用户名: 密码: 验证码:
流动注射微柱预富集分离与原子吸收联用测定海水中重金属的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水中检测元素的低含量、高背景干扰以及样品处理带来的污染与损失等因素一直是海水样品分析中急需解决的问题。分析前对样品进行分离、富集等前处理是提高原子吸收光谱检测选择性和灵敏度的有效手段。经典的手工样品处理方法费时费力,且在处理过程造成的样品污染不可避免地带来一系列问题,在含有复杂基体且待测物含量极低的样品中尤为突出。流动注射分析(Flow injection analysis,FIA)技术在样品预处理的自动化、微型化和在线化方面引起了革命性变化,不仅极大地提高了整个分析过程的效率、可靠性和分析速度,减小了样品污染概率,也降低了试剂消耗和废液产量,更重要的是使某些难以或无法实现的手工操作成为可能并且效果出众。为此,作者结合项目工作,从海水重金属污染现状、国标检测方法及其存在的弊端等发面出发,对流动注射微柱富集分离技术在原子光谱在线分析中的应用进行了描述。同时,按微柱富集体系填充材料的不同,对近年来基于微柱系统在线预富集新技术进行了讨论,以期为流动注射在线富集技术的深入研究提供参考和借鉴。本文使用的氨基膦酸型螯合树脂具有易于制备、使用寿命长、重现性佳等独特优点。原子吸收光谱法(AAS)是现今较常用的一种元素分析测试手段,具有仪器费用低、线性范围宽、灵敏度高、分析时间快、和易于操作等优点而引人关注。本论文旨在建立一种用于监测海水中铅、镉、铜和锌的海洋行业标准,主要的研究内容如下:
     1.用D412螯合树脂微柱富集海水中的Pb(Ⅱ),并与火焰原子吸收光谱法联用测定海水中Pb(Ⅱ)。海水样品在0.2mol·L~(-1)乙酸铵溶液介质中(pH6.0)以3mL·min~(-1)流速进柱,被树脂螯合吸附富集,以0.2mol·L~(-1)乙酸铵溶液淋洗柱体去除干扰物,以硝酸(4mol·L~(-1))为洗脱液,洗脱液接火焰原子吸收光谱仪雾化器,在线检测。当样品进样20mL时,Pb(Ⅱ)测定灵敏度可提高约35倍;检出限1.3μg·L~(-1),相对标准偏差(RSD)为1.2%(n=11,C_(Pb(Ⅱ))=200μg·L~(-1))。讨论了海水中可能存在的共存离子和腐殖酸对于Pb(Ⅱ)测定影响。实际应用于海水样品分析,加标回收率在94%~(-1)05%之间。
     2.用3.5%(盐度)人工海水配制标液,D412螯合树脂作微柱填充物,将流动注射在线分离富集系统与石墨炉原子吸收联用,测定海水中Cd(Ⅱ)。优化了Cd(Ⅱ)的酸度条件,进样速度和洗脱条件。在最佳检测条件下当海水样品进样3mL时,Cd(Ⅱ)测检出限0.2*10~(-3)μg·L~(-1),相对标准偏差(RSD)为2.86%(n=11,C_(Cd(Ⅱ))=4μg·L~(-1))。讨论了海水中可能存在的共存物对Cd(Ⅱ)测定的影响。实际应用于杭州湾海水样品分析,加标回收率为94%。
     3.采集2011年1月洋山港港口表层海水样品,分别采用火焰原子吸收分光光度法和石墨炉原子吸收分光光度法与流动注射在线富集分离技术联用,测定海水中溶解态Cu、Zn、Pb和Cd和的含量,得出结果(1)表层海水中溶解态Cu、Zn、Pb和Cd和的平均质量浓度分别为11.7μg·L~(-1),18.81μg·L~(-1),4.21μg·L~(-1)和0.91μg·L~(-1),基本达到国家二类海水水质标准;(2)运用此方法测定海水中溶解态Cu、Zn、Pb和Cd,相对标准偏差(RSD)1%-5%,回收率91%-99%,结果较满意。
The factors that low content, high background values and loss in sample treating have been the emerged problems in the heavy metal determination in seawater samples. Sample pretreatment, including separation and concentration, has enhanced the classical analytic method of atomic absorption spectrometry (AAS). Manual pretreatment is not only a long and hard work, but also a way to bring about a series of problems, Especially for the samples with complex matrix and low element contents. Flow injection analysis(FIA) has caused a revolutionary change in areas of automation, miniaturization and online from seawater sample pretreatment. It improves greatly the efficiency, reliability and rate of analysis, reduces sample contamination, and also decrease the amount of material consumption and wastewater discharge. Moreover, it makes some difficult or/even impossible manual operations very efficient and easily implemented. Therefore, with the project implementation, from a perspective of marine heavy metals pollution, State Standard Method of China and its existing problems, the applications of flow injection micro column preconcentration and separation coupling with AAS on-line concentration were discussed. At the same time, the new techniques of on-line preconcentration in recent years were discussed based on micro column system and filling materials, to provide a reference for further research. Amino