YEDWC after the second phases of the deep water channel regulation project have been completed and the numerical simulation of three-dimensional cohesive sediment transport in Hangzhou Bay and Yangtze Estuary, China are pointed here according to the need of engineer and science research. The main fruits are as following:
     1、First based on the Numerical Model for Siltation Prediction in Yangtze Estuary Deep Water Channel, some ameliorations are carried through. And a Grant- Madsen Model is introduced into the new model to calculate the shear stress of wave and current. To realistically simulate the effects of sequential deposition and erosion, a vertically segmented model of the cohesive sediment bed is constructed. In order to be available in the use of models, These sub-models such wind model, wave model, sediment transport model、salinity model、Grant-Madsen model and sediment-bed model are integrated as a whole system. Siltations of North passage channel in Yangtze Estuary induced by storm are simulated since 2000, and coefficients of numerical model are betterment in reason. According to the results of numerical simulation, the following conclusions are determined: Channel siltation is caused certainly by the storm; The channel natural silations (not including storm and engineering)shows pronounced time-scale variations, i.e. the neap-spring cycle. The total volumes of silitation are affected by such as Typhoon process, tidal range, beach sand supply, water depth topography, rectification works and dredging throw mud, and other factors.
     2、A preliminary analysis included tidal flow, sediment and topography changes is done by use of Prediction Model of Erosion and Deposition in The Yangtze Estuary. The measured data analysis and numerical simulation results show that under the guide of the fairway embankment of the second phase project, the flow between the front and middle of channel is weakened. Because the engineering blocked sediment source of the tidal flat from Hengsha Shoal, suspended sediment concentration decreases; But after the second phase project of sediment relatively high value zone appears in the middle of the channel that is paragraph W23. After the second phase of project The width of channel is gradually widened, but the pitchs ofthe isobath among 7, 8 and 9 m in the upside of channel are smaller since project began; underwater topography of the channel is more steep, so sediment is more easily deposition into the channel.
     3、Sediment transport in the Hangzhou Bay and Yangtze Estuary is extremely complicated due to its bathymetry and hydrodynamic conditions. The ECOMSED model is employed to simulate three-dimensional (3-D) cohesive sediment transport in Hangzhou Bay. Dynamical factors such as Coriolis force, tides, salinity, river discharges, and waves are considered in the model. The wave parameters, including the significant wave height, period, and direction, are calculated with the SWAN model. The Grant-Madsen model is introduced for the bed shear stress due to the combined effect of waves and currents. The formulation of bed shear stress used to calculate the sink/source terms is modified based on previous research that sufficiently validated the formulation with measurement data. The integrated model of the above-mentioned models is applied to simulate sediment transport in Hangzhou Bay. The results of the simulation agree well with field observations concerning the distribution of suspended sediment, indicating that the sediments are remarkably suspended in Hangzhou Bay under the action of waves and currents.
引文
陈吉余,王宝灿,虞志英,等.中国海岸发育过程和演变规律[M].上海:上海科学技术出版社,1989,p108-119.
    陈吉余,沈焕庭,恽才兴,等著.长江河口动力过程和地貌演变[M].上海科学出版社,1988,p216-228.
    陈吉余,胡辉,朱慧芳.21世纪长江三角洲经济区港口群建设的构想[J].华东师范大学学报长江口深水航道治理与港口建设专辑,1995:80-91.
    陈吉余,陈沈良.中国河口海岸面临的挑战[J].海洋地质动态,2002,18(1):1-5.
    上海市海岸带和海涂资源综合调查报告[M].上海科学技术出版社,1986,p35-39.
    华东师范大学河口海岸国家重点实验室.长江口南港冲淤灾害预测模型研究报告[R].2001
    Delft University. SWAN Manual[R]. 2005.
    水利部水文局、水利部国际泥沙研究培训中心.中国河流泥沙公报(长江)[R].2006a.
    华东师范大学河口海岸国家重点实验室.长江口及毗邻海域生态环境调查与评价[R].2006b.
    交通部长江口航道管理局,上海河口海岸科学研究中心.北槽W2-W3区段回淤原因分析初步研究成果[R].2007.
    曹文洪,何少苓,方春明.黄河河口海岸二维非恒定水流泥沙数学模型[J].水利学报,2001,(1):42-48.
    曹志先.泥沙数学模型近底边界条件Ⅰ:平衡输沙[J].水利学报,1997a,(1):11-19.
