用户名: 密码: 验证码:
富勒烯—蛋氨酸衍生物的合成及其对PC12细胞氧化损伤的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命过程中的自由基反应处于动态平衡之中,过多的自由基引起的氧化损伤将会导致细胞损伤、病变和非正常死亡,是多种疾病的发病根源。研究证实:有超过100种疾病与自由基产生过量或人体自身清除自由基能力下降有关,因此自由基被现代医学称为致病中介因子。相对于其它组织而言,神经组织由于含有丰富的多不饱和脂肪酸以及缺乏足够的抗氧化酶而对氧化应激损伤特别敏感,加之其不可再生性,使得研究有效的自由基清除剂具有重要的意义。
     富勒烯(fullerene)的出现为我们研究自由基清除剂开辟了新的思路。富勒烯是碳的第三种同素异形体,其中的突出代表为C60。富勒烯衍生物特殊的化学结构使得一分子富勒烯能与多分子的活性氧反应,因此富勒烯被誉为“吸收自由基的海绵”。许多研究表明,C60衍生物在吸收自由基,保护缺血再灌注对机体组织的损伤,保护紫外线对人角化细胞损伤具有良好的应用前景。事实上,由于富勒烯水溶性很低,阻碍了其在生物学上的应用,因此,富勒烯水溶性问题是当今富勒烯研究领域的热点。目前,解决富勒烯水溶性的方案以往主要有以下三种措施:①制备富勒烯水溶性包合物;②制备富勒烯水溶胶;③在富勒烯碳笼上添加水溶性基团,合成制备富勒烯的水溶性衍生物。三种方法中以制备水溶性富勒烯衍生物(soluble fullerene derivate,SFD)最具有前景。
     鉴于此,本研究利用有机合成的方法制备出一种C60-氨基酸衍生物(C60-Amino acid derivate, FAAD)——C60-蛋氨酸(C60 Methionine derivative,FMD),并对它们进行了结构表征;同时还研究其对羟自由基和超氧阴离子的清除能力及规律,以及其对经过氧化氢(H2O2)诱导后引起PC12大鼠肾上腺嗜铬细胞瘤细胞氧化损伤的保护作用,为该类化合物在医学领域的应用提供理论和实验依据。
     第一部分富勒烯-蛋氨酸衍生物的合成与表征
     目的:合成水溶性的富勒烯氨基酸衍生物。方法:利用亲核加成机理将蛋氨酸引入C60球上,并用FT-IR、1H-NMR、RF、UV及粒度分析元素分析等手段对这些物质进行表征。结果:产物在常温下易溶于水,并能稳定存在;FT-IR、1H-NMR、RF、UV都直接或间接地证实蛋氨酸以共价键的方式接到了C60上,粒度分析显示1 mg/ml的C60-蛋氨酸衍生物在水溶液中的平均粒径分别为11.1 nm。结论:成功地合成了C60-蛋氨酸衍生物,该物质具有良好的水溶性。
     第二部分富勒烯-蛋氨酸衍生物对PC12细胞氧化损伤的保护作用
     目的:研究FMD对活性氧的清除能力和对H2O2诱导的PC12细胞氧化损伤的保护作用及作用机制。方法:将不同浓度的FMD加入邻苯三酚-鲁米诺(PA-L)自氧化发光体系和邻菲罗啉发光体系,观察FMD对发光强度的抑制作用,以此分别评价对超氧阴离子(O2·-)和羟自由基(·OH)的清除能力;体外培养PC12细胞株,在培养液中预先加入不同浓度的FMD后,以500μMH2O2诱导PC12损伤,通过MTT比色法观察不同浓度FMD保护作用下PC12的存活情况,用流式细胞仪检测细胞凋亡情况,采用单细胞凝胶电泳法测定DNA单链损伤,化学比色法检测胞内外MDA含量和SOD活性,荧光法检测进入胞内FMD的量。结果:随着FMD浓度的增加,活性氧抑制率逐渐升高;经H2O2诱导后细胞出现明显损伤形态,细胞存活率明显下降,胞内DNA链损伤明显增加,胞内外MDA含量明显增加,SOD活力明显下降;而预先加入FMD可改善上述结果,细胞凋亡率明显降低,细胞内DNA链损伤明显减少,显著降低MDA含量,提高SOD活性,其作用呈剂量依赖关系;另外,大概有20%的FMD进入细胞。结论:FMD由很好的清除自由基的能力;对H2O2诱导PCl2细胞损伤具有保护作用,其作用机制可能与提高PC12细胞的抗氧化能力有关。
Radical reaction in body must be in dynamic balance. Oxidative injury induced by excess free radicals is etiology of several diseases. It has been confirmed that more than 100 diseases are related to the excess free radicals or the inferior scavenging ability to it, so it is considered to be the modern pathopoiesis media. Compared the other tissues, never tissues are particularly sensitive to oxidative injury because of their abundant content of polyunsaturated fatty acid, the lack of antioxidase. In addition to this, neuron is hard to reproduce itself, so it is important to develop effective scavenging agent to free radicals.