Methylene Phosphonic Acid Resin (APAR) used in this study is a kind of chelating resins with unique advantages of easy preparation, long lasting life and excellent repeatability. The AAS, with the merits of low cost and fast analysis, high sensitivity, good precision and accuracy, and wide linear range, has been widely applied in trace analysis. The purpose of the present work is to establish a new marine industry standard to monitor copper, zinc, lead and cadmium in seawater. The main research contents are as follows:
     1. An analytical method for the determination of Pb(Ⅱ) in sea water based on micro-column pre-concentration coupled with flame atomic absorption spectrometry (FAAS) was established in this study. Pb(Ⅱ) was adsorbed on the micro-column packed with D412 chelating resin in medium of 0.2 mol·L~(-1) ammonium acetate at pH value of 6 and could be eluted with 4mol·L~(-1) nitric acid. The eluent was joined to the nebulizer of the atomic absorption spectrometer for on line determination of Pb. In case of 20mL sea water was injected in analysis, determination sensitivity for Pb(Ⅱ) is increased by about 35 times, with detection limit of 1.3μg·L~(-1), relative standard deviation (RSD) of 1.2% (n = 11, C_(Pb(Ⅱ)) = 200μg·L~(-1)). Effect of concomitants on the Pb(Ⅱ) determination was discussed. The proposed method has been applied to the analysis of real samples taken from Hangzhou Bay.
     2. A flow injection separation and preconcentration system coupled to graphite furnace atomic absorption spectrometry (GFAAS) was used to determine the Cd (Ⅱ) in seawater samples. The micro column material was 412 chelating resin. The standard solution was prepared from 3.5% artificial simulated seawater. In experiments, a series of analysis conditions, including acidity, sample flow rate, eluant concentrations and coexisting ions were optimized respectively. Under the optimum conditions, in case of 3mL seawater was injected in the experimental system, the detection limit was 0.2×10~(-3) ug·L~(-1), the relative standard deviation was 2.86% (n=11, C_(Cd(Ⅱ)) = 4μg·L~(-1)). Effect of concomitants on the Cd(Ⅱ) determination was discussed. The proposed method has been applied to the analysis of real samples taken from Hangzhou Bay, the recovery is 94%.
     3. Surface seawater samples of Yangshan Port were collected in Jan, 2011. The contents of dissolved copper, zinc, lead and cadmium in seawater were determined by flow injection micro column preconcentration and separation coupled with FAAS and GFAAS respectively. The results were obtained as follows: (1) The mass concentrations of dissolved copper, zinc, lead and cadmium were 11.7μg·L~(-1),18.81μg·L~(-1),4.21μg·L~(-1) and 0.91μg·L~(-1), respectively. The contents of the above heavy metals have reached the national second-class water quality standards. (2)The relative standard deviation (RSD) of experimental results are less than 5%. The recoveries in between 91%~99%.
