用户名: 密码: 验证码:
氧化铝模板辅助生长一维纳米线阵列及其电学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TCNQ(tetracyanoquinodimethane),全名7,7,8,8-四氰基对苯醌二甲烷,是一种良好的有机电子受体,可以与很多电子给体(如TTF,碱金属或碱金属卤化物,过渡金属,稀土金属等)形成稳定的简单或复合型电荷转移配合物。金属有机配合物M(如Ag,Cu)-TCNQ具有优异的光、电、磁特性,其中Cu-TCNQ、Ag-TCNQ具有良好的开关特性,被认为是理想的分子电子学材料。同时,多孔氧化铝作具有孔洞长径比大、孔径小、透明、绝缘等优点,是辅助生长纳米线阵列的理想模板。
     本论文在多孔氧化铝模板中制备生长了M-TCNQ纳米线阵列和金属铜纳米线阵列,表征了其形貌和结构,并分析了M-TCNQ纳米线阵列的电双稳和场发射特性,主要内容如下:
     制备了多孔氧化铝模板,研究了各项工艺参数对其形貌、结构的影响。以草酸作为电解液,40 V恒压,5℃条件下,可以得到孔径在40-50纳米的多孔氧化铝模板。调节氧化电压和氧化时间可以改变其孔径和孔深。
     在不同的氧化铝模板中生长了Ag-TCNQ和Cu-TCNQ,表征了其形貌,发现采用真空蒸汽输运法在氧化铝模板中生长M-TCNQ纳米线,其填充率达到95%以上。同时XRD测试表明Cu-TCNQ基本上处于电学性能较好的一相(phase I)。在此基础之上,制备了基于Cu-TCNQ纳米线阵列的原型器件。在对器件的电双稳测试中,其高阻态和低阻态电阻比超过10~4,并且有着良好的重复性。器件结构很适合于工业生产,有希望作为高密度存储器件。
     对没有模板限制的Cu-TCNQ纳米线进行了场发射的测试,结果表明Cu-TCNQ纳米线场发射阈值电场强度较低,约为5.0 V/μm(电流密度达到10μA/cm~2时)。测试了纳米线阵列的过载电场。从电流和电压的关系来看,其场发射符合F-N理论模型,场发射性能良好,有希望作为有机阴极材料应用于平板显示。
     在多孔氧化铝模板中,用交流电沉积的方法获得了铜纳米线阵列。形貌表征显示其填充率很高,纳米线尺寸亦很均匀。
TCNQ(tetracyanoquinodimethane) is a kind of electron ecceptor,which can combined with various electron donors such as TTF,alkali metals,transition metals and rare earth metals,to form stable simple/complex charge-transfer complexes. Metal organic complexes(M-TCNQs) possess excellent photic/ electric/ magnetic properties.Due to the unique on-off properties,Cu-TCNQ and Ag-TCNQ are considered as ideal molectronics materials.On the other hand,the properties such as high aspect ratio,small aperture,transparency and isolation make porous anodic alumina become appropriate template for the synthesis of nanowire array.
     In this thesis,M-TCNQ nanowire array and copper nanowire array were synthesized in porous anodic alumina.The morphologies and structures were observed.The properties of electronic bi-stable and field emission of M-TCNQ were also studied.
     Porous anodic alumina was prepared.Parameters in process that would affect the morphology and structure were studied.Oxalic acid was employed as electrolyte and anodic alumina template with channels whose diameters are 40-50 nm can be obtained under DC 40 V and 5℃.By modifying anodic voltage and lasting time, channel diameter and depth could be easily controlled.
     Ag-TCNQ and Cu-TCNQ were synthesized in different anodic alumina templates.Morphology observing shows M-TCNQ nanowires that synthesized by vacuum vapor induced reaction almost fill every channel in templates.XRD test approves that most Cu-TCNQ is in phaseⅠ.Then,proto-type based on Cu-TCNQ nanowire array was fabricated.The on-off ration of resistance reached 104 in electric test and transition is reproducible.The structure is applicable to industry,so it is promising to be served as information storage device.
