用户名: 密码: 验证码:
PLLA/SA共混材料的制备及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了降低聚乳酸(PLA)材料的生产加工成本,改善其柔韧性,扩大PLA基塑料的应用范围,本工作以L-型聚乳酸(PLLA)和醋酸酯淀粉(SA)为主要原料,钛酸四丁酯(Ti(OBU)4)为增容剂,柠檬酸三乙酯(TEC)为增塑剂,首次采用熔融共混挤出技术制备了一系列的PLLA/SA共混材料。考察了SA、增容剂和增塑剂等对共混材料的力学性能、动态热机械性能、结构与形态、耐热性、熔体流动速率、耐水性和生物降解性等方面的影响。研究发现:
     1.增容剂的加入使PLLA/SA共混材料中PLLA和SA的相容性得到了一定程度的改善。
     2.SA含量及增容剂与增塑剂含量对共混体系的力学性能有显著的影响,适量的增容剂可以很好地改善PLLA/SA共混体系的相容性,同时适量增塑剂可以提高共混材料的柔韧性。在SA含量为25%,增容剂含量为8%,增塑剂含量为10%时,与原料PLLA相比,共混材料的强度和刚度有所下降,但柔韧性得到了明显改善。
     3.动态热力学性能分析表明,在2.00~33.30Hz的频率范围内,SA含量、增容剂含量及增塑剂对材料的储能模量有较大的影响,随着增容剂含量的增加,储能模量降低,Tanδ峰值温度逐渐向低温方向移动;而随着SA含量的增加,共混材料储能模量增加,Tanδ峰值温度移向高温方向,但当SA含量增加到25%以上时,Tanδ峰值温度基本保持恒定;增塑剂的加入大大降低了材料的储能模量,提高了Tanδ峰值。
     4.热重分析表明,增塑剂的含量、增容剂的含量和SA含量对共混材料的热分解有影响。增塑剂降低了材料的耐热性;增容剂可以提高共混材料的耐热性;SA含量增加导致共混材料的耐热性小幅下降。共混材料的热降解温度范围较原料PLLA宽,在360℃左右趋于完全降解。
     5.SA、增容剂和增塑剂的含量对PLLA/SA共混体系的MFR产生了一定的影响。增容后的不含增塑剂的简单共混体系的MFR均高于未增容体系,且随着SA含量的增加有所增大;在增容剂含量一定(2%)时,增塑后共混体系的MFR高于未增塑体系;SA含量和增塑剂含量一定的情况下,共混体系的MFR随着增容剂含量的增加呈先减小后增大的趋势,且在增容剂含量为8%时达到最小,为3.62g/10min,但仍高于原料PLLA的MFR(2.04g/10min),说明共混材料的流动性较原料PLLA的好,更适合塑料成型加工的要求。
     6.SEM分析表明,添加适量的增容剂能有效地改善PLLA/SA共混体系的相容性。随着SA含量的增加,共混体系的相容性变差。
     7.耐水性研究发现,随着SA含量的增加,共混材料的吸水率逐渐增大,耐水性降低;随着增容剂含量的增加共混材料的吸水率稍有提高。在增容剂含量较低(2%)时,SA含量为25%的共混材料吸水后的拉伸强度与吸水前相比略有降低,其他SA含量的共混材料吸水后的拉伸强度均有提高;而在SA含量一定时,随着增容剂含量的增加,共混材料吸水后的拉伸强度均下降,但在增容剂含量为8%时下降的程度很小。
     8.生物降解性实验表明,SA和增塑剂的加入均使原料PLLA的生物降解性有所提高,但是并未随着他们二者的含量变化呈规律性变化。
In order to reduce the cost of the polylactic acid (PLLA) material and improve its flexibility to expand the application of PLA-based plastic,we used PLLA and starch acetate (SA) as the main raw material, tetrabutyl titanate (Ti(OBU)4) as compatibilizer, and triethyl citrate (TEC) as plasticizer,to prepare a series of PLLA/ SA blends by melt mixing firstly.It was investigated the effect of the content of SA,the compatibilizer and its content, the plasticizer and its content on the mechanical properties,dynamic mechanical properties,structure and morphologies, heat-resistant performance,melt flow rate and water-resistant performance and other implications of blends. The results of research show that:
     The compatibility of PLLA and SA of the blends was improved to some extent after adding the compatibilizer.