    曹志先.泥沙数学模型近底边界条件Ⅱ:非平衡输沙[J].水利学报,1997b,(1):20-24.
    曹沛奎,谷国传,董永发,杭州湾泥沙运移的基本特征.陈吉余,王宝灿,虞志英,等著.中国海岸发育过程和演变规律[M].上海:上海科学技术出版社,1989,p108-119.
    曹振轶,朱首贤,胡克林.感潮河段悬沙数学模型——以长江口为例[J].泥沙研究,2002,(3):64-70.
    曹振轶,胡克林.长江口二维非均匀悬沙数值模拟[J].泥沙研究,2002a,6:66-73.
    曹振轶,胡克林.长江口非均匀悬沙数值模拟[J].泥沙研究,2002b,(6):66-73.
    曹祖德,王桂芬.波浪掀沙,潮流输沙的数值模拟[J].海洋学报,1993,15(1):107-118.
    曹德明,方国洪.杭州湾潮汐潮流德数值模拟[J].海洋与湖沼,1986,3:93-101.
    曹德明,方国洪.杭州湾和钱塘江潮波的联合数值模拟[J].海洋学报,1988,5:521-530.
    程文,曹如轩,钱善琪,郭崇.水库粗颗粒高含沙水流泥沙数学模型[J].水利学报,增刊,1998:84-87
    陈沈良,谷国传.杭州湾口悬沙浓度变化与模拟[J].泥沙研究,2000,(5):35-45.
    陈沈良,张国安,杨世伦,虞志英.长江口水域悬沙浓度时空变化与泥沙再悬浮[J].地理学报,2004,59(2):260-266.
    陈界仁,沙劳·巴里,陈国祥.二维水库水流泥沙数值模拟[J].河海大学学报,2000,28(5):11-15.
    陈虹,李大鸣.三维潮流泥沙运动的一种数值模拟[J].天津大学学报,1999,32(5):573-579.
    陈则实.中国海湾志[M].北京:海洋出版社,1998.
    丁平兴,孔亚珍,朱首贤,朱建荣.波.流共同作用下的三维悬沙输运数学模型[J].自然科学进展,2001,11(2):147-152.
    丁平兴,史峰岩,孔亚珍.波—流共同作用下的三维悬沙扩散方程[J].科学通报,1999,44(12):1339-1342.
    丁平兴,金镠,胡克林,堵盘军.华东师范大学河口海岸国家重点实验室.长江口风暴冲淤预测技术及应用研究报告[R].2006.
    丁平兴,胡克林,孔亚珍,朱首贤.长江河口波—流共同作用下的全沙数值模拟[J].海洋学报,2003,25(5):113-124.
    丁平兴,胡克林,孔亚珍,胡德宝.风暴对长江河口北槽冲淤影响的数值模拟[J].泥沙研究,2003,6:18-24.
    丁平兴,贺松林,张国安,孔亚珍,劳治声.湛江湾沿岸工程冲淤影响的预测分析Ⅱ冲淤的数模计算[J].海洋学报,1997,19(1):64-72.
    范期锦,金镠,蔡云鹤,高敏.交通部长江口航道管理局.长江口深水航道治理工程成套技术总报告[R].2006.
    高抒,程鹏,汪亚平,曹奇.长江口外海域1998年夏季悬沙浓度特征[J].海洋通报,1999,18(6):44-50.
    堵盘军,胡克林,孔亚珍,丁平兴.ECOMSED模式在杭州湾海域流场模拟中的应用[J].海洋学报,2007,29(1):7-16.
    葛建忠.长江口风暴潮系统研究及应用[T],华东师范大学,上海,2007.
    董礼先,苏纪兰,王康墡.黄渤海潮流场及其与沉积物搬运的关系[J].海洋学报,1989,11(1):102-114.
    窦希萍.南京水利科学研究院.长江口深水航道的回淤量预测数学模型的开发及应用[R].2006.
    窦希萍,李提来,窦国仁.长江口全沙数学模型[J].水利水运科学研究,1999,(3):136-145
    窦国仁,董凤武,窦希萍.潮流和波浪的挟沙能力[J].科学通报,1995,40(5):443-446.
    窦国仁,赵士清,黄亦芬.河道二维全沙数学模型的研究[J].水利水运科学研究,1987,2:1-12.
    何青.杭州湾北部水域污染物扩散输移的数值模拟与分析[T],华东师范大学,上海,1988.