     Field emission test on Cu-TCNQ nanowires without template showed a low threshold of 5.0 V/μm(when the current density reaches 10μA/cm~2).Overload voltage was also tested.The dependence of emission current density on the electric field follows Fowler-Nordheim relationship.These results indicate that Cu-TCNQ nanowires might be a promising candidate as organic cathode material in FE-based flat panel displays.
     Copper nanowire array was also synthesized in porous anodic alumina via AC electrodeposition.Almost every channel was filled and the diameters of copper nanowires are uniform.
引文
1.施利毅等.纳米材料[M].上海:华东理工大学出版社,2007:5-7
    2.Z.L.Wang,Characterizing the Structure and Properties of Individual Wire-Like Nanoentities;Adv.Mater.2000,12(17),1295-1298;
    3.Jiangtao Hu,Teri Wang Odom,and Charles M.Lieber.Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes[J].Acc.Chem.Res.,1999,32:435-445.
    4.Gibson J.M.Reading and writing with electron beams.Phys.Today,1997,50(10):56-61.
    5.Levenson M.D.;WELCOME TO THE DUV REVOLUTION;Solid State Technol.;1995,38(9):81-81.
    6.Y.Xia,et al.Unconventional Methods for Fabricating and Patterning Nanostructures[J].Chem.Rev.1999,99:1823-1848
    7.姚彦,电荷转移型金属有机配合物纳米线的研究[D].上海:复旦大学,2003
    8.Pu L,Bao XM,Zou JP,et al.;Individual alumina nanotubes;Angew.Chem.Int.Ed.,2001,40(8):1490-1493.
    9.Martin CR.;Membrane-based synthesis ofnanomaterials;Chem.Mater.,1996,8(8):1739-1746.
    10.M.S.Sander,A.L.Prieto,R.Gronsky,T.Sands,A.M.Stacy;Fabrication of High-Density,High Aspect Ratio,Large-Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates;Adv.Mater.;2002,14(9):665-6671.
    11.Y Cui,C M Lieber;Functional nanoscale electronic devices assembled using silicon nanowire building blocks;Science,2001,291(5505):851-853.
    12.Steinhart M,Wendorff JH,Greiner A,et al.;Polymer nanotubes by wetting of ordered porous templates;Science,2002,296(5575):1997-1997.
    13.Ai SF,Lu G,He Q,et al.;Highly flexible polyelectrolyte nanotubes;J.Am.Chem.Soc.,2003,125(37):11140-11141.
    14.王臻,力虎林.高等学校化学学报,2002,23(4):721-723
    15.Brieler F J,Froba M,Chen L M,et al.;Ordered arrays of Ⅱ/Ⅵ diluted magnetic semiconductor quantum wires:Formation within mesoporous MCM-41 silica;Chem.Eur.J.,2002,8(1):185-194.
    16. Haifeng Yang, Qihui Shi, Bozhi Tian, Qingyi Lu, Feng Gao, Songhai Xie, Jie Fan, Chengzhong Yu, Bo Tu, and Dongyuan Zhao. One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium Oxide Nanowire Arrays from Mesostructured Frameworks [J]. J . Am. Chem. Soc., 2003, 125: 4724-4725
    17. Kamata K, Lu Y, Xia YN ; Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores ; J. Am. Chem. Soc., 2003 , 125(9): 2384-2385.
    18. AJAYAN PM, STEPHAN O, REDLICH P, et al.; CARBON NANOTUBES AS REMOVABLE TEMPLATES FOR METAL-OXIDE NANOCOMPOSITES AND NANOSTRUCTURES; Nature, 1995, 375(6532): 564-567.
    19. Caruso RA, Antonietti M.; Sol-gel nanocoating: An approach to the preparation of structured materials ; Chem. Mater., 2001, 13 (10): 3272-3282.