     Fullerene, one of allotrope of carbon, has excellent potential of opposing ROS, and C60 , with a structure of icosahedral cage , is the represent of it. Fullerene derivatives have often been used as effective scavengers for reactive oxygen species (ROS). These compounds, thanks to their peculiar structure, are capable of“adding”multiple radicals per molecular, leading Krusic et al. to characterize fullerenes since 1991 as“radical sponge”and to hypothesize their potential activity as free-radical scavengers. Previous studies have pointed out that fullerene derivatives could protect against oxidative stress in organisms and prevent keratinocyte from injury induced by UV. As a matter of fact, fullerene is not able to dissolve in H2O but able to dissolve in some polar solvents such as toluene, which results in the limitation of the fullerene application in biological field. Now there are three ways of making fullerene soluble: one is to prepare soluble fullerene clathrate, the other to produce soluble fullerene collosol, another to add soluble group to the cage, and the third method is the best.
     In view of this background, we prepared a novel C60-Amino acid derivate (FAAD)-C60 Methionine derivative (FMD) through the organic synthesis method and described its structural characterization. Meanwhile, we investigated its scavenging capacity and regularity on superoxide and hydroxyl radical as well as its protective effects on hydrogen peroxide induced oxidative damage in rat pheochromocytoma (PC12) cells, aim to provide theoretical and experimental bases for its applications in medical field.
     PartⅠThe Synthesis and Exosyndrome of Fullerene-Methionine Derivate
     Object: To synthesis soluble fullerene derivate. Methods: C60 methionine derivate was synthesized by nucleophilic addition and characterized by FT-IR,1H-NMR,RF ,UV and Size Analyzer. Results: The product was very solvable in water and stable in air, and all the equipments demonstrated that several methionines were added to fullerenes directly or indirectly. The average aquation diameter of the derivate was 11.1 nm. Conclusion: C60 methionine derivate was synthesis successfully and lyotropic in water.
     PartⅡProtective effect of fullerene-Methionine derivate on PC12 cell oxidative stress injury
     Object: To investigate the scavenging ability of FMD to ROS and the antioxidant effect on PC12 oxidative stress injury induced by hydrogen peroxide. Methods: FMD of different concentration was added into pyrogallic acid-luminol and Phenanthroline oxyluminescence system to observe the scavenging effect to ROS. FMD’s potential protective effect on hydrogen peroxide-induced oxidative stress and apoptotic death was investigated in PC12 cells. Cells treated with hydrogen peroxide underwent cytotoxicity and apoptotic death determined by MTT assay, flow cytometry analysis, PI/Hoechst 33342 staining. The level of MDA and the activity of SOD were measured by spectroscopy and the level of FMD into cells by fluorometric method. Results: The inhibition to ROS can be enhanced gradually as the concentration of FMD increased. After been exposed to hydrogen peroxide for 24 hours, typical morphological characteristics of injury were observed, with the proliferation activity decreased sharply and the rate of apoptosis increased obviously. Moreover, the level of MDA was increased significantly and the activity of SOD decreased in H2O2 induced group compared with control, while FMD altered the above results, restrained the reduction of PC12 caused by hydrogen peroxide, and diminished the apoptosis. In addition that, approximately 20% of total addition of FMD could enter into cells. Conclusion: FMD has good scavenging effect to ROS, and can protect PC12 cells from oxidative stress injury induced by hydrogen peroxide, which may be related to increasing the activity of anti-oxidation of PC12.