     SA content, addition of compatibilizer and its content, addition of plasticizer and its content, all of them affect the mechanical properties greatly.The appropriate content of the compatibilizer can improve the compatibility of PLLA/SA blends effectively, while the flexibility of the blends can be improved by adding the plasticizer.When the content of the SA is 25%, the content of compatibilizer is 8%, and the the content of plasticizer is 10%, the stiffness and the strength of the blends declined, while the flexibility is improved greatly as compared with pure PLLA material,
     The results of dynamic mechanical analysis showed that the varying trend of the tanδpeak temperature and the storage modulus with increasing temperature is similar under different frequency.It illustrates that the change of the frequency has little influence on the storage modulus and the internal friction.But the content of SA and the content of the compatibilizer have greater impact on the storage modulus.As the content of the compatibilizer increases, the tanδpeak temperature moves to a lower temperature, and the storage modulus of the blends decreases.With increasing the content of SA in the blends, the tanδpeak temperature moved to a higher temperature, and the storage of the blends increases. But, when the content of SA is increased over 25%, Tanδpeak temperature and the storage modulus.keep constant. The storage modulus of the blends decreases greatly after adding the plasticizer, Tanδpeak temperature is enhanced.
     Thermogravimetric analysis showed that the compatibilizer and the plasticizer also have the effect on the heat-resistant of the blends, and the blend without the compatibilizer has worse heat resistance.When the content of the plasticizer is definite, the material heat resistance is improved with the increase of compatibilizer's content compared to the blends without the compatibilizer. Compared with PLLA raw material, the range of the thermal degradation temperature is wider. The blends degrade almost completely when the temperature rises to 360℃.
     SA content, the addition of compatibilizer and plasticizer and their contents have a certain effect on MFR of PLLA/SA blends.The MFR of blends compatibilized without plasticizer is higher than the system without compatibilizer, and it increases with SA content inceased. With the fixed content of compatibilizer(2%), the MFR of the blends with plasticizer is higher than the blends without plasticizer;When SA content and plasticizer content are certain, the MFR of the blends increases first and then decreases with the increase of the compatibilizer content. When the compatibilizer content is 8%, the MFR reach the minimum and is 3.62g/10min, but is still higher than that of pure PLLA (MFR 2.04g/10min), which shows that the blends have better mobility than PLA, and are more suitable for the requirements of the plastic molding.
     SEM analysis shows that the appropriate amount of the compatibilizer could improve the compatibility of the PLLA/SA blends effectivelly, and the system's compatibility gets worse with the content of SA increasing.