    20. B C Satishkumar , AGovindaraj , E M Vogl et al . Oxide nanotubes prepared using carbon nanotubes as templates ; J. Mater. Res., 1997 ,12(3): 604-609.
    21. B C Satishkumar , AGovindaraj , M Nath et al . Synthesis of metal oxide nanorods using carbon nanotubes as templates; J. Mater. Chem.; 2000, 10(9) : 2115-2119.
    22. C N R Rao , B C Satishkumar , A Govindaraj; Zirconia nanotubes ; Chem. Commun., 1997, 16 : 1581-1582.
    23. Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie; Oriented Silicon Carbide Nanowires: Synthesis and Field Emission Properties; Adv. Mater., 2000, 12(16): 1186-1190.
    24. Yingjiu Zhang, Jing Zhu, Qi Zhang, Yunjie Yan, Nanlin Wang, Xiaozhong Zhang; Synthesis of GeO2 nanorods by carbon nanotubes template; Chem. Phys. Lett., 2000 , 317(3-5): 504-509.
    25. Patzke GR, Krumeich F, Nesper R; Oxidic nanotubes and nanorods - Anisotropic modules for a future nanotechnology ; Angew. Chem. Int. Ed., 2002, 41(14): 2446-2461.
    26. Gao M, Huang SM, Dai LM, et al. ; Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers ; Angew. Chem. Int. Ed. , 2000, 39(20): 3664-3667.
    27. Garcia-Martinez JC, Scott RWJ, Crooks RM; Extraction of monodisperse palladium nanoparticles from dendrimer templates ; J. Am. Chem. Soc; 2003, 125(37): 11190-11191.
    28. Crooks RM, Zhao MQ, Sun L, et al.; Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis ; Acc. Chem. Res., 2001 , 34(3): 181-190.
    29. Koh K, Ohno K, Tsujii Y, et al.; Precision synthesis of organic/inorganic hybrid nanocapsules with a silanol-functionalized micelle template ; Angew. Chem. Int. Ed., 2003, 42(35): 4194-4197.
    30. R. A. Caruso, J. H. Schattka, A. Greiner; Titanium Dioxide Tubes from Sol-Gel Coating of Electrospun Polymer Fibers; Adv. Mater., 2001 , 13(20): 1577-1579.
    31. P Hoyer; Formation of a titanium dioxide nanotube array; Langmuir, 1996, 12(6): 1411-1413.
    32. S Sun , C B Murray , D Weller et al; Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices; Science, 2000, 287(5460): 1989-1992.
    33. Y Lin , H Skaff , T Emrick et al . Nanoparticle assembly and transport at liquid-liquid interfaces; Science , 2003 , 299 (5604): 226-229.
    34. Martin Moller, Joachim P. Spatz, Arno Roescher; Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films - size and interparticle distance control in monoparticulate films; Adv. Mater., 1996, 8(4): 337-340.
    35. Spatz JP, Mossmer S, Hartmann C, et al.; Ordered deposition of inorganic clusters from micellar block copolymer films ; Langmuir, 2000, 16(2):407-415.
    36. Lopes WA, Jaeger HM ; Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds ; Nature, 2001 , 414(6865): 735-738.
    37. Patolsky F, Weizmann Y, Lioubashevski O, et al.; Au-nanoparticle nanowires based on DNA and polylysine templates; Angew. Chem. Int. Ed. , 2002 , 41(13) : 2323-2327.
    38. Liang HJ, Angelini TE, Ho J, et al.; Molecular imprinting of biomineralized CdS nanostructures: Crystallographic control using self-assembled DNA-membrane templates; J. Am. Chem. Soc., 2003 ,125(39):11786-11787.
    39. Kanaras AG, Wang ZX, Bates AD, et al.; Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of DNA/gold systems; Angew. Chem. Int. Ed., 2003 , 42(2): 191-1941
    40. Shenton W, Pum D, Sleytr UB, et al. ; Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers; Nature, 1997, 389(6651) : 585-587.
    41. Braun E, Eichen Y, Sivan U, et al. ; DNA-templated assembly and electrode attachment of a conducting silver wire ; Nature , 1998 , 391(6669) :775-778.