引文
1. Kroto H W, Heath J R, Curl R F. C60: Buckminster fullerene. Nature, 1985, 318 (14): 162-4.
    2. Kratschmer W, Lamb L D, Fotinopoulos K Huffman D R. Solid C60-A new form of carbon. Nature, 1990, 347: 354-68.
    3. Korobov M V, Smith A L. In Solubility of the fullerenes, Kadish K M, Ruoff R S, Ed. Fullerenes: Chemistry, physics and Technology; John Wiley&Sons, Inc: New York, NY, 2000: pp 53-89.
    4. Yamakoshi Y N, Yagami T, Fukuhara K, et al. Solubilization of fullerenes into water with poly(vinylpyrrolidone) applicable to biological tests. J. Chem. Soc., Chem. Commun.1994: 517-8.
    5.刘勇,章道道.环湖精高聚物研究.功能高分子学报,1995,18(l): 101.
    6. Sudahl M, Andersson T, Nilsson K, et al. Clusters of C60-fullerene in a water solution containingγ-cyclodextrin; A photophysical study. Synth Metals, 1993, 56(2-3): 3252-7.
    7. Ramamurthy V. Organic photochemistry in organized media. Tetrahydron, 1986, 42(21): 5753-839.
    8.章道道,梁强,陈吉伟等.γ-环糊精与C_(60)包结物的制备及结构的研究.科学通报,1994, 39(4):3.
    9. Diederich F, Gomez L M. Supramolecular fullerene chemistry. Chem. Soc. Rev.1999, 28: 263.
    10. Chiang L Y, Swirczewski J W, Chang S H. Versatile nitronium chemistry for C60 fullerene functionalization. J. Chem. Soc. Chem Commun, 1992, 22: 1791.
    11. Chiang LY, Upasani, Swirczewski J W. Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J. Am. Chem. Soc, 1993, 115: 5453.
    12. Skiebe A, Hirsch A. A facile Method for the Synthesis of Amino Acid and Amino Derivatives of C60. J. Chem. Soc. Chem. Commun., 1994: 335.
    13. Wang N X, Li J S, Zhu D B. A C60 derivatized Dipeptide. Tetrahedron Lett, 1995, 36(3): 431-4.
    14.洪翰,刘向前,杜富胜等.含C60聚乙基乙烯基醚的合成及其荧光行为.高分子学报, 1999, (1):123.
    15. Friedman S H, Decamp D L, Sijbesma R P, et al. Inhibition of the HIV-1 Protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc, 1993, 115: 6506-9.
    16. Eiichi N, Hiroyuki I. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience,Accounts of Chemical Research, 2003(36):807-815.
    17. Higashi N, Inoue T, Niwa M. Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun, 1997: 1507.
    18. Chiang L Y, Lu F J, Lin J T. Medical application of water-soluble polyhydroxy- lated fullerene derivatives. Proc. Electrochem. Soc, 1995, 95(10): 699.
    1. Kim K A, Von Z M. NeurotroPhin-regulated sorting of oPioid receptors in the biosynthetic pathway of neurosecretory eells. J Neurosci, 2003, 23(6): 2075-85.
    2. Manton KG, Volovik S, Kulminski A. ROS effects on neurodegeneration in Alzheimer’s disease and related disorders: On environmental stresses of ionizing radiation. Curr Alz Res, 2004, 1: 277-93.
    3. Xiong Y, Shie F S, Zhang J, et al. Prevention of mitochondrial dysfunction in post- traumatic mouse brain by superoxide dismutase. J Neuro chem, 2005, 95: 732-44.
    4. Rayner B S, Duong T T H, Myers S J, et al. Protective effect of a synthetic anti-oxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenation injury. J Neuro chem, 2006, 97: 211-21.
    5. Wang Q, Tompkins K D, Simonyi A, et al. Apocynin protects against global cerebral is chemia- reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res, 2006, 1090: 182-9.
    6. Mak I T, Boehme P, Weqlicki W B. Antioxidant effects of calcium channel blockers against free radical injury in endothelial cells. Correlation of protection with preservation of glutathione levels. Circ Res, 1992, 70(6): 1099-103.
    7. Imaizumi S, Woolworth, Fishman R A, et al. Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke (1990) 21(9): 1312-7.
    8. Molina H, Garica M. Enzymatic defenses of the rat heart against lipid peroxidation. Mech Ageing Dev, 1997, 97(1): 1-7.