     Through inverstigating the water resistance, we find that the water absorption gradually increases with the SA's content incrasing.The blends'water absorption is' enhanced after the addition of the compatibilizer. When the copatibilizer content is lower(2%),except 25% content of SA the other blends'tensile strengths after water absorption are improved. When the content of SA is fixed(25%), by increasing the content of compatibilizer, the tensile strengths after water absorption decrease, and the extent is not great when the content of compatibilizer is 8%.
     The addition of SA and the plasticizer improves the biodegradability of PLLA, but no regularity is found between the enhancment and the content of both.
引文
[1]梅超群,张洪利.淀粉塑料发展现状及其前景展望[J].化工时刊,2007,21(1):63~65
    [2]邹君,凌秀琴.可生物降解性高分子材料-聚乳酸[J].塑料科技,2008,36(7):74~78
    [3]郭娟,张进.可降解包装材料的现状及发展趋势[J].塑料科技,2008,36(2):98~102
    [4]梁世强,傅和青.生物降解包装塑料研究进展[J].包装工程,2006,27(2):16~18
    [5]盛敏刚,张金花,李延红.环境友好型聚乳酸复合材料的研究及应用[J].资源开发与市场,2007,23(11):1012~1014
    [6]杨斌.绿色塑料聚乳酸[M].上海:化学工业出版社,2007.1~4
    [7]缅恩,麦高迈.塑料对可持续发展的贡献[C].塑料可持续发展研讨会报告,北京:国际化学品制造商协会塑料事务委员会,2006.31~47
    [8]苑静.生物降解塑料的研究现状及发展前景[J].塑料科技,2009,37(2):77~81
    [9]戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社,2002.4~7
    [10]Izumo N, Ishihara T, Mizushima Y. Corticosteroid-loading PLA PLGA-nanospher-es[J]. Nippon Rinsho,2006,64 (2):329~414
    [11]徐国富,牟申周,周灵平,等.仿生增强制备聚乳酸基骨组织工程复合材料[J].湖南大学学报(自然科学版),2006,(4):86~89
    [12]Ruan Gang, Feng Sishen. Preparation and characterization of poly(lactic- acid)-poly( ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA)microspheres for controlled release of paclitaxel[J]. Biomaterials,2003,24 (27):5037~5041
    [13]卓仁禧,尹超,吴颖楠,等.聚乳酸眼科植入材料的制备及其降解性能[J].应用化学,1997,2:102~104
    [14]Zhou Shaobing, Liao Xueyan, Li Xiaohong, et al. Poly-D,L-lactide-co-poly(ethylene glycol)microspheres as potential vaccine delivery systems[J]. Controlled Release,2003, 86 (17):195~198
    [15]Slager J, Domb A J. Stereocomplexes based on poly(lactic acid) and insulin: formul-ation and release studies[J]. Biomate-rials,2002,23 (22):4389~4394
    [16]Valerie Langlois, Karine Valle-Rehel, Jean Jacques Peron, et al. Synthesis and hydrolytic degradation of graft copolymers containing poly(lactic acid) side chains:in vitro release studies of bioactive molecules[J]. Polym Degrad Stability,2002, (3):411~416
    [17]Perez C, Sanchez A, Putnam D, et al. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA[J]. Controlled Release,2001,5 (2): 211~218
    [18]张永伟,郭少华,吴智华.几种增塑剂增塑聚乳酸的性能研究[J].现代塑料加工应用,2007,19(6):38~40
    [19]李晓梅,周威,王丹,等.增塑剂对聚乳酸性能影响的研究[J].现代塑料加工应用,2008,20(2):41~44
    [20]赵梓年,王红.增塑聚乳酸性能的研究[J].塑料,2009,38(2):88~91
    [21]Nadia Ljungberg, Didier Colombini, Bengt Wess. Plasticization of poly(lactic acid) with oligomeric malonate esteramides; Dynamic mechanical and thermal film properties[J]. Journal of Applied Polymer Science,2005,96 (4):992~1002
    [22]周威,李小梅,蒋涛.增塑剂.ATBC;对聚乳酸膜性能的影响[J].塑料助剂,2008,2:43~47
    [23]Sawhney A S, Pathak C P, Hubble J A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-copoly(a-hydroxy-acid) diacrylate macromers[J]. Macromolecules, 1993,26 (4):581~587
    [24]莫俊英,赵耀明.直接熔融聚合法制备生物降解材料PCEL[J].塑料工业,2007,35(1):4~7
    [25]Calandrelli L,De Rosa G, Errico ME, etal.Novel graft PLLA-based Copolymers:Potential of their Application to Particle Technology[J]. Bio.Mat.Res,2002,62 (2):244~253
    [26]Deng X M, Xiong C D, Cheng L M. Studies on the block copoly-merization of D, L-lactid and poly(ethylene glycol) with aluminum complex catalyst[J]. Appl Polym Sci,1995,55 (8):1193~1196
