用户名: 密码: 验证码:
条形永磁分段回复线模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术及材料工艺的不断发展,含永磁继电器凭其灵敏度高、触点动作速度快及可靠性强等特点,成为目前继电器制造行业中的重要成员。但是如何提高含永磁继电器的设计精度是研究人员面临的一个重大难题。查阅该方面国内外众多的研究资料,发现永久磁铁的等效处理是解决此难题的关键因素之一。因此本文对永磁的等效处理进行了深入的分析与研究。
     为了探索永磁分段思想在永磁等效应用方面的可行性,首先提出组装式三段永磁模型,分别使其处于开路状态、闭路状态、电磁系统与桥式磁系统中进行研究,通过等效磁路法从理论上推导计算各段永磁起始工作点及工作点的数学模型;研制相应的实验测试装置,通过计算实例的测试与有限元仿真对数学模型的正确性进行验证。经过各种结果的对比发现该模型中各段永磁具有不同的起始工作点,且在闭路、电磁及桥式磁系统下工作于不同的回复线。
     基于组装式三段永磁模型各段永磁工作点求解的思想,对含永磁继电器中常用的条形永磁体进行分段,建立开路状态下的多段式永磁模型及其等效磁路模型,经分析得到求解该模型的各段永磁起始工作点的计算方法。为了验证该计算方法的有效性,针对n=2段式的永磁模型从理论的角度进行了分析与讨论;同时建立n=5段式的永磁模型计算实例,采用有限元仿真验证上述计算方法的准确性。
     最后,展开对桥式磁系统中多段式永磁模型的分析,确定该模型的物理及等效磁路模型,推导出计算各段永磁工作点的数学模型。在求解各段工作点的过程中,分别分析了微元段永磁的漏磁导、求解工作点的基本方程以及桥式磁系统的端部磁路。然后根据该数学模型计算所设计实例中各段永磁的工作点,并通过仿真进行验证。同时对该实例进行了电磁力分析,结果表明永磁的分段等效处理会直接影响含永磁继电器吸力计算的精度。
With the development of technology and material technics, the relays with permanent magnet have played an important role in the industry of relay manufacture, due to some characteristics such as high sensitivity, contact action’s rapidness and strong reliability. However, how to enhance the precision of the relay with permanent magnet’s design is a great problem for the researchers. Having referred to much data at home and abroad, it is found that the equivalent disposal of permanent magnet is one of the critical factors to solve this problem. Therefore, this paper does a deep analysis and researches on the equivalent disposal of the permanent magnet.
     To explore the feasibility that the idea of permanent magnet subsection is applied to the equivalent disposal of permanent magnet; firstly, this paper proposed a model of assembled three-subsection permanent magnet model, which is put under the open circuit state, closed circuit state, electromagnetism system and bridge-style magnetic system to research, and deduced the mathematical model of calculating every permanent magnet subsection’s starting point and working point following the equivalent magnetic circuit method theoretically; also we designed the experimental test equipment accordingly; in order to validate the mathematical model, we tested and simulated calculation example by FEM. By comparing various results, it is found that every subsection of permanent magnet in this model has different starting point, and works at the different recoil line in closed circuit, electromagnetism system and bridge-style magnetic system.
     Based on the idea that solving the working point of every permanent magnet’s subsection in the assembled three-subsection permanent magnet model, this paper parted the common used bar-shape permanent magnet in the relays with permanent magnet, built a equivalent magnetic circuit graph of multi-subsection-style permanent magnet model in the open circuit state, made out the solution to calculate every permanent magnet subsection’s starting point of this model. In order to validate this solution, this paper analyzed the permanent model when n is equal to 2, meanwhile, used finite element simulation to validate the veracity of this solution in the permanent model when n is equal to 5.