    9. Burton G W. Vitamin E: molecular and biological function. Proc Nutr Soc, 1994 , 53(2): 251-62.
    10. Noroozi M, Angerson W T, Lean M E, et al. Effects of flaconoids and vitamin C on oxidation DNA damage to human lymphocytes. Am J Clin Nutr, 1998, 67(6): 1210-8.
    11. Smith S L, Scherch H W, Hall E D. Protective effects of tirilazad mesylate and metabolite U-89678 against blood brain damage after subarachnoid hemorrhage and lipid peroxidative neuronal injury. J Neurosurg, 1996, 84: 229-33.
    12. Shutenko Z, Henry Y, Pinard E, et al. Influence of the Antioxidant Quercetin In Vivo on the Level of Nitric Oxide Determined by Electron Paramagnetic Resonance in RatBrain during Global Ischemia and Reperfusion. Biochem Pharmacol, 1995, 118(2): 199-208.
    13. Miyagawa C, Wu C, Kennedy D O, et al. Protective effect of green tea extract and tea polyphenols against the cytotoxicity of 1,4-naphthoquinone in isolated rat hepatocytes. Biosci Biotechnol Biochem. 1997, 61(11):1901-5.
    14. Lodovici M, Guglielmi F, Meoni M, et al. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem Toxicol, 2001, 39(12): 1205-10.
    15. Mauricio T, Humberto T. The carbon nanocosmos: novel materials for the twenty-first century. Phil. Trans. R. Soc. Lond. A., 2003(361): 2789–806.
    16. Kroto H W, Weath J R, Curl R F. C60: Buckminster fullerene. Nature, 1985, 318(14): 162-4.
    17. Krusic P J, Wasscerman E, Keizer P N, et al. Radical reactions of C60. Science, 1991, 254(5035): 1183-5.
    18. Dugan L L, Gabrielsen J K, Yu S P, et al. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 1996, 3:129-35.
    19. Chen Y W, Hwang K C, Yen C C, et al. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol, 2004, 287: 21-6.
    20. Chien C T, Chen C F, Hsu S M, et al. Forced expression of bcl-2 and bcl-xL by novel water-soluble fullerene, C60 (glucosamine)6, reduces renal ischemia/reperfusion-induced oxidative stress. Fullerene Science and Technology, 2001, 9: 77-88.
    21. Dugan L L, Turetsky D M, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci U S A, 1997, 94: 9434-9.
    22. Bisaglia M, Natalini B L, Pellicciari R, et al. C3-fullerotris-methanodicarboxylic acid protects cerebellar granule cells from apoptosis. J Neurochem 2000, 74:1197-204.
    23. Huang Y L, Shen C K F, Luh T Y, et al. Blockage of apoptotic signaling of transforming growth factor-beta in human hepatoma cells by carboxy-fullerene. Eur J Biochem, 1998, 254: 38-43.
    24. Monti D, Moretti L, Salvioli S, et al. C60 carboxyfullerene exerts a protective activity against oxidative stressinduced apoptosis in human peripheral blood mononuclear cells. Biochem Biophys Res Commun. 2000, 277: 711-7.
    25. Straface E, Natalini B, Monti D, et al. C3-fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability. FEBS Lett 1999, 454: 335-40.
    26. Ebrahimian T G, Heymes C, You D. NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. Am. J. Pathol. 2006, 169: 719-28.
    27. Ching H H, Chiang L Y, Chen W J,et al. Water-Soluble Hexasulfobutyl [60] Fullerene Inhibits Plasma Lipid Peroxidation by Direct Association with Lipoproteins. J Cardivoasc Pharmacol, 2000, 36(4): 423-427.
    28. Traystman R J, Kirsch J R, Koehler R C. Oxygen radical mechanisms of Brain injury following isehemia and reperfusion. Jappl physiol, 1991, 71(4):1185.
    29. Li W G, Francis J, Miller J, et a1. H2O2-induced super oxide anion production by a non-phagocytic NAD(P)H oxidase cause oxidant injury.J Biol Chem, 2001, 31: 29251-29256.
    30. Rukcnstein A, Rydel R E, Greene LA. Multiple agents rescue PC12 cells from serum free cell death by translation- and transcription- independent mechanisms. J Neurosci, 1991, 11(8): 2552-2563.