    42. Douglas T, Young M.; Host-guest encapsulation of materials by assembled virus protein cages ; Nature , 1998 , 393(6681): 152-155.
    43. S. Behrens, K. Rahn, W. Habicht, K.-J. Bohm, H. Rosner, E. Dinjus, E. Unger; Nanoscale Particle Arrays Induced by Highly Ordered Protein Assemblies ; Adv. Mater., 2002 , 14(22): 1621-1625.
    44. Klaus T, Joerger R, Olsson E, et al. ; Silver-based crystalline nanoparticles, microbially fabricated; Proc. Natl. Acad. Sci. USA; 1999, 96(24): 13611-13614.
    45. Kuiyang Jiang, Ami Eitan, Linda S. Schadler, Pulickel M. Ajayan, Richard W. Siegel, Nicole Grobert, Martine Mayne, Marisol Reyes-Reyes, Humberto Terrones, and Mauricio Terrones; Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes ; Nano Lett., 2003 , 3(3): 275-2771
    46. Mukherjee P, Ahmad A, Mandal D, et al.; Bioreduction of AuC14- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed; Angew. Chem. Int. Ed., 2001 , 40(19): 3585-3588.
    47. Li Z, Chung SW, Nam JM, et al.; Living templates for the merarchical assembly of gold nanoparticles ; Angew. Chem. Int. Ed., 2003 , 42(20): 2306-2309.
    48. Price RR, Dressick WJ, Singh A,; Fabrication of nanoscale metallic spirals using phospholipid microtubule organizational templates ; J. Am. Chem. Soc. , 2003 , 125(37): 11259-11263.
    49. 张立德, 牟季美著. 纳米材料和纳米结构. 北京:科学出版社, 2001:15-17
    50. X. Duan, C. M. Lieber; General Synthesis of Compound Semiconductor Nanowires ; Adv. Mater., 2000,12(4): 298-302.
    51. BURFORD RP, TONGTAM T; CONDUCTING POLYMERS WITH CONTROLLED FIBRILLAR MORPHOLOGY; J. Mater. Sci. ,1991, 26(12): 3264-3270.
    52. Cai Z H, Martin C R. ELECTRONICALLY CONDUCTIVE POLYMER FIBERS WITH MESOSCOPIC DIAMETERS SHOW ENHANCED ELECTRONIC CONDUCTIVITIES ; J. Am. Chem. Soc, 1989, 111(11): 4138-4139.
    53. Cao H Q, Xu Z, Sheng D, et al. An array of iron nanowires encapsulated in polyaniline nanotubules and its magnetic behavior ; J. Mater. Chem., 2001, 11(3): 958-960.
    54. H. Q. Cao, Z. Xu, H. Sang, D. Sheng, C. Y. Tie; Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules;Adv.Mater.,2001,13(2):121-123.
    55.Cao H Q,Tie C Y,Xu Z.Jiang M H,Hai S;Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior;Appl.Phys.Lett.,2001,78(11):1592-1595.
    56.郑志新,席燕燕,董平,黄怀国,周剑章,吴玲玲,林仲华.ZnO-聚苯胺同轴纳米线及其列阵的制备和表征[J].电化学,2002,2:154-159.
    57.Cepak V M,Hulteen J C,Guangli Che,et al.;Chemical strategies for template syntheses of composite micro-and nanostructures;Chem.Mater.,1997,9(5):1065-1067.
    58.Wu C.G.,Bein T.;CONDUCTING POLYANILINE FILAMENTS IN A MESOPOROUS CHANNEL HOST;Science,1994,264(5166):1757-1759.
    59.Wu C.G.,Bein T.;CONDUCTING CARBON WIRES IN ORDERED,NANOMETER-SIZED CHANNELS;Science,1994,266(5187):1013-1014.
    60.Kyotani T,Tsai L F,Tomita A.;Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film;Chem.Mater.;1996,8(8):2109-2113.