引文
[1]苏庆梅,秦伟.海水中重金属铅的检测方法研究进展.海洋科学, 2009, 33(6): 105~111
    [2] Mushak P. Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions. Science of the Total Environment, 2003, 303(1~2): 35~50
    [3]王照丽,肖新锋,罗娅君等.螯合树脂浓缩柱预富集低压离子色谱分光光度法测定海水中痕量铅.分析测试学报, 2007, 26(2): 221~224
    [4]廖自基.微量元素的环境化学及生物效应.背景:中国环境科学出版社, 1992: 136~138
    [5]李善吉. PVC-PP树脂分离富集火焰原子吸收光谱法测定海水中痕量铜镍钴.分析测试学报, 2006, 25(5): 96~98
    [6]陆建军,赵金和,方利娟.石墨炉原子吸收光谱法测定海水中痕量铜.分析仪器, 2009, (2): 34~37
    [7]朱其永.催化动力学光度法测定痕量铜.光谱实验室, 2005, 22(1): 173~175
    [8]涂杰,张新申,佟玲等.反响流动注射光度法直接快速检测海水中痕量锌.四川大学学报:工程科学版, 2008, 40(5): 147~152
    [9] Wang C Y, Wang x L. Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai Sea. J Environ Sci, 2007, 19: 1061~1066
    [10]曹红英,梁涛,王立军等.近海潮间带水体及沉积物中重金属的含量及分布特征.环境科学, 2006, 27(1): 126~131
    [11]徐颖.连云港附近海域水环境质量评价.海洋环境科学, 2001, 20(4):54~57
    [12]廉雪琼,王运芳,陈群英.广西近岸海域海水和沉积物及生物体中的重金.海洋环境科学, 2001, 20(2): 59~62
    [13]黄向青,张顺枝,霍振海.珠江口海水有害重金属分布特征.海洋湖沼通报, 2005, 4: 38~44
    [14] Wan I, Wang N B, Li Q B, etc. Distribution of dissolved metals in seawater of Jinzhou bay, China. ET&C., 2008, 27(1): 43~48
    [15] Fytianos, K., Vasilikiotis, G.S. Concentration of heavy metals in seawater and sediments from the Northern Aegean Sea, Greece. Chemosphere, 1983, 12: 83~91
    [16] Fowler, S.W., Huynh-Ngoc, L., Fukai, R. Dissolved and particulate trace metals in coastal waters of the Gulf and Western Arabian Sea. Deep-sea Res PT I, 1984, 31: 719-729
    [17] Harper, D.J. The distribution of dissolved cadmium, lead, copper in the Brisrtol Channel and the outer Severn estuary. Mar Chem, 1991, 33: 13l~143
    [18] Law, R.J., Waldock, M.J., Allchin, C.R., etc. Contaminants in seawater around England and Wales: Results from monitoring surveys. Mar Pollut Bull, 1994, 28: 668~675.
    [19] Kraepiel, A.M.L., Chiffoleau, J.F., Martin, J.M., etc. Geochemistry of trace metals in the Gironde estuary. Geochim Cosmochim Acta, 1997, 61: 142l~1436
    [20] Lee K W, Kang H S, Lee S H. Trace elements in the Korean coastal environment. Sci Total Environ, 1998, 214: 11~19
    [21] Saleh, M.A., Wilson, B.L. Analysis of metal pollutants in the Houston ship channel by inductively coupled plasma/mass spectrometry. Ecotox Environ Safe, 1999, 44: 113~117
    [22] Munksgaard, N.C., Parry, D.L. Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater. Mar Chem, 2001, 75: 165~184
    [23] Tankere, S.P.C., Muller, F.L., Burton, J.D., etc. Trace metals distributions in shelf waters of the northwestern Black Sea. Cont Shelf Res, 2001, 21: 1501~1532
    [24] El-Moselhy, K.M.., Gabal, M.N. Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez. J Mar Syst, 2004, 46: 39~46
    [25] Cuong, D.T., Karuppiah, S., Obbard, J.P. Distribution of heavy metals in the dissolved and suspended phase of the sea-surface micro layer, seawater column and in sediments of Singapore’s coastal environment. Environ Monit Assess, 2008, 138: 255~272