    何青,恽才兴,时伟荣.长江口表层水体悬沙浓度场遥感分析[J].自然科学进展,1998,9(2):160-164.
    何超.近二十年长江口邻近海域悬沙分布比较研究[T],华东师范大学,上海,2007,65 pp.
    谷国传.长江口外水域悬沙分布特征[J].东海海洋,1986,4(1):12-20.
    谷国传,胡方西.我国沿海近岸带水域的悬沙分布特征[J].地理研究,1989,8(2):1-15.
    海洋图集编委会.渤海黄海东海海洋图集(水文)[M].北京海洋出版社,1992a,p13-168.
    海洋图集编委会.渤海黄海东海海洋图集(气象)[M].北京:北京海洋出版社,1992b,p130-141.
    华东师范大学河口海岸国家重点实验室.风暴潮对长江口深水航道工程影响的研究报告[R].1997.
    华东师范大学河口海岸国家重点实验室.长江口南港冲淤灾害预测模式研究,“九五”国家重点科技攻关项目(96-922-03-02-01)研究报告[R].2000.
    华东师范大学河口海岸国家重点实验室,国家海洋局东海预报中心,中国气象局上海台风研究所.太湖流域风暴潮及潮汐特性分析与预报模型研究报告[R].2006.
    国家海洋环境监测中心,国家海洋局海洋环境研究所.20世纪末中国海洋环境质量公报[M].2000.
    贺松林,丁平兴,孔亚珍,劳治声,陈全.湛江湾沿岸工程冲淤影响的预测分析Ⅰ动力地貌分析[J].海洋学报,1997,19(1):55-63.
    黄金池,万兆惠.多沙河流平面二维泥沙数学模型研究[J].水科学进展,1997,8(3):253-258.
    黄胜,卢启苗.河口动力学[M].水利电力出版社,1995,p136-147.
    孔亚珍,丁平兴,贺松林,何超,肖文军.长江口外及其邻近海域含沙量时空变化特征分析[J].海洋科学进展,2006,24(4):446-454.
    孔亚珍,贺松林,丁平兴,胡克林.长江口盐度的时空变化特征及其指示意义[J].海洋学报,2004,26(4):9-18.
    交通部长江口航道管理局.长江口深水航道治理工程成套技术[R].2006.
    匡翠萍.长江口拦门沙冲淤及悬沙沉降规律研究和水流盐度泥沙数学模型[T],南京水 利科学研究院,南京,1993.
    江文胜,孙文心.渤海悬浮颗粒物的三维输运模式Ⅰ模式[J].海洋与湖沼,2001a,31(6):682-688.
    江文胜,孙文心.渤海悬浮颗粒物的三维输运模式Ⅱ模拟结果[J].海洋与湖沼,2001b,32(1):94-100.
    李身铎,胡辉.杭州湾流场的研究[J].海洋与湖沼,1987,1:28-38.
    李身铎,曹德明,方国洪.杭州湾潮流湍应力和涡动粘性的估算[J].海洋学报,1985,4:412-422.
    李身铎,顾斯美.杭州湾潮波三维数值模拟[J].海洋与湖沼,1993,1:8-15.
    李蓓,唐士芳.河口海区开挖航道后三维潮流盐度泥沙数值模拟[J].水道港口,2000,(4):36-41.
    李义天,尚全民.一维不恒定流泥沙数学模型研究.[J].泥沙研究,1998,(1):81-87.
    林秉南,黄菊卿,李新春.钱塘江河口潮流输沙数学模型[J].泥沙研究,1981,(2):16-29.
    金镠.上海华申工程建设监理咨询有限公司,长江口二期疏浚监理部.2005年度对长江口深水航道有影响的“海棠”、“麦莎”、“泰利”、“卡努”台风资料[R].2005.
    金镠,谈泽炜,李文正,虞志英.长江口深水航道的回淤问题[J].中国港湾建设,2003,4:1-6.
    柳海涛,吉祖稳,胡春宏.悬移质泥沙有限元模型初探[J].泥沙研究,2001,(5):42-47.
    梁国亭,高懿堂,梁跃平,龚坚.非恒定流泥沙数学模型原理及其应用[J].泥沙研究,1999,(4):44-48.
    蒋国俊,陈吉余,姚炎明.舟山群岛潮滩动力沉积特性[J].海洋学报,1998,3:139-146.
    陆永军,陈国祥.航道工程泥沙数学模型的研究Ⅰ模型的建立[J].河海大学学报,1997,25(6):8-14.