    31. Kroll S L, Czyzyk M F. Role of H2O2 and heme-containing O2 sensors in hypoxia regulation of tyrosine hydroxylase gene expression. Am J Physiol, 1998,274: 167-174.
    32. Green L A. Nerve growth factor prevents the death and stimulates the neuronal diferentiation of clonal PC12 pheochromocytoma cells in serum—free medium. J Cell Biol, 1978, 78(3): 747-55.
    33. Monti D, Moretti L, Salvioli S, et al. C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem Biophys Res Commun, 277, 2000: 711–17.
    34. Guan S, Bao Y M, Jiang B, et al. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur J Pharmacol, 538, 2006:73–79.
    35. Kinnula V L, Everitt J I, Whorton A R, et a1. Hydrogen peroxide production by alverlar type II cells,alveolar macrophages and endothelial cells. Am J Physiol, 1999, 261: L84-L91.
    36. Mugge A, Elwell J, Peterson T E, et a1. Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Physiol Cell Phsyiol, 1991, 260: C219-C25.
    37. Hatzimarinaki M, Roubelakis M M. Biradical Intermediate in the [2 + 2] Photocycloaddition of Dienes and Alkenes to [60] Fullerene. J. Am. Chem. Soc. 2005, 127(41): 1418.
    38. Tsai C. H, Stern A, Chiou. Rapid and Specific Detection of Hydroxyl Radical Using an Ultraweak Chemiluminescence Analyzer and a Low-Level Chemiluminescence Emitter: Application to Hydroxyl Radical-Scavenging Ability of Aqueous Extracts of Food Constituents. J. Agric. Food. Chem. 2001, 49(5), 2137.
    39. Nelson M A, Domann F E, Bowden G T, et al. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol Ind Health, 1993, 9: 623-30.
    40. Scrivens W A, Tour J M, Creek K E, et al. Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes. J Am Chem Soc, 1994, 116: 4517-8.
    41. Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycolmodified fullerene on tumor. Jpn J Cancer Res, 1997, 88: 11108-16.
    42. Dugan L L, Turetsky D M, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA, 1997, 94: 9434-9.
    1. Mauricio T, Humberto T. The carbon nanocosmos: novel materials for the twenty-first century. Phil. Trans. R. Soc. Lond. A., 2003(361): 2789-806.
    2. Krueger A. New carbon materials: biological applications of functionalized nanodiamond materials. Chemistry, 2008, 14(5): 1382-90.
    3. Kroto H W, Weath J R, Curl R F. C60: Buckminster fullerene. Nature, 1985, 318(14):162-4.
    4. Krastschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: a new form of carbon.Nature,1990,347:354-68.
    5. Taylor R, Walton D R M. The chemistry of fullerenes. Nature, 1993, 363(6431): 685-93.
    6. Perret F, Nishihara M, Takeuchi T, et al. Anionic fullerenes, calixarenes, coronenes, and pyrenes as activators of oligo/polyarginines in model membranes and live cells. J. Am. Chem. Soc. 2005, 127(4): 1114-5.
    7. Bespalova N B, Bovina M A, Rebrov A I, et al. Hydrosilylation of fullerence C60. Russian Chemical Bulletin. 1997, 46: 1620-21.
    8. Fagan P J, Joseph B C, David A, et al. Some well characterized chemical reactivities of buckminsterfullerene (C60). Carbon, 1992, 30(8):1213-26.
    9. Olan G A, Bucsi I, Aniszfeld R, et al. Chemical reactivity and functionalization of C60 and C70 fullerenes.Carbon,1992,30(8):1203-4.
    10.蒋秉植. C60系列化合物的磁学性质.化学通报,1993, 10: 23-7.
    11. Morton J R, Preston K F, Krusic P J, et a1. The dimerization of fullerene RC60 radicals[R=alkyl]. J Am Chem Soc, 1992, 114(13): 5454-5.
    12. Timmerman P, Anderson H I, Faust R, et a1.Fullerene-acetylene hybrids: Towards a novel class of molecular carbon allotropes. Tetrahedron, 1996, 52(14): 4925-47.
    13. Zhu Y H, Bahnmueller S, Ching C B, et a1. An effective system to synthesize methanofullerenes: substrate-ionic liquid-ultrasonic irradiation Tetrahedron Lett, 2003, 44(29): 5473-6.