    [27]孙康,吴人洁,陈长春,等.改性甲壳素纤维增强聚乳酸复合材料及其制备方法[P].中国专利,03150485.2004-4-14
    [28]寇士军,李亚滨.PLIA/PGA复合纤维的降解研究[J].天津纺织科技,2001,42(3):5~12
    [29]袁利华,韩建,徐国平.可降解PLA/黄麻新型复合材料的制备与力学性能[J].浙江理工大学学报,2007,24(1):28~31
    [30]富露祥,谭敬琢,秦航,等.完全生物降解塑料PLA/PPC合金的结构与性能研究[J].塑料工业,2006,34(11):41~43
    [31]汪朝阳,赵耀明,聚乳酸类复合材料研究进展[J].材料导报,2003,17(6):53~56
    [32]周凯,顾书英,邹存洋.碳酸钙填充聚乳酸复合材料的制备和性能研究[J].中国塑料,2009,23(6):27~30
    [33]苏璇,韩常玉,庄宇刚,等.聚乳酸与聚丙撑碳酸酯共混体系的性能[J].应用化学,2007,24(4):480~482
    [34]Sivalingam G, Giridhar Madras. Thermal degradation of binary physical mitures and copolymers of poly(ε-caprolactone), poly(D,L-lactide),poly(glycolide)[J]. Polymer Degra-dation and Stability,2004,84 (3):393~399
    [35]冯飞,叶林.聚乳酸/聚氨酯弹性体共混复合材料结构与性能研究[J].塑料工业,2009,37(5):12~15
    [36]贾智源,韩常玉,董丽,等.聚乳酸/聚氧化乙烯共混体系的热行为和力学性能及流变行为[J].高分子学报,2009,9:967~971
    [37]陈连喜,熊康,傅杰,等.聚癸二酸酐/聚乳酸共混薄膜的制备和降解性能[J].武汉理工大学学报,2004,26(7):49~51
    [38]冯钠,宋霞,张志永,等.聚丙烯/聚乳酸共混体系的结构和性能[J].塑料科技,2006,34(5):28~31
    [39]顾书英,詹辉,任杰.聚乳酸/PBAT共混物的制备及其性能研究[J].中国塑料,2006,20 (10):39~42
    [40]桂宗彦,陆冲,李勇锋,等.PGS-PLA共混材料的制备和性能[J].华东理工大学学报,2009,35 (1):57~61
    [41]吴培熙,张留城.聚合物共混改性[M].北京:中国轻工业出版社,1985.2~10
    [42]王晓婷,唐颂超,潘泳康,等.PLA/LLDPE共混体系反应性增容研究[J].现代塑料加工应用,2008,20(3):5~8
    [43]D Garlotta, W Doane, R Shogren,, et al. lMechanical and thermal properties of starch-filled poly(D,L-lactic acid)/poly(hydroxy ester ether) biodegradable blends[J]. Applied PolymerScience,2003,88:1775~1786
    [44]Chang Lim Jun. Reactive blending of biodegradable polymers:PLA and starch[J]. Polymers and the Environment,2000,8(1):33~37
    [45]HuaWang, Xiuzhi Sun, PaulSeib. Strengthening blends of poly(lactic acid) and starchwithmethylenediphenyl diisocyanate[J]. Applied PolymerScience,2001,82:1761~ 1767
    [46]TianyiKe, Xiuzhi Sun. Thermal andmechanical properties of poly(lactic acid)/starch/m-ethylenediphenyl diisocyanate blending with triethyl citrate[J]. Applied PolymerScien-ce,2003,88:2947~2955
    [47]涂克华,王利群,王焱冰.淀粉接枝共聚物在淀粉/聚乳酸共混体系中的作用[J].高分子材料科学与工程,2002,18(5):108~110
    [48]OMartin, LAverous. Poly(lactic acid):plasticization and properties of biodegradable multiphase systems[J]. Polymer,2001,42:6209~6219
    [49]Watson P D. Lactic acid polymers[J]. Ind. Eng. Chem,1948,40 (8):1393~1397
    [50]杨斌.绿色塑料聚乳酸[M].北京:化学工业出版社,2007.12~13
    [51]邱威扬,喻继文,陈云.全淀粉热塑性塑料的研制[J].塑料工业,1998,26(4):106~108
    [52]Birgit Kosan, Frank Meister, Tim Liebert, et al. Hydrophobic modification of starch via grafting with an oxazoline-derivative[J]. Cellulose,2006,13(1):105~113
    [53]Angelier Helene, Molina-Boisseau Sonia, Dole Patrice, et al. Thermoplastic starch-Waxy maize starch nanocrystals nanocoposites[J]. American Chemical Society,2006,7(2): 531~539
    [54]陈金周,黄灵阁,郑丙利,等.γ辐射玉米淀粉-MMA固相接枝的研究[J].高分子材料科学与工程,2005,21(5):286~88
    [55]李敏,童彬.淀粉醋酸酯发展概况[J].广西轻工业,2004.6:13~17
    [56]张水洞.酯化淀粉的研究进展[J].化学研究与应用,2008,20(10):1264~1259
    [57]Shogren R. L. Rapid preparation of starch esters by high temperature/pressure reaction[J]. Carbohydr Polym,2003,52:319~326
    [58]张力田,变性淀粉[M].广州:华南理工大学出版社,2003.161~170
    [59]Garlotta Donald, Doane William, Shcigren Randal, et al. Mechanical and thermal properties of starch-filled poly(D,L-lactic Acid)/poly(hydroxyl ester ether)biodegradable blends[J]. Appl Polym Sci,2003,88 (7):1773~1779