    黄永健.长江口挖槽自然回淤的计算[J].泥沙研究,1997,(2):69-73.
    上海勘测设计研究院.台风期长江口北槽回淤研究(内部报告)[R].1994.
    万新宁.长江口外海滨悬沙分布及输移机制分析[T],华东师范大学,2003.
    万新宁,李九发,沈焕庭.长江口外海滨悬沙分布及扩散特征[J].地理研究,2006,25(2):294-302.
    王光谦,周建军,杨本均.二维泥沙异重流运动的数学模型[J].应用基础与工程科学学报,2000,8(1):52-60
    王双明,孙西欢,潘光在.复式断面河道水流泥沙数值模拟[J].太原理工大学学报,2000,31(1):60-63.
    史峰岩,朱首贤,朱建荣,丁平兴.杭州湾、长江口余流及其物质输运作用的模拟研究(Ⅰ). Ⅰ.杭州湾、长江口三维联合模型[J].海洋学报,2000,9:1-12.
    沙玉清.泥沙运动学引论[M].北京:中国工业出版社,1965.
    沈焕庭,等.长江河口物质通量[M].北京:海洋出版社,2001,p1-154.
    沈焕庭,潘定安.长江河口最大浑浊带[M].北京:海洋出版社,2001,p28-39.
    盛升国,施厚庆,于福生等.长江口北槽航道抛泥区泥沙扩散的试验研究[J].泥沙研究,1986,(3):37-45.
    彭润泽,蒋如琴,黄永健,等.武汉水利水电学院.长江口泥沙絮凝沉速实验研究报告[R].1987.
    吴加学,沈焕庭.黄茅海河口湾泥沙输运研究——兼论McLaren模型在河口中的应用问题[J].泥沙研究,1999,(3):26-32.
    吴加学,张叔英,任来法.长江河口北槽抛泥作业状态下的悬沙浓度分布与扩散过程[J].海洋与湖沼,2003,34(1):83-93.
    孙文心.近海环境流体动力学数值模型[M].北京科学出版社,2004.
    孙昭晨,梁书秀,沈书明,唐士芳.三维海洋紊流模型对杭州湾附近潮流场数值模拟[J].大连理工大学学报,2000,9:609-612.
    孙琪,孙效功,李瑞杰.窄缝法在河口区悬沙输运数值计算中的应用[J].海洋与湖沼,2001,32(3):296-301.
    庞重光,杨作升.黄河口泥沙异重流的数值模拟[J].青岛海洋大学学报,2001,31(5):762-768.
    时钟,周洪强..,18(3):57-62.长江口北槽口外悬沙浓度垂线分布的数学模拟[J].海洋工程,2000,18(3):57-62.
    罗秉征,沈焕庭.三峡工程与河口生态环境[M].科学出版社,1994,p1-337.
    钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1991.
    马福喜,李文新.河口水流、波浪、潮流、泥沙、河床变形的二维数学模型[J].水利学报,1999,(5):39-43.
    马启南,陈永平,张金善,龚珍.杭州湾的三维水流数值模拟[J].海洋工程,2001,11:58-66.
    于清来,窦国仁.高含沙河流泥沙数学模型研究[J].南京水利科学研究院水利水运科学研究,1999,(2):107-115.
    余欣,安催花,郭选英,李福生.小浪底水库泥沙水动力数学模型研究及应用[J].人民黄河,2000,22(8):17-20.
    辛文杰.潮流波浪综合作用下河口二维悬沙数学模型[J].海洋工程,1997,15(2):30-47.
    武汉水利电力学院.河流动力学[M].北京:中国工业出版社,1960.
    徐建益,袁建中.长江河口局部区域内泥沙冲淤计算方法及应用[J].水利学报,1991,(12):63-69.
    徐建益,陶学为,方良田等.长江口南支非均匀沙垂向分层的数学模型[J].泥沙研究,1995,(2):74-79.
    叶安乐,李凤歧.物理海洋学[M].青岛:青岛海洋大学出版社,1990.
    叶锦培,何焯霞,周志德.珠江河口潮流输沙数学模型[J].人民珠江,1986,(6):7-15.
    吴明阳,闫新兴,华杨.,蔡嘉熙,冯玉林.交通部天津水运工程科学研究所.上海国际航运中心洋山深水港区一、二期工程水域水文泥沙测验分析报告[R].2005.
    张俊华,张红武,王严平,张柏山.多沙水库准二维泥沙数学模型[J].水动力学研究与进展,1999,14(1):45-50.