     In final, this paper analyzed multi-subsection-style permanent magnet model in bridge-style magnetic system, confirmed the physical and equivalent magnetic model of this permanent magnet model; meanwhile, we deduced the mathematical model of calculating working point of every permanent magnet. In the process of solving the working points, this paper analyzed the leakage magnetic conductance of the micro-unite-subsection permanent magnet, basic equation of solving the working points and the port magnetic circuit of the bridge-style magnetic system. Furthermore, according to this mathematical model, the working points of every permanent magnet in calculation example has been calculated, which is validated by the simulation. Meanwhile, the paper researched on electromagnetic forces of this calculation example, the results pointed out that the equivalent disposal of permanent magnet was directly related to the suction’s calculating precision of the relay with permanent magnet.
引文
1周峻峰.继电器及其技术发展态势.机电元件. 2002, 23(2): 61~63
    2白涌如,姚之驹. 2006中国继电器市场研究分析.电器工业. 2006, (7): 8~12
    3朱永庆,吴世湘.军用继电器的发展态势.电子科学技术评论. 2005, (1): 55~56
    4王庚林,刘瑞生.固体继电器的应用技术和发展趋势.电子元器件应用. 2008, 10(10): 74~80
    5金峻.世界继电器市场回顾及展望.机电元件. 2005, 25(2): 56~58
    6唐宝卿,刘雪来,金福群.继电器行业发展形势分析.电子元器件应用. 2000, 2(9): 47~51
    7叶柏盛.日本继电器最新技术动向简析.机电元件. 1991, (2): 54~56
    8 Kunihide Karasawa. Technology in Place for Miniaturization. Enhance Sensitivity of Polarized Relays.JEE. 1989, (11): 58~60
    9 Yoshiharu Yamashita, Hiromitsu Ito, Mitstutoshi Yoshida, Naoto Okihara. Ultra High Sensitive (50mW) Signal Realy. The 45th Annual National Relay Conference. 1997: 4.1~4.9
    10 Werner Johler. RF Performance of Ultra-miniature High Frequency Relays. The 49th IEEE Holm Conference on Electrical Contacts. USA, 2003: 179~189
    11 Johler W, Wijingaard J H. Significant Increase of the Dielectric Performance of Plastic Sealed Telecom Relays. IEEE Holm Conference on Electrical Contacts. 1996: 276~285
    12 Max Hurter. The Development of a High Reliability High G Shock Relay-a New Design Concept. The 31st Annual National Relay Conference. 1983
    13 Hirofumi Saso. Super-Small, High Insulation BA Relay Targets Information Processing Equipment. JEE, 1995, 32(347): 34~39
    14 Evans S A. Static and Dynamic Analysis of a Permanent Magnet Rectilinear Law’s Relay Actuator. Electric Power Applications, IEEE Proceeding. 1999, 146(1): 11~16
    15 Power Line Maintenance Free Saver Wins Golden Prize. News. August 7 1998: 28~29
    16 Single Coil Actuator Promise Saving. Eletrical Review. 1997, 229(8): 8~1
    17付万安,宋宝韫.高压断路器永磁操动机构的研究.中国电机工程学报. 2000, 20(8): 21~26
    18梁慧敏,卢锦凤,刘茂恺.用磁压模型分析极化磁系统的工作原理.机电元件. 1997, (Z1): 22~28
    19 Stocker H. The Use of Permanent Magnets and Adjustment Principles in Miniaturizing Modern Relays. IEEE Transactions on Magnetics. 1984, 20: 1608~1610