    14. Choi C H,Lee H I.Theoretical study of C-20 fullerene dimerization: a facile [2+2] cycloaddition. Chem Phys Lett, 2002, 359: 446-52.
    15. Knol J, Hummelen J C. Photodimerization of a m-Phenylenebis (arylmethanofullerene): The First Rigorous Proof for Photochemical Inter-Fullerene. J. Am. Chem Soc. 2000, 122: 3226-27.
    16. Zhang X, Fan A, Foote C S. [2+2] Cycloaddition of Fullerenes with Electron-Rich Alkenes and Alkynes. J Org Chem, 1996, 61: 5456.
    17. Alonso A M, Prato M. Synthesis of a soluble fullerene–rotaxane incorporating a furamide template. Tetrahedron, 2006, 62(9): 2003-7.
    18. Maria D L T, Andrea G P R, Augusto C T, et a1. [60]Fullerene-flavonoid dyads. Tetrahedron, 2004, 60: 3581-92.
    19. Sofou P, Elemes Y, Panou-Pomonis E, et a1. Synthesis of a proline-rich [60] fullerene peptide with potential biological activity. Tetrahedron,2004, 60: 2823-28.
    20. Zhou Z G, Magriotis P A. A New Method for the Functionalization of [60] Fullerene: An Unusual 1, 3-Dipolar Cycloaddition Pathway Leading to a C60 Housane Derivative. Organic Lett,2005, 7(26): 5849-51.
    21. Maggini M, Scorrano G. Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc, 1993, 115(21): 9798-9.
    22. Ishida H, Ohno M. The first 1, 3-dipolar cycloaddition reaction of [60] fullerene with thiocarbonyl ylide. Tetrahedron Lett, 1999, 40(8): 1543-6.
    23. Ishida H, Itoh K, Ohno M. 1, 3-Dipolar cycloaddition reaction of [60] fullerene with thiocarbonyl ylide and synthetic application of the cycloadduct. Tetrahedron, 2001, 57: 1737-47.
    24. Takaguchi Y, Sako Y,Yanagimoto Y, et a1.Facile and reversible synthesis of an acidic water-soluble poly(amidoamine) fullerodendrimer. Tetrahedron Lett, 2003, 44(31): 5777-80.
    25. Kotha S, Ghosh A K. A Diels-Alder approach for the synthesis of highly functionalized benzo-annulated indane-based -amino acid derivatives via sultine intermediate. Tetrahedron Lett, 2004, 45(14): 2931-4.
    26. Manoharan M, Proft F D, Geerlings P. Aromaticity Interplay Between Quinodimethanes and C60 in Diels-Alder Reactions: Insights from a Theoretical Study. J Org Chem, 2000, 65: 6132-7.
    27. Kotha S, Ghosh A K. Cycloaddition approach to indane based -amino acid derivatives. Tetrahedron, 2004, 60(48): 10833-41.
    28. Arce M J, Viado A L, An Y Z, et a1. Triple Scission of a 6-Membered Ring on the Surface of C60 via Consecutive Pericyclic Rearrangements and Cobalt Insertion. J Am Chem Soc. 1996, 118: 3775-6.
    29. Kamat J P, Devasagayam T P A, Mohan H, et al.Effect of C60(OH)18 on membranes of rat liver microsomes during photosensitization, FullSciand Tech, 1998, 6(4): 663.
    30. Troshin P A, Kornev A B, Peregudov A S, et a1. Novel facile routes for synthesis and isolation of fluorofullerenes C60F18 and C60F20 based on commercially available fluorinating reagents. J. Fluorine Chem. 2005, l26, (11-12): 1559-64.
    31. Shinohara H, Yamaguchi H, Hayashi N. Isolation and spectroscopic properties of Sc2@C74 and Sc2@ C82 and Sc2@C84. J Phys Chem, 1993, 97: 4259-61.
    32. Greegan K M, Robbins J L, Robbins W K, et al. Synthesis and characterization of C60 the first fullerene epoxide. J.Am.Chem. Soc. 1992, 114: l103-5.
    33. Hwkins J M, Meyer A, Lewis T A, et al. Regiochemistry of the bisosmylation of Fullerene C60: ortho, meta, and para in three dimensions. J.Am.Chem.Soc.1992, 114 (20): 7954-5.
    34. Chiang L Y, Lu F J, Lin J T. Medical application of water-soluble polyhydroxylated fullerene derivatives. Proc. Electrochem. Soc, 1995, 5(10): 699~702.