    [26] Rosland, E.,Lund, W.J. Direct determination of trace metals in sea-water by inductively coupled plasma mass spectrometry. J Anal At Spectrom, 1998, 13(11): 1239~1244
    [27] Riva, B.S.V., Costa-Fernandez, J.M., Pereiro, R., etc. Flow-through room temperature phosphorescence opt sensing for the determination of lead in sea water. Anal Chim Acta, 1999, 395: 1~9
    [28] Willie, S.N., Lam, J.W.H., Yang L, etc. On-line removal of Ca, Na and Mg from iminodiacetate resin for the determination of trace elements in seawater and fish otoliths by flow injection ICP-MS. Anal Chim Acta, 2001, 447(1): 143~152
    [29] Yebra, M.C., Rodr guez, L., Puig, L., etc. Application of a field flow Preconcentration system with a minicolumn packed with amberlite XAD-4/1- (2-pyridylazo)-2- naphthol and a flow injection-flame atomic absorption spectrometric system for lead determination in seawater. Microchim Acta, 2002, 140: 219~225
    [30] Mello, L.C., Claudino, A., Rizzatti, I., etc. Analysis of Trace Metals Cu2+, Pb2+ and Zn2+ in coastal marine water samples from Florianopolis, Santa Catarina State, Brazil. Braz Chem Soc, 2005, 16(3A): 308~315
    [31] Sabarudin, A., Lenghor, N., Liping Y, etc. Automated online preconcentration system for the determination of trace amounts of lead using Pb-Selective resin and inductively coupled plasma-atomic emission spectrometry. Spectrosc Lett, 2006, 39(6): 669~682
    [32] Vereda, A.E., Siles, C.M.T., Garcia, T.A., etc. Lead ultra-trace on-line preconcentration and determination using selective solid phase extraction and electrothermal atomic absorption spectrometry: applications in seawaters and biological samples. Anal Bioanal Chem, 2006, 385(7): 1178~1185
    [33] Sarradin, P.M., Lannuzel, D., Waeles, M., etc. Dissolved and particulate metals(Fe, Zn, Cu, Cd, Pb)in two habitats from an active hydrothermal field on the EPR at 13。N. Sci Total Environ, 2008, 392: 119~129
    [34] Yantasee, W., Hongsirikarn, K., Warner, C.L., etc. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst, 2008, 133: 348~355
    [35]国家环境保护局. (GB 3097-1997 Z50)海水水质标准.北京:中国标准出版社, 2007: 5~6
    [36]于庆凯,李丹.阳极溶出伏安法同时测定海水中铜、铅、镉、锌.化学工程师, 2009, 23(10): 25~27
    [37] Ruzicka, J., Hansen, E.H. Flow Injection Analysis. 2nd ed., New York: John Wiley&Soms, 1988: 252~254
    [38]韩小战.流动注射分析法及其在水质检测中的应用.山西科技, 2007, (6): 127~ 128
    [39]谭爱民,周驰.流动注射分析.分析实验室, 1995, 14(6): 94~104
    [40]方肇伦等.流动注射分析法.北京:科学出版社, 1999: 99~100
    [41] Economou, D.G., Themelis, H., Bikou, P.D., etc. Determination of boron in water and pharmaceuticals by sequential-injection analysis and fluorimetric detection. Anal. Chim. Acta, 2004, 510: 219~224
    [42] Wei Y L, Oshima M, Simon J, etc. Application of chromatomembrane cell to flow injection analysis of trace pollutant in ambient air. Analytical Science, 2001, 17(Suppl.), a325~a328