    20 Evans S.A, Smith I.R, Kettleborough J.G. Static and Dynamic Analysis of A Permanent Magnet Rectilinear Laws’Relay Actuator. 1999, 146: 11~16
    21梁慧敏,郭成花,翟国富,刘茂恺,王皞,刘筱洲,王立忠.永磁参数对极化磁系统吸合力力矩特性的影响.哈尔滨工业大学学报. 2005, 37(6): 842~844
    22李金龙,梁慧敏,叶雪荣,翟国富.航天电磁继电器吸力特性磁路计算方法.机电元件. 2007, 27(3): 3~6
    23雷圣祖.军用继电器的质量与可靠性.宇航材料工艺. 1995, (2): 54~55
    24王稚惠.密封电磁继电器的可靠性及触点粘结失效分析.哈尔滨工业大学硕士论文. 2007: 1~4
    25梁慧敏,叶雪荣,翟国富.军用电磁继电器容差设计可靠度计算方法.低压电器. 2005, (2): 6~10
    26梁慧敏,叶雪荣,翟国富,王镔,王立忠,王皞.军用电磁继电器容差设计可靠度计算方法的研究. 2004年中国电子学会第十三届电子元件学术论文集. 2004, (3): 55~58
    27翟国富,梁慧敏,许峰,郝燕玲.电磁继电器可靠性容差设计方法的综合分析与讨论.低压电器. 2002, (6): 12~16
    28翟国富,梁慧敏,刘茂恺,谢国强,李远光.电器可靠性容差设计新方法探讨.低压电器. 1999, (4): 9~11
    29佟为明,梁慧敏,刘宁滨,刘茂恺.极化磁系统永久磁铁回复线起始点的求法.电气电子教学学报. 1999, 21(2): 25~28
    30佟为明,赵志衡,刘茂恺.永磁磁路图解法.电气电子教学学报. 1997, 20(4): 65~67
    31 Caspi S, Chiesa L, Ferracin P, Gourlay, Hafalia R, Hinkins R, Lietzke A.F, Prestemon S. Calculating Quench Propagation with ANSYS. 2003, 13: 1714~1717
    32 Li Qiu, Liang Li.Design of the Pretection Inductor for the Power Supply of thePulsed Magnetic Field Facility with ANSYS. International Conference on Electrical Machines and Systems. 2008: 672~674
    33 Han Hu, Xin Qi, Changsong Wang. Finite Element Analysis on Magnetic Field in the Actuator of Giant Magnetostrictive Linear Motor with Ansoft. Industrial Technology. 2008: 1~5
    34 Choi J H, Kim J H, Kim D H, Baek Y S. Design and Parametric Analysis of Axial Flux PM Motors with Minimized Cogging Torque. 2009, 45: 2855~2858
    35佟为明,刘宁滨,刘茂恺,姜守旭.极化磁系统永磁工作点的求解.低压电器. 2000, (4): 12~16
    36刘福贵,杨庆新.三维永久磁铁磁场的标量磁位数值计算.河北工业大学学报. 1997, 26(3): 49~54
    37邹洪超,娄建勇,荣命哲.单线圈单稳态永磁机构接触器三位磁场分析和电磁吸力的计算.低压电器. 2004(3): 12~15
    38孙雨施,王素菊,曲民兴,沈世荛.直流磁系统的计算与分析.国防工业出版社, 1987: 1~3, 53, 54
    39唐任远.现代永磁电机理论与设计.北京:机械工业出版社, 1997: 154~156
    40 N. Sadowski, R. Carlson, A. M. Beckert and J. P. A. Bastos. Dynamic Modeling of a Newly Designed Linear Actuator Using 3D Edge Elements Analysis. IEEE Transactions on Magnetics. 1996, 32(3): 1633~1636
    41 G. Mur. Edge Elements, their Advantages and their Disadvantages. IEEE Transactions on Magnetics. 1994, 30(5): 3552~3557
    42周克定.工程电磁场数值计算的理论方法及应用.高等教育出版社, 1994: 1~10
    43 Enokizono. M, Aoki. M. Application of Stochastic FEM in the Analysis of Magnetic Fields. IEEE Transactions on Magnetics. 1987, 2(6): 535~536
    44 Miyagi. D, Umabuchi. M, Takahashi. N, Tsukamoto. O. FEM Analysis of Effect of Nonlinear Magnetic Property of Substrate on Magnetization Loss in HTS Layer of Coated Conductor. IEEE Transaction on Applied Superconductivity. 2008, 18(2): 1374~1377
    45 Zhi ye D, Jiangjun R, Ying P, Shifeng Y, Yu Z, Yan G, Tianwei L. 3-D FEM Simulation of Velocity Effects on Magnetic Flux Leakage Testing Signals. IEEE Transactions on Magnetics. 2008, 44(6): 1642~1645