    张华庆,李华国,岳翠平.海河口潮流泥沙运动数值模拟及清淤方案研究[J].水动力学研究与进展,2002,17(3):318-326.
    张华庆,吕忠华,沈汉堃,陈丽棠.珠江河口水沙数值模拟系统[J].水道港口,2000,23(2):51-53.
    张庆华,乐培九,杨细根.拟合坐标系下平面二维水流泥沙数学模型及其应用[J].水利学报,增刊,1998,(3):39-47.
    张红艺,杨明,张俊华,邓洪亮.高含沙水库泥沙运动数学模型的研究及应用[J].水利学报,增刊,2001,(11):20-25.
    恽才兴,蔡孟裔,王宝全.利用卫星相片分析长江入海悬浮泥沙扩散问题[J].海洋与湖沼,1981,12(5):391-401.
    杨陇慧,朱建荣,朱首贤.长江口杭州湾及邻近海区潮汐潮流场的三维数值模拟[J].华东师大学报,2001,9:74-83.
    许卫忆,苏纪兰.杭州湾二维潮波计算及底质分布的动力成因[J].海洋与湖沼,1986,11:493-503.
    朱玉荣.古长江河口湾充填潮流作用机制的初步探讨[J].海洋学报,1999,21(3):73-82.
    朱玉荣.潮流场对渤海黄海东海陆架底质分布的控制作用[J].海洋地质与第四纪地质,2001,2001(2):7-13.
    朱江,曾庆存,郭东建,刘卓.一个水动力泥沙数学模型的伴随算子法敏感性分析[J].泥沙研究,1998,2(89-96).
    朱志夏,韩其为,丁平兴.海岸悬沙运移数学模型[J].海洋学报,2002,24(1):101-107.
    朱建荣.海洋数值计算方法和数值模式[M].北京:海洋出版社,2003.
    朱建荣,朱首贤.ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用[J].海洋与湖沼,2003,7:364-374.
    朱建荣,沈焕庭.长江冲淡水扩展机制[M].上海:华东师大出版社,1997.
    朱春耀,薛金平,李春雨.汾河水库泥沙冲淤计算数学模型[J].水利水电技术,1999,30(10):34-36.
    朱首贤.流,浪模式和物质长期输运分离研究[T],华东师范大学,上海,2005.
    朱首贤,丁平兴,史峰岩,朱建荣.杭州湾长江口余流及其物质输运作用的模拟研究(Ⅱ).Ⅱ.冬季余流及其对物质的运输作用[J].海洋学报,2000,11:1-12.
    周海,张华,阮伟.长江口深水航道治理一期工程实施前后北槽最大浑浊带分布及对北槽淤积的影响[J].泥沙研究,2005,5:58—65.
    周华君.长江口最大浑浊带特性研究和三维水流泥沙数值模拟[T],河海大学,南京,1993.
    周济福,王涛,李家春,刘青泉.径流与潮流对长江口泥沙输运的影响[J].水动力学研究与进展,1999,14A(1):90-100.
    章华生,倪培桐,吴超羽.河口最大浑浊带平面二维数值模型[J].人民珠江,2000,(6):10-12.
    张世奇.二维动边界潮汐输沙及河床变形计算[J].泥沙研究,1988,(4):55-63.
    张修忠,王光谦.河道及河口一维及二维嵌套泥沙数学模型[J].水利学报,1994,(10):82-87.
    张细兵,董耀华,殷瑞兰.河道平面二维水沙数学模型的有限元方法[J].泥沙研究,2002,(6):60-65.
    赵棣华,谭仁忠,谭维炎.长江口南支河段悬移质含沙量计算模型[J].泥沙研究,1990,(2):54-62.
    左书华,李九发,万新宁,沈焕庭,付桂.长江河口悬沙浓度变化特征分析[J].泥沙研究,2006,3:68-75.
    诸裕良,严以新,贾良文,茅丽华.一维河网非恒定流及悬沙数学模型的节点控制方法[J].水动力学研究与进展,2001,16(4):503-510.
    Aubrey, D.G. Hydrodynamics on sediment transport in well-mixed bays and estuaries[J]. Physics of Shallow Estuaries and Bays, 1986: 205-258.
    Barros, A.P. An evaluation of model parameterizations of sediment pathways: a case study for the Tejo estuary[J]. Continental Shelf Research, 1996, 16: 1725-1949.