    [43] Jianbo S, Zhiyong T, Chunhua T, etc. Determination of trace amount of germanium by flow injection hydride generation atomic fluorescence spectrometry with on-line coprecipitation. Talanta, 2002, 56(4): 711~716
    [44] Jianxiu D, Yinhuan L, Jiuru L. Flow injection electrogenerated chemiluminescence determination of vanadium and its application to environmental water samles. Talanta, 2002, 57(1): 53~57
    [45] Satinsky, D., Karlicek, R., Svoboda, A. Using on-line solid phase extraction for flow-injectionspectrometric determination of salbutamol. Anal. Chim. Acta, 2002, 455(1): 103~107
    [46] Xin L, Hong W, Shucai L, etc. 4:3-b-Naphthapyrone-4-acetic acid N-hydroxys- uccinimidyl ester as a fluorescent labeling reagent for amino acids and oligopeptides in high performance liquid Chromatography. Chromatographia, 2001, 53(5/6): 326~330
    [47] Camero, R.M., Alvarado, J. Determination of carbide-forming metals, chromium and barium, by graphite furnace atomic absorption spectrometry using a tungsten coil platform. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55(7): 875~881
    [48] Dominguez, V.A., Ortega, B.P., Molina, D.A. Fast flow-injection fluorimetric determination of amiloride by using a solid sensing zone. Talanta, 2002, 56(6): 1005~1013
    [49] Knap, M., Kilian, K., Pyrzynska, K. On-line enrichment system for manganese determination in water samples using FAAS. Talanta, 2007, 71: 404~410
    [50] Wuilloud, G.M., Wuilloud, R.G., Wuilloud, J.C.A., etc. On-line preconcentration and determination of chromium, in parenteral solutions by flow injection-flame atomic absorption spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31: 117~124
    [51]李明,陈焕文,郑健等.流动注射分析技术的若干进展.分析仪器, 2003, (3): 1~5
    [52]刘丽娟,费学宁.流动注射分析技术及其在水质分析应用中的进展.能源与环境, 2005,11(2): 111~114
    [53]高杨,刘孟德,程广欣等.海水痕量重金属污染元素监测方法的研究.山东科学, 2005, 18(5): 27~29
    [54]王尚芝,刘月成,宋雅茹.流动注射-氢化物发生-原子吸收光谱法测定海水中铅.光谱实验室, 2003, 20(4): 513~516
    [55]苏韶兴.火焰原子吸收光谱法测定海水中微量铁和锌.理化检验-化学分册, 2005, 41(11): 853~854
    [56]陈树榆,孙梅.流动注射在线螯合树脂双柱预富集火焰原子吸收法测定痕量铜铅镉和锰.光谱学与光谱分析, 2001, 21(3): 377~381
    [57]关阿伟,杜月辉.水中痕量铜铅镉的测定-流动注射原子吸收分光光度法的使用.东北水利水电, 2009, 27(1): 63~66
    [58]吕元琦,尹明,李冰.流动注射-电感耦合等离子体质谱应用现状及进展.岩矿测试, 2001, 20(2): 115~125
    [59]程祥圣,杨颖,秦晓光等.流动注射-氢化物原子荧光光谱法直接测定海水中的铅.光谱实验室, 2005, 22(6): 1245~1248
    [60]马莉.在线浓缩-流动注射分光光度法测定海水中痕量Cd(Ⅱ)和Cu(Ⅱ)的方法研究[学位论文].四川:四川大学, 2006.
    [61]马莉,张新申,缪培凯等.流动注射分光光度法测定海水中痕量的镉.皮革科学与工程, 2006, 16(1): 33~36
    [62]肖新峰,王照丽,罗娅君等.流动注射-分光光度法测定海水中微量铜.冶金分析, 2009, 29(5): 59~62
    [63]方肇伦等.流动注射分析法.北京:科学出版社, 1999: 119~120
    [64]方肇伦等.流动注射分析法.北京:科学出版社, 1999: 121
    [65]徐立强,刘瑶函,邹爱民.在线螯合树脂柱预富集分离ICP-AES测定生物试样中镉.光谱学与光谱分析, 1994, 14(6): 65~70
    [66]周志瑞,徐宏亮,庄向平. 401螯合树脂富集-原子吸收法测定海盐中微量重金属元素.分析化学, 1984, (6): 45~48
    [67]陈中兰,翟通德.在线微柱预富集流动注射火焰原子吸收测定水体中的Cu2+.应用化学, 2009, 26(2): 243~245
    [68]王玉珏,杨桂鹏,赵学坤. C18键合硅胶柱富集/AAS法测定水体中痕量锰的研究.分析实验室, 2004, 23(12): 58~61