    61.Masuda H,Fukuda K.ORDERED METAL NANOHOLE ARRAYS MADE BY A 2-STEP REPLICATION OF HONEYCOMB STRUCTURES OF ANODIC ALUMINA;Science,1995,268(5216):1466-1468.
    62.Lakshami B B,Dorhout P K,Martin C R.;Sol-Gel Template Synthesis of Semiconductor Nanostructures.Chem.Mater.,1997,9(3):857-862.
    63.Li M K,Wang C W,Li H L.;Synthesis of Ordered Si Nanowire Arrays in Porous Anodic Aluminum Oxide Templates.Chinese Science Bulletin,2001,46(21):1793-1796.
    1. Parkhutik V. P, Sokol V, Shershul'skii V I, Utkina E, Vorob'eva A. Hopping electrical conductivity in the aluminum-anodic alumina-aluminum system [J]. Physical Status Solid A: Applied Research, 1989, 114(1): 33-36.
    2. Shimizu K, Thompson G E, Wood G C. The duplex nature of anodic barrier films formed on aluminum in aqueous borate and borate-glycol solutions [J]. Thin Solid Films, 1981, 85(1): 53-59.
    3. Parkhutik V P. The initial stages of aluminium porous anodization studied by Auger electron spectroscopy [J]. Corros. Sci., 1986, 26: 295-310
    4. Thompson G E, Furneaux R C, Wood G C, Richardson J A, Goode J S. Nucleation and growth of porous anodic films on aluminum [J]. Nature, 1978, 272(5652), 433-435
    5. OpSulllivan J P, Wood G C. The morphology and mechanism of formation of porous anodic films on aluminum [A]. In: Mathematical and Physical Sciences. Proceedings of the royal society of London. Series A [C]. 1970: 317- 5112543.
    6. Hoar T P, Yahalom J. The initiation of pores in anodic oxide films formed on aluminum [J]. Journal of Electrochemical Society, 1963, 110:6152621.
    7. Parkhutik V P, Makushok Yu E and Shershul'skii V I. Space charge effects in anodic oxide growth on aluminum [A]. In: Alum. Surf. Treat. Technology. Proceedings - Electrochemical Society (1986) [C]. 1986: 86-11, 406-417.
    8. Parkhutik V P and Shershul'skii V I. The modeling of d.c. conductivity of thin disordered dielectrics [J]. J. Phys. D: Appl. Phys., 1986, 19: 623-641
    9. Zhiyong Fan, Nanowire Based Nanoelectronics [D]. Irvine: University of California, Irvine, 2006:
    1 马树人编著. 结构化学[M]. 北京:化学工业出版社, 2000: P172
    2. Watannabe N, Iwasa Y, Koda T. Negative-resistance effect in rubidium tetracyanoquinodimethane (Rb-TCNQ) [J]. Phys. Rev. B, 1991,44:11111.
    3. Kumai R, Okimoto Y, Tokura Y. Current-induced insulator-metal transition and pattern formation in an organic charge-transfer complex[J] Science., 1999, 284:1645-1647.
    4. Robert A. Heintz, Hanhua Zhao, Xiang Ouyang, Giulio Grandinetti, Jerry Cowen, and Kim R. Dunbar. New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior[J]. Inorg. Chem. 1999, 38, 144-156.
    5. Loreto Ballester, Angel Gutierrez, M. Felisa Perpinan, M. Teresa Azcondo. Supramolecular architectures in low dimensional TCNQ compounds containing nickel and copper polyamine fragments[J]. Coordination Chemistry Reviews. 1999,190-192:447-470.
    6. O'Kane, S.A., Clerac, R., Zhao, H.H, Ouyang X., Galan-Mascaros, J.R., Heintz R., Dunbar K.R.,. New Crystalline Polymers of Ag(TCNQ) and Ag(TCNQF4): Structures and Magnetic Properties [J]. J. Solid State Chem., 2000, 152,159-173.