    [60]KE Tainyi, SUN Xiuzhi. Physical Properties of Poly (Lactic Acid) and Starch Composites with Various Blending Ratios[J]. Cereal Chemistry,2000,77 (6):761~768
    [61]KE Tain-yi, SUN Xiu-zhi. Effects of Moisture Content and Heat Treatment on the Physical Properties of Starch and Poly (lacticacid) Blends[J]. Journal of Applied Polymer Science, 2001,81 (12):3069~3082
    [62]WANG Hua, SUN Xiu2zhi, SEIB Paul. StrengtheningBlends of Poly(Lactic Acid) and Starch with Methylenediphenyl Diisocyanate[J]. Journal of Applied Polymer Science,2001, 82:1761~767
    [63]OHKITA Tsutomu, LEE Seunghwan. Effect of Aliphatic Isocyanates (HDI and LDI) as Coupling Agents on the Properties of Eco-com-posites from Biodegradable Polymers and Corn Starch[J]. Adhe-sion Sci Technol,2004,18 (8):905~924
    [64]KE Tain-yi, SUN Xiu-zhi. Thermal and Mechanical Properties of Poly(Lactic Acid) and Starch Blends with Various Plasticizers[J]. American Society of Agricultural Engineers, 2001,44 (4):945~953
    [65]PARK Jun Wuk, IM Seung Soon. Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch[J]. Polymer Engineering and Science,2000,40 (12):2539~2550
    [66]Chen Li, Qiu Xueyu, Xie Zhigang, et al. Poly(L-lactide)/starch blends compatibilized with poly(L-lactide)-g-starch copolymer[J]. Carbohydrate Polym,2006,65:75~62
    [67]Wu Chinsan. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid-characterization and biodegradability assessment[J]. Macromolecular Bioscience,2005,5:352~359
    [68]Martin O, Averous L. Poly(lactic acid):plasticization and properties of biodegradable multiphase systems[J]. Polymer,2001,42 (14):6209~6219
    [69]PARK Jun Wuk, IM Seung Soon. Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch[J]. Polymer Engineering and Science,2000,40 (12):2539~2550
    [70]Huneault MA, Li H. Morphology and properties of compatibilized polylactide/thermo-plasticstarch blends[J]. Polymer,2007,48 (1):270~280
    [71]Zhang JF, Sun X. Mechanical Properties of Poly(lactic acid)/Starch Composites Comp-atibilized by Maleic Anhydride[J]. Biomacromolecules,2004,5(4):1446~1451
    [72]Kozlowski M, Masirek R, Piorkowska E, et al. Biodegradable blends of polylactide and starch.[J]. Appl Polym Sci,2007,105 (1):269~277
    [73]李申,周晔,任天斌,等.聚乳酸/淀粉复合材料的制备及性能研究[J].塑料,2005,35(4):7~11
    [74]石岩,邵文泉,计宏伟,等.木素磺酸盐对聚乳酸/淀粉共混相容性的影响[J].中国造纸学报,2007,22(2):78~81
    [75]涂克华,王利群,王焱冰,等.淀粉接枝共聚物在淀粉/聚乳酸共混体系中的作用[J].高分子材料科学与工程,2002,18(5):108~110
    [76]方显力,项尚林,“缪健,等.聚乳酸固相接枝马来酸酐及与淀粉共混研究[J].包装工程,2007,28(11):31~34
    [77]潘丽军,桂蕾,李延红,等.改性淀粉/聚乳酸复合材料的制备与性能表征[J].塑料科技,2009,37(2):28~31
    [78]汤化伟,夏华,叶龚兰.聚己内酯改性PLA/淀粉共混材料的性能研究[J].化工新型材料,2009,37(6):83~86
    [79]Jie Ren, Hongye Fu, Tianbin Ren, et al. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(buty-lene adipate-co-terephthalate)[J]. Polym,2009,77:576~582
    [80]Hsin-Tzu Liao, Chin-San Wu. Preparation and characterization of ternary blends composed of polylactide, poly-caprolactone and starch[J]. Materials Science and Engineering,2009, 515:207~214
    [81]Emmanuelle Schwach, Jean-Luc Six. Biodegradable Blends Based on Starch and Pol y(Lactic Acid):Comparison of Different Strategies and Estimate of Compatibilization [J]. Polym,2008,16:286~297
    [82]任芸,赵淑珍,朱梅兰.GB/T 1034-1998塑料吸水性试验方法[S].北京:中国标准出版社,1998
    [83]朱诚身,聚合物结构分析[M].北京:科学出版社,2004.216~235
    [84]张俐娜,薛奇,莫志深,等.高分子物理近代研究方法[M].武昌:武汉大学出版社,2003.235~249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700