    [69]周兴旺,吕鉴泉,邹欣平等. ABPT键和硅胶柱富集分离Pb、Cd的研究.湖北师范学院学报:自然科学版, 2005, 25(1): 55~58
    [70]张拿慧,裘俊红.强碱性阴离子交换树脂吸附海水中溴的动力学研究.浙江工业大学学报. 2010, 38(5): 514~517
    [71]黄晓霞,刘茹. 201*4强碱性阴离子交换树脂吸附Cr的机理研究.广东化工, 2010, 37(5): 86~89
    [72]吴玉萍,夏振远,王东丹.离子交换富集-火焰原子吸收光谱法测定卷烟辅料中镉.理化检验-化学分册, 2006, 42(11): 897~898
    [73]罗永义,张克荣.活性炭富集火焰原子吸收测定水中痕量铁锰铜镉.华西医科大学学报, 1993, 24(3): 339~342
    [74]鄢盛华.活性炭富集火焰原子吸收法测定酱油中铅.理化检验-化学分册, 1999, 35(4): 183~183
    [75]但德忠.活性炭分离富集催化极谱法测定地表水中铅和镉.分析试验室, 1998, 17 (3): 33~36
    [76]寸焕廷,杨继红,彭莉.高分子固相柱用于微量Pb和Cd的富集分析.光谱实验室, 2005, 22(6): 1284~1288
    [77]丁泽仁,李文兰,王补森等.多乙烯多胺树脂的合成及其对铜、镍、钴等的吸附特性.离子交换与吸附, 1992, 8(4): 311~317
    [78]刘理中,俞善信,肖立新.聚氯乙烯负载席夫碱树脂的合成及其对金属离子的吸附.应用化学, 1995, 12(5): 88~90
    [79]俞善信,肖立新,俞冠源.聚氯乙烯-吡啶树脂的合成及其催化水解反应的研究.离子交换与吸附, 1995, 11(3): 259~262
    [80]向万宏,刘铮.螯合树脂的合成及应用研究新进展.化工技术与开发, 2003, 32 (2): 16~22
    [81]何小燕,焦芸芬.氨基膦酸螯合树脂应用现状.四川有色金属, 2006, 9(3): 31~35
    [82]苏庆梅,秦伟.海水中重金属铅的检测方法研究进展.海洋科学, 2009, 6: 105~ 111
    [83]刘学著,方肇伦.顺序注射分析及其应用.分析科学学报, 1999,15(1): 70~78
    [84] Garrido, I., Soto, R.M., Carlosena, A., etc. Flame atomic absorption spectrometry with flow-injection on-line adsorption preconcentration using a knotted reactor for cadmium determination in aqueous samples. Analytical Letters, 2001, 34(10): 1763 ~1779
    [85] Yebra-Biurrun, M.C., Moreno-Cid, A., Puig, L. Minicolumn field preconcentration and flow-injection flame atomic absorption spectrometric determination of cadmium in seawater. Anal Chim Acta, 2004, (521): 73~77
    [86] Anthemidis, A.N., Martavaltzoglou, E.K. Determination of arsenic(Ⅲ) by flow injection solid phase extraction coupled with on-line hydride generation atomicabsorption spectrometry using a PTFE turnings-packed micro column. Analytica Chi mica Acta, 2006, 573~574: 413~418
    [87]苏耀东,朱文颖,覃俐,陈龙武.空气隔离法流动注射在线富集火焰原子吸收测定水样中的痕量铜和镉.光谱学与光谱分析, 2006, 26(5): 959~962
    [88]高甲友.流动注射-在线富集火焰原子吸收分光光度发测定痕量铅.分析科学学报, 2007, 23(4): 489~491
    [89]王中媛,苏耀东,甘礼华.基于吸力洗脱的流动注射在线富集与火焰原子吸收联用测定水样中的镉.分析化学, 2009, 37(2): 247~250
    [90]陈中兰.螯合棉纤维预富集流动注射在线测定痕量铅.光谱学与光谱分析, 2007, 27(6): 1243~1245
    [91]王爱霞,郭黎平,吴冬梅.微型柱现场预富集流动注射火焰原子吸收测定环境水样中的铅和镉.光谱学与光谱分析, 2006, 26(7): 1345~1348
    [92]陆燕涛,谢培轩,忻良.人工海水制剂-海水晶.化学教育, 2008, 29(4): 1~2
    [93]环境污染分析方法编辑组.环境污染分析方法.北京:科学出版社, 1980: 89
    [94] Boevski, I., Daskalova, U., Havezov, O. Determination of barium, chromium, cadmium, manganese, lead and zinc in atmospheric particulate matter by inductively coupled plasma atomic emission/spectrometry ICP-AES. Spectrochimi. Acta B. ,2000, 55: 1643~1657
    [95] Karunasagar, D., Arunachalam, J. Determination of cadmium by inductively coupled plasma mass spectrometry-reduction of molybdenum oxide interferences by addition of acetonitrile.Anal. Chim. Acta. , 2011, 441: 291~296
    [96]葛修军,吴少杰,吴建新.连云港港口附近海水中重金属的分布特征及其规律.淮海工学院学报, 2010, 19(2): 89~92
    [97]中华人民共和国国家质量监督检验检疫总局. (GB 17378.2-2007)海洋监测规范.北京:中国标准出版社, 2007: 103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700