    35. Kamat J P,Devasagayam T P A,Mohan H,et al. Effect of C60(OH)n on membranes of rat liver microsomes. Fullerene Sci Technol,1999,6(4):663-79.
    36. Thoman H, Bernardo M,Miller G P. Observations of triplet-state electron spin resonance in oxidized fullerene C60. J. Am. Chem. Soc. 1992, 114(16): 6593-4.
    37. Diederich F, Ettl R, Rubin Y, et al. The Higher Fullerenes: Isolation and Characterization of C76, C84, C90, C94, and C70, an oxide of D5h-C70. Science, 252: 548-51.
    38. Ioffe I N, Levlev A S, Boltalina O V,et al. Electron affinity of some trimetallic nitride and conventional metallofullerenes. Intern. J. Mass. pect, 2002, 213: 183-9.
    39. Balch A L, Marilyn M. Reactions of Transition Metal Complexes with Fullerenes (C60, C70, etc.) and Related Materials. Olmstead Chem. Rev., 1998, 98(6): 2123-65.
    40. Duthwaite R E, Green M L H, Thmer A H H, et al. Transition Metal-Carbonyl, Metal-Hydrido and Metal - h - Cyclopentadienyl Derivatives of the Fullerene C60. J. Chem. Soc., Chem. Commun., 1993, 19: 1522-3.
    41. Liu C L, Zhao G Z, Gong Q H, et al. Optical limiting property of molybdenum complex of fullerene C70. Optics Communications, 2000, 184(1-4): 309-13.
    42. Tomanek D,Li YS.Ionieity ofthe M-C bond in M@C60 endohedral complexes.Chem Phys Lett,1995,(243):42-4.
    43. Rao A M, Zhou P, Wang K A, et al. Photoinduced polymerization of solid C60 films. Science, 1993, 259(5097): 955-7.
    44. Stephens P W, Bortel G, Faigel G, et al. Polymeric fullerene chains in RbC60 and KC60. Nature, 1994, 370: 636-9.
    45. Fischer J E. Fullerene Polymers from Solid Precursors? Science, 1994, 264(5165): 1548-9.
    46. Sun Y P, Ma B, Bunker C E, et al. All-Carbon Polymers (Polyfullerenes) from Photochemical Reactions of Fullerene Clusters in Room-Temperature Solvent Mixtures. J Am Chem Soc, 1995, 117: 12705-11.
    47. Rosseinsky M J. Fullerene intercalation chemistry. J. Mater. Chem. 1995, 5: 1497-513.
    48. Olah G A, Aniszfeld R, Prakash P K. The 25th Silicon Symposium (Eds. Oka K, Miller M, Dreezewski B and West R). 1992, Los Angeles, 1203.
    49. Cloutet E, Gnanou Y, Fillaut J L. C60-End-Capped Polystyrene Stars. Chem Commun, 1996, (13): 1565.
    50. Akasaka T, Maeda Y, Wakahara T, et al. Novel metal-free bis-silylation: C60-sensitized reaction of disilirane with benzonitrile. Org Lett, (Communication), 1999, 1(10): 1509-12.
    51. Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution,e xcretion and acute toxicity. Chem. Biol, 1995, 2(6): 385-9.
    52. Moussa F, Trivin F, Ceolin R, et al. Early effects of C60 administration in swiss mice: a preliminary acconnt for in vivo C60 toxicity. Fullerene Sci.Technol, 1996, 4: 21-9.
    53. Yasuhiko Tabata, Yoshiyuki Murakami, Yoshito Ikata, et al. Photodynamic effect of polyethylen glycol-modified fullerene on tumor. Jpn J cancer Res. 1997, 88: 1108-16.
    54. Cagle D W, Kenel S J, Mirzadeh S, et al. In the vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci, 1999, 96: 5182-7.
    55. Krusic P J, Wasscerman E, Keizer PN, et al. Radical reactions of C60. Science, 1991, 254(5035): 1183-5.
    56. Chiang L Y,Lu F J,Lin J T. Free-radical scavenging effect of water-soluble [60] fullerenols in whole blood associated with gastric cancer. Proc Electrochem Soc,1995, 95 (10): 699-706.