    Blumberg, A.F. A Primer for ECOMSED[M]. United States: Technical Report of Hydroqual., 2002, p1~188.
    Blumberg, A.F., Mellor G.L. A Simulation of the Circulation in the Gulf of Mexico[J]. J.of Earth Sciences, 1985, 34: 122-144.
    Blumberg, A.F., Mellor G.L. 1987. A description of a three-dimensional coastal ocean circulation Model. In: Three-Dimensional Coastal Ocean Models,Eds,N.Heaps, American Geophys. Union, pp. 1-16.
    Booij, N., L.H. Holthuijsen, R.C.Ris. The SWAN Wave Model for Shallow Water. [J]. Proceedings of 24th International Conerence on Coastal Engineering, Orlando,, 1996, 1:669-678.
    Cancino, L., Neves R. Hydrodynamic and sediment suspension modeling in estuarine systems: Part I: Description of the numerical models[J]. Journal of Marine Systems, 1999, 22(2): 105-116
    Celik, I., Rodi W. Modeling suspended sediment transport in nonequilibrium situations. [J]. Journal of Hydraulic Engineering 1988, 114(1157-1189).
    Chen, H., Dyke P.P.G. Multivariate time-series model for suspended sediment concentration[J]. Continental Shelf Research, 1998, 18: 123-150.
    Chen, J.R. Report of the Comprehensive Survey of the Coastal Zone and Intertidal Resources of Shanghai Municipality[M]. Shanghai: Shanghai Scientific and Rechnological Publishing House, 1988, p555.
    Chen, S.L. Seasonal, neap-spring variation of sediment concentration in the joint area between Yangtze Estuary and Hangzhou Bay[J]. Science in China, 2001, 44: 57-62.
    De Vriend, H.J. 2DH mathematical modelling of morphological evolutions in shallow water[J]. Coastal Engineering 1987,11: 1-27.
    De Vries, M., Klaassen G.J., Striksma N. On the use of movable bed models for river problems: state of art.[J]. Symposium of River Sedimentation, 1989.
    Ding, P.X., K.L. HU, Kong Y.Z., Zhu S.X. Numerical Simulation of Total Sediment under Waves and Currents in the Changjiang Estuary.[J]. Acta Oceanologica Sinica, 2003, 25(5): 113-124.
    Dou, X.P., Li T.L., Dou G.R. Numerical model of total sediment transport in the Yangtze Estuary[J]. China Ocean Engineering, 1999, 13(3): 277-286.
    Dronkers, J. Tide-induced residual transport of tine sediment[J]. Physics of Shallow Estuaries and Bays, 1986:228-244.
    Fassnacht, S.R. A multi-channel suspended sediment transport model for the Mackenzie Delta, Northwest Territories[J]. Journal of Hydrology 1997, 197: 128-145.
    Festa, J.F., Hansen D.V. Turbidity Maximum in partially mixed estuaries: a two deimensional numerical model[J]. Est. Coastal mar. Sci., 1978, 7(4): 347-359.
    Gailani, J., Ziegler K.Z., Lick W. The Transport of Sediments in the Fox River[J]. Journal of Great Lake Res, 1991,17: 479-494.
    Galappatti, G, Vreugdenhil C.B. A depth-integrated model for suspended sediment transport[J]. Journal of Hydraulic Research, 1985, 23: 359-375.
    Grant, W.D., Madsen O.S. Combined Wave and Current Interactin with a Rough Bottom[J]. Journal of Geophysical Research, 1979, 84(C4): 1797-1808.
    Harris, J.R.W., Bales A.J., et al. 1984 A preliminary model of the dispersal and biological effect of toxins in the Tamar Estuary, England. In: Modeling the Fate and Effect of Toxic Substances in the Environmentpp. 253-284.
    Hu, K.L., Ding P.X., Cao Z.Y. 2-D numerical simulation of sediment transport under waves and currents in Yangtze Estuary [J]. In: The Proceedings of the First Asian and Pacific Coastal Engineering, 2001, (2): 808-817.
    Hu, K.L., Ding P.X., Zhu S.X., Kong Y.Z., Chao Z.Y. 2-D Current Field Numerical Simulation Integrating Yangtze Estuary with Hangzhou bay[J]. China Ocean Engineering, 2000, 14(1): 89-102.
    Keiner, L.E., X.H. Y. A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery[J]. Remote Sens. Environ, 1998, 66: 153-165.
    Krone, R.B. Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley. Flume studies of the transport in estuarine shoaling processes[R]. 1962.