    7. Shields L. Crystal Structure of AgTCNQ and Contrasting Magnetic Properties of Electrochemically Synthesised AgTCNQ and CuTCNQ (7788-Tetracyanoquinodimethane) [J]. J.Chem.Soc, Faraday Trans, 2., 1985, 81, 1-9.
    8. Melby R L, Harder R J, Hertler W R et al Substituted Quinodimethans. II. Anion-radical Derivatives and Complexes of 7, 7, 8, 8-Tetracyanoquinodimethan [J]. J. Am. Chem. Soc. 1962, 84, 3374-3387
    9. Shields L. Crystal Structure of AgTCNQ and Contrasting Magnetic Properties of Electrochemically Synthesized AgTCNQ and CuTCNQ (7, 7, 8, 8-Tetracyanoquinodimethane) [J]. J. Chem. Soc. Faraday Trans, 2., 1985, 81, 1-9
    10. Y96| O'Kane, S.A., Clerac, R., Zhao, H.H, Ouyang X., Galan-Mascaros, J.R., Heintz R., Dunbar K.R., New Crystalline Polymers of Ag(TCNQ) and Ag(TCNQF4): Structures and Magnetic Properties [J]. J. Solid State Chem., 2000, 152, 159-173
    11.Robert A.Heintz,Hanhua Zhao,Xiang Ouyang,Giulio Grandinetti,Jerry Cowen,and Kim R.Dunbar.New Insight into the Nature of Cu(TCNQ):Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior[J].Inorg.Chem.1999,38,144-156
    12.Shuqing Sun,Peiji Wu,Daoben Zhu.The preparation,characterization of amorphous Cu-TCNQ film with a low degree of charge-transfer DCT and its electric switching properties[J].Thin Solid Films 1997,301,192-196莫晓亮.有机电子器件的基础研究[D].上海:复旦大学,2002
    13.蔡亲佳,陈国荣,莫晓亮,范智勇,顾海华,姚彦,杨剑,华中一,徐华华,K(TCNQ)薄膜的制备及其电双稳特性[J].真空科学与技术,2001,21:364-367
    14.a.陈国荣,莫晓亮,一种金属有机配合物的微型管状晶体结构及制备[P].中国专利:02137111.3(申请号);
    b.陈国荣,莫晓亮,一种金属有机配合物纳米线及其制备方法[P].中国专利:02151236.1(申请号);
    c.陈国荣,莫晓亮;一种可用于平面显示的场致发射纳米材料[P].中国专利:03116285.1(03/4/10)(申请号).
    15.R A Heinz,H Zhao,X Ouyang,G Grandinetti,J Cowen,K R Dunbar.New Insight into the Nature of Cu(TCNQ):Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior[J].Inorg.Chem.,1999,38,144-156
    16.Xiao-Liang Mo,Guo-Rong Chen,Qin-Jia Cai,Zhi-Yong Fan,Hua-Hua Xu,Yan Yao,Jian Yang,Hai-Hua Gua and Zhong-Yi Hua.Preparation and electrical/optical bistable property of potassium tetracyanoquinodimethane thin films.Thin Solid Films,2003,436(2):259-263.
    17.Z Y Hua and G R Chen.A new material for optical,electrical and electronic thin film memories.Vacuum,1992,43,1019-1023.
    18.Chunnuan Ye,Guanying Cao,Fang Fang,Huahua Xu,Xiaoyan Xing,Dalin Sun,,and Guorong Chen.Morphology investigation of Ag(TCNQ) synthesized by the vapor-transport reaction method.Micron,2005,36:461-464.
    19.Ye Chun-Nuan,Cao Guan-Ying,Mo Xiao-Liang,Fang Fang,Xing Xiao-Yan,Chen Guo-Rong,Sun Da-Lin.Growth Mechanism of Vertically Aligned Ag(TCNQ) Nanowires.Chinese Phys.Lea.,2004,21,1787-1790.