    57. Chiang L Y,Lu F J,Lin J T. Free radical scavenging activity of water-soluble fullerenols. J Chem Soc, Chem Commun, 1995, (12): 1283-4.
    58. Ching H H, Chiang L Y, Chen W J, et al. Water-Soluble Hexasulfobutyl [60] Fullerene Inhibits Plasma Lipid Peroxidation by Direct Association with Lipoproteins. J Cardivoasc Pharmacol, 2000, 36(4): 423-7.
    59. DuganL L, TuretskyD M, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA, 1997, 94(17): 9434-9.
    60. Chen H H, Yu C, Ueng T H, et al, Acute and subacute toxicity study of water-soluble polyalkylsulfonated C60 in rats. Toxicol Pathol, 1998, 26(1): 143-51.
    61. Corona Morales A A, Castell A, Escobar A, et al.Fullerene C60 and ascorbic acid protect cultured chronaffin cells against levodopa toxicity.Journal of neuroscience research, 2003, 71: 121-126.
    62. Tao S, Zhi S J, Zhu D X. Different hydroxyl radical scavenging activity of water solubleβ-alanine C60 adducts. Bioorganic&Medicinal Chemistry Letters, 2004, 14: 1779-81.
    63. Friedman S H, DeCamp D L, Sijbesma R P, et al. Inhibition of the HIV-1 Protease by fullerene derivatives: model building studies and experimental verification. J.Am. Chem. Soc, 1993, 115: 6506-9.
    64. David I S, Stephen R W.Raymond F S. Anti-human immunodeficiency virus activity and eytotoxicity of d erivatized buckminsterfullerenes. Bioorg. Med. Chem. Let, 1996, 6(11): 1253-6.
    65. Friedman S H, Ganapathi P S, Rubin Y, et al. optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation. J. Med. Chem. 1998, 41(13): 2424-9.
    66. Ros T D, Prato M. Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun, 1999, 4(8): 663-9.
    67. Susanna B, Tatiana D R, Sabrina C, et al. Antimycobacterial Activity of lonic fullerene Derivatives. Bioorganic&Medicinal Chemistry Letter, 2000, 10: 1043-5.
    68. Nina T, Tien Y L, Chen K C, et al. In vivo action of carboxyfullerene. J of Antimicrobial Chemotherapy. 2002, 49: 641-9.
    69. Tadahiko.Mashino, Kensuke Okuda, Takashi Hirota, et al.Inhibiton of E.coli Growth by Fullerene Derivatives and Inhibition Mechanism. Bioorganic&Medicinal Chemistry Letter, 1999, 9: 2959-62.
    70. Imahori H, Fukuzumi S. Porphyrin and fullerene-based photovoltaic devices. Advanced Functional Materials, 2004, 14 (6): 525-36.
    71. Boutorine A S, Tokuyama H, Takasugi M., et al. Fullerene-oligo nucleotide conjugates: photo induced sequence-specific DNA cleavage. Angew Chem int Ed Engl, 1994, 33: 2462-5.
    72. Yamakoshi Y N, Yagami T, Sueyo S, et al. Acri-dine adduct of [60] fullerene with enhanced DNA cleaving activity. J.org.Chem. 1996, 61: 7236-7.
    73. Kamat J P, Devasagayam T P A, Mohan H, et al.Effect of C60(OH)18 on membranes of rat liver microsomes during photosensitization. Full Sciand Tech, 1998, 6(4): 663.
    74.陈霖,杨新林,彭鲲鹏,等.水溶性C60衍生物的光致细胞膜毒性的动态研究.高技术通讯, 2001, 7(2): 17-20.
    75. Wharton T, Wilson L J. Highly-iodinated fulerene as a contrast agent for X-ray imaging. Bioorg Med Chem, 2002, 10(11):3545-54.
    76. Toth E, Bolskar R D, Borel A, et al. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrasta gents. J Am Chem Soc, 2005, 127(2): 799-805.
    77. Watanabe S, Ishioka N S, Shimomura H, et al. Synthesis of hydrophilic endohedral 133Xe-fullerenol with high yield. JAERI (Japan Atomic Energy Research Institute) Review, 2004, 2 5(11):248-9.
    78. Cagle D W, Kennel S J, Mirzadeh S, et al. In vivo studies of fullerene based materials using endohedral metallofullerene radiotracers. Proc Natl Acad Sci USA, 1999, 96 (9):5182-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700