    Kuo, A.Y., Nichols M., Lewis J. 1978. Modeling sediment movement in the turbidity maximum of an estuary[C]. Bulletin 111, Virginia Water Resources Research Center. Blacksburg, Virginia,
    lang, G., et al. Date interpretation and numerical modeling of the mud and suspendsand sediment experiment[J]. J Geophysical Research, 1989, 94(C10): 14381-14384.
    Li, J.F. Studies on the law of sediment transport between troughs and beaches at Nanhui of the Changjiang Estuary[J].Acta Oceanologica Sinica, 1990,12(1): 75-82.
    Li, J.F., He Q., Zhang L.L., Shen H.T. Sediment deposition and resuspension in mouth bar area of the Yangtze Estuary[J]. China Ocean Engineering, 2000,14(3): 339-348.
    Li, M.Z., Amos C.L. SEDTRAN92: A sediment transport model for continental shelves[J]. Computers & Geosciences, 1995, 21(4): 533-554.
    Li, Y, J L., L S.J., H R.F. A study on the Fluctuations of plume Front and Turbidity Maximum in the Hangzhou bay by Remote Sensing DatafM]. Beijing: Ocean Press, 1992, p63.
    Lin, B.L., Falconer R. Numerical modelling of three-dimensional suspended sediment for estuarine and coastal waters[J]. Journal of Hydraulic Research, 1996, 34(4): 435-456.
    Lou, J., Ridd P.V. Modelling of suspended sediment transport in coastal areas under waves and currents[J]. Estuarine, Coastal and Shelf Science, 1997,45:1-16.
    Malcherek, A., Lenormant C, Peltier E., Teisson C, Markofsky M., Zielke W. 1993. Three-dimensional modelling of estuarine sediment transport, estuarine and coastal modelling III In: Proceedings of the Conference,Eds,A. Blumberg M.L. Spaulding, et al., ASCE, Illinois, September, 43-57.
    Markofsky, M., Lang G, Schubert R. numerical sinulation of suspended sediment transport derived from data of "MASEX'83" survey[J]. KUESTE, 1986, 44: 171-189.
    McAnally, W.H., Letter J.W., Thomas W.A. Application of Columbia River hybrid modeling system[J]. Journal of Hydraulic Research, ASCE, 1984, 110(3): 300-311.
    Mead, C.T. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries[J]. Journal of Hydraulic Research, 1999, 37(4): 444-464.
    Mellor, G.L., Yamada T. Development of a turbulence closure model of geophysical layers[J]. J. Atmos. Sci., 1974, 33: 1791-1896.
    Nairn, R.B., Southgate H.N. Deterministic profile modeling of nearshore process. Part 2: Sediment transport and beach profile development.[J]. Coastal Engineering 1993, 19: 57-96.
    Nichols, J., O'Connor B.A. Cohesive sediment transport model[J]. J Hydraulic Engineering, 1986,117(6): 1089-1107.
    O'nishi, Y. Sediment-contaminant transport model[J]. J Hydraulic Dirision, ASCE, 1981, 107: 1089-1107.
    O'Connor, B.A. 1971. Mathematical model for sediment distribution[C]. Proceedings of 14th IAHR Conference, Paper D23. Paris, France.
    O'Connor, B.A., Nicholson J. A three-dimensional model of suspended particulate sediment transport[J]. Coastal Engineering, 1988, 12: 157-174.
    Odd, N.V.M., Owen M.W. Proc Inst of Civil Engrs, supplement IX, . A two-layer model of mud transport in the Thames Estuary [R]. 1972.
    Partheniades, E. Erosion and deposition of cohesive soils.[J]. Journal of Hydraulic Engineering Division,ASCE 91,1965: 105-139.
    Prandle, D., Hargreaves J.C., McManus J.P., Campbell A.R., Duwe K., Lane A., Mahnke P., Shimwell S., Wolf J. Tide, wave and suspended sediment modelling on an open coast — Holderness[J]. Coastal Engineering, 2000, 41: 237-267.
    Salanon, J.C. Modeling turbidity maximum in the Seine Estuary[J]. Ecohydynamics, 1981: 285-318.
    Shi, F.Y., Ding P.X., Kong Y.Z. Numerical Tidal Current Modeling Using Fine Boundary-fitted Grids for Tidal Flats.[J]. China Ocean Engineering, 1999, 13(2): 115-123.