    20.Zhiyong Fan,Xiaoliang Mo,Chengfei Lou,Yan Yao,Dawei Wang,Guorong Chen,Lu,J.G..Structures and electrical properties of Ag-tetracyanoquinodimethane organometallic nanowires. IEEE Transactions on nanotechnology, 2005, 4, 238-241.
    1.薛增泉,吴全德.电子发射和电子能谱[M].北京:北京大学出版社,1993:64.
    2.Takashi Sugino,Seiji Kawasaki.Electron emission from boron nitride coated Si field emitters[J].Appl.Phys.Lett.,1997,71:2704-2706.
    3.I Alexandrou,E.Kymakis,G.A.J.Amaratunga.Effect of cantilever-sample interaction on piezoelectric force microscopy[J].Appl.Phys.Lett.,2002,80:1453.
    4.K.R.Shoulders.AC Plasma Display[J].Adv.Computer.,1961,2:135.
    5.C.A.Sprindt.A thin film field emission cathode[J].J.Appl.Phys,1968,39:3504-3505.
    6.Jiann-Jong Chia,Chi-Chung Kei,Tsong-P.Perng,and Way-Seen Wang,Organic semiconductor nanowires for field emission[J].Advanced Materials,2003,15:1361-1364.
    7.Lee,Y.-H.,Choi,C.-H.,Jang,Y.-T.,Kim,E.-K.,Ju,B.-K.Tungsten nanowires and their field electron emission properties[J].Appl.Phys.Lett,2002,81:745747.
    8.Wong,K.W.,Zhou,X.T.,Au,F.C.K.,Lai,K.L.Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition[J].Appl.Phys.Lett,1999,75:2918-2920.
    9.Li,S.Y.,Lee,C.Y.,Tseng,T.Y.Copper-catalyzed ZnO nanowires on silicon(100)grown by vapour-liquid-solid process[J].J.Cryst.Growth.,2003,247:357-362.
    10.Tondare,V.N.,Balasubramanian,C.,Bhoraskara,S.V.Field emission from open ended aluminum nitride nanotubes[J].Appl.Phys.Lett,2002,80:4813-4815.
    11.Chen,J.,Deng,S.Z.,Ge,W.Field emission from crystalline copper sulphide nanowire arrays.Appl.Phys.Lett,2002,80:3620-3622.
    1. Clare Yong, Bei Chao Zhang, Chim Seng Seet, Alex See, Lap Chan, John Sudijono, San Leong Liew, Chin-Hang Tung, and Hua Chun Zeng. Cool Copper Template for the Formation of Oriented Nanocrystalline -Tantalum [J]. J. Phys. Chem. B, 2002, 106(48): 12 366
    2. Chang Y, Lye ML, Zeng H. C. Large-scale synthesis of high quality ultra long copper nanowires [J]. Langmuir.2005, 21 (9):3746-3748
    3. A. Jagminiene, G. Valincius, A. Riaukaite and A. Jagminas. The influence of the alumina barrier-layer thickness on the subsequent AC growth of copper nanowires [J]. Journal of Crystal Growth, 2005, 274(1): 622
    4. Konishi Y, Motoyama M, Matsushima H, et al.Electrodeposition of Cu nanowire arrays with a template [J]. Journal of Electroanalytical Chemistry, 2003, 559:149-153.
    5. Wang J G, Tian M L, Favier F, et al. Microtwinned in template-synthesized single-crystal metal nanowires [J]. J. Phys. Chem. B, 2004, 108(3): 841—845
    6. Mingliang Tian, Jinguo Wang, James Kurtz, Thomas E. Mallouk, and M. H. W. Chan.Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism [J]. Nano Letters, 2003, 3(7): 919
    7. Jessensky, F. Muller, and U. Gosele. Self-organized formation of hexagonal pore arrays in anodic alumina [J]. Appl. Phys. Lett. 1998, 72: 1173.
    8. G. Sauer, G. Brehm, and S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele. Highly ordered monocrystalline silver nanowire arrays [J]. J. Appl. Phy., 2002, 91(5), 3243

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700