    46游一民,陈德桂,罗文科,张敬菽.关于永磁机构中永磁工作点的讨论.高压电器. 2002, 38(4): 39~51
    47洪岗,陈德桂,李兴文,吴锐,刘洪武,耿英三.基于三维磁场分析建立电磁铁等效磁路的研究.西安交通大学学报. 2003, 37(8): 808~811
    48佟为明,王宇红,李凤阁,刘茂恺.决定于极化磁系统工作状态的永磁回复线起始点的探讨.中国电机工程学报. 2001, 21(6): 75~79
    49梁惠敏,翟国富,罗福彪.基于有限元法的极化磁系统永磁回复线起始点的虚拟设计.中国电机工程学报. 2005, 25(9): 147~152
    50王思民.极化磁系统中永磁体处理方法的改进.青岛科技大学学报. 2007, 28(3): 234~236
    51梁慧敏,任万滨,王思民,翟国富.基于三维有限元法的极化磁系统静态吸力特性分析.机电元件. 2005, 25(3): 3~7
    52 Q.L Peng. 2D Field Calculation of Pure Permanent Magnet by Using Current Pair Model. Magnetism and Magnetic Materials. 2007, 126~131
    53 Ki-Chan Kim, Seung-Bin Lim, Dae-Hyun Koo, Ju Lee. The Shape Design of Permanent Magnet for Permanent Magnet Synchronous Motor Considering Partial Demagnetization. IEEE Transactions of Magnetics. 2006, 42(10): 3485~3487
    54 Jerry P. Selvaggi, Sheppard Salon, O-Mun Kwon, and M. V. K. Chari. Calculating the External Magnetic Field from Permant Magnets in Permanent-Magnet Motors-An Alternative method. IEEE Transactions on Magnetics. 2004, 40(5): 3278~3285
    55 J.E. Gould. Permanent Magnet Utilization Criteria in a DC Motor. IEEE Transactions on Magnetics. 1971, 7(2): 295~297
    56 Shoffa V.N, Chicheryukin V.N, Ivakin B.F. A Mathematical Model and a Procedure for Designing the Complex Magnetic System of a Polarized Relay. Elecktrichestvo. 2004, 7: 50~55
    57佟为明,梁慧敏,刘茂恺.永久磁铁的两种工作状态.机电元件. 1998, 18(4): 2-5
    58张冠生.电器理论基础.机械工业出版社, 1993: 238~243, 217, 261, 271
    59 Gao R S, Zhen L, Shao W Z, Hao X P, Sun X Y, Yang L, Wang B Y. Study of Y-ray Irradiation Effect on Permanent Magnets. Journal of Applied Physics. 2008, 103: 07E136-1~07E136-3
    60佟为明,翟国富.低压电器继电器机器控制系统. 2003: 183~184, 185~186
    61 Kezuka E, Masada M, Shigemitsu T, Kato M. The Vertically Poarized Magnetic Field has No Effect on the Content of Pteridine in Mouse Liver. Proceedings of Asia-Pacific Radio Science Conference. 2004: 450~451
    62 E.A. Andrievskii, L.N. Lesnik, Ya.F. Nepokrytyi, G.P. Sheverdin. Design Principles of Apparatus having an Incompletely Closed Magnetic System for Testing Permanent Magnets. Measurement Techniques. 1977, 20(9): 1346~1348
    63 A.I. Korshunov. Constructing a Mathematical Model of a Synchronous Motor with Permanent Magnet on the Rotor. Russian Electrical Engineering. 2009, 80(1): 15~22
    64 B. Hernando, J Olivera, M.L. Sanchez, V.M. Prida, M.J. Perez, J.D. Santos, P. Gorria, F.J. Belzunce. Soft Magnetic Properties, Magnetoimpedance and Torsion-impedance Effects in Amorphous and Nanocrystalline FINEMET Alloys: Comparison between Ribbons and Wires. The Physics of Metal and Metallography. 2006, 102: 13~20
    65邹洪涛,杨永鎏.电工纯铁磁性能热处理介质的比较与应用.黔南民族师范学院学报. 2002, 3: 4~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700