    Shi, F.Y., Kong Y.Z., Ding P.X. An implicit Method Using Contravariant Velocity Components and Its Application to a Harbour channel Area.[J]. Acta Oceanologica Sinica, 1998, 17(4): 423-432.
    Smolarkiewicz, P.K., Grabowski W.W. The Multidimensional Positive Definite Advection Transport algorithm: Nonoscillatory Opinion[J]. Journal of Computer Physics, 1990, 86:355-375.
    Su, J.L., Wang K.S. Changjiang River plume and suspended sediment transport in Hanghzou Bay[J]. Continental Shelf Research, 1989, 9(1): 93-111.
    Teisson, C. Cohesive suspended sediment transport: ability and limitations of numerical modeling[J]. Journal of Hydraulic Research, 1991, 29: 755-769.
    Uncles, R.J., Stephens J.A., Woodrow T.Y. Sensonal cycling of estuarine sediment and contaminant transport[J]. Estuaries, 1988,1988(11): 2.
    van Rijn, L.C. Mathematical modelling of suspended sediment in nonuniform flows[J]. Journal of Hydraulic Engineering, 1986,116: 433-455.
    van Rijn, L.C. 1987. Mathematical modelling of morphological processes in the case of suspended sediment transport[C]. Delft Hydraulics Communication No. 382., p127
    van Rijn, L.C. Field verification of 2-D and 3-D suspended sediment models[J]. Journal of Hydraulic Engineering, ASCE, 1990,116(10): 1270-1288.
    Vos, R.J., Ten Brummelhuis P.GJ., H. G. Integrated data-modelling approach for suspended sediment transport on a regional scale[J]. Coastal Engineering, 2000,41: 177-200.
    Wang, S.S.Y., Adeff S.E. 1986. Three-dimensional modelling of river sedimentation processes. In: Proceedings of the Third International Symposium on River
    
    Sedimentation,Eds,H.W. Sheng and L.Z. Ding S.Y. Wang, Mississippi, USA, The University of Mississippi.
    Wolannski, E., King B., Galloway S. Dynamics of the turbidity Maximum in the Fly river Estuary, Papua New Guinea[J]. Estuarine coastal and shelf science 1995, 40: 321-337.
    Wu, M.Y., Feng Y.L., Yan X.X., Liu G.T. Model Test Study on Tidal Current of the North Area of Yangshan Harbor in Shanghai[J]. Journal of Waterway and harbour, 2001, 22(1): 24-31.
    Yakirevich, A., Borisov V., Sorek S. A quasi three-dimensional model for flow and transport in unsaturated and saturated zones: 1. Implementation of the quasi two-dimensional case[J]. Advances in Water Resources 1998, 21(8): 679-689.
    Yang, H., Feng Y.L. Sediment Characteristics and Siltation Analyses of Shanghai Yangshan Hatbor and Its Approach Channel Waters[J]. Journal of Waterway and Harbour, 2000, (3): 17-22.
    Yang, H., Feng Y.L., Li P., Zhang Z., Hou Z.Q., Pan Q.X. Research Report of current, sediment simulation in the west area of Shanghai Yangshan Hatbor[J]. Tianjin Research Institute of Water Transport Engineering, 2006, (3): 17-22.
    Yang, Z., Wang H., Saito Y, Milliman J.D., Xu K., Qiao S., Shi G. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam[J]. Water Resources Research, 2006,42(4): -.
    Yun, C.X. The souring and deposition of troughs and beaches and the transport of sediments between beaches and troughs in the Changjiang Estuary[J]. Studies of Silt, 1983, 2(4): 43-51.
    Zhang, J.S., Lu P.D., Xu M. Numerical modeling on suspended sediment transportation in the Hangzhou Bay[J]. China Ocean Engineering, 1998, 12(1): 87-98.
    Zhu, S.X., Ding P.X., Shi F.Y The simulation studies on the residual currents in the Hangzhou Bay and the Changjiang Estuary and their role in material transport[J]. Acta Oceanologica Sinica, 2000, 22(6): 1-12.
    Zhu, S.X., Sha W.Y., Ding P.X., X C. An Asymmetry Wind Field Model of Typhoon near Shore[J]. Journal of East China Normal University(Natural Science), 2002, 3: 66-71.
    Ziegler, C.K., Nisbert B. Fine-grained sediment transport in Pawtuxet River, Rhode Island[J]. Journal of Hydraulic Engineering Division,ASCE 91,1994, 120: 561-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700