用户名: 密码: 验证码:
大刚度试件拟动力试验方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟动力试验是评价和研究结构抗震性能的重要手段。随着经济和科技的发展,现代工程结构越来越趋向于大型化和复杂化。传统的缩尺模型试验已经难以满足科学研究与工程实际的需要,大比例尺甚至足尺模型试验日益受到重视,因而试件的刚度也往往比较大。在拟动力试验中,电液伺服作动器常采用位移控制工作模式。但是由于作动器自身的位移控制分辨率有限,在进行大刚度试件的位移控制加载时,将难以完成小位移命令的控制加载,得到的拟动力试验结果不可靠。因此,开展大刚度试件的拟动力试验方法研究是十分必要的,这对丰富和完善传统结构抗震试验方法具有重要意义。
     本文以大刚度试件为研究对象,针对大刚度试件的拟动力试验方法开展研究,主要研究工作及成果如下:
     (1)为了能清晰地界定大刚度试件的范畴,从试验角度出发提出了大刚度试件的判别公式,为试验方案的合理制定提供依据。设计制作了一个单层单开间的足尺砖混结构模型用以模拟一个单层十个开间的原型结构。首先对该模型所用的材料进行了力学性能试验,然后进行了该试验模型在大震激励下的拟动力试验,用来揭示该类型结构的抗震性能。试验结果表明该类型结构具有很好的抗震性能,要超出我国抗震规范中“大震不倒”的设防目标。最后对该模型在小震激励下的拟动力试验进行数值模拟,结果表明采用位移控制加载的试验方法将难以完成此大刚度模型在小震激励下的拟动力试验。
     (2)进行了小位移命令的控制加载试验,进一步阐述了位移控制加载方法存在的问题。为此,提出了位移与力混合控制的拟动力试验方法,该方法引入了外置的高精度位移传感器来弥补作动器自身位移控制分辨率不足的缺点。首先分析了该方法中的比例-积分位移控制器的稳定条件和稳态误差,然后介绍了位移控制器参数的实用设计方法,最后从数值模拟和试验验证的角度阐述了该方法的可行性和有效性。研究表明,该方法可以很好地解决大刚度试件位移控制加载存在的问题。
     (3)由于大刚度试件的反力通常会较大,电液伺服作动器更适合采用力控制加载模式。鉴于此,提出了基于力控制加载的等效力控制方法。等效力控制方法是一种基于隐式积分方法的采用力反馈控制代替数值迭代的拟动力试验方法。首先分析了采用比例-积分等效力控制器时等效力控制回路的稳定条件和稳态误差,然后从数值模拟和真实试验验证了该方法的可行性和有效性。结果表明,对于大刚度试件该方法要优于基于位移控制的等效力控制方法。
     (4)为了融合力控制模式和位移控制模式的优点,并在拟动力试验中实现两种模式的自动切换,提出了基于位移正反馈的力与位移切换控制方法。首先从理论角度分析了切换控制过程,然后从数值模拟和试验角度验证了该方法的可行性和有效性。研究结果表明,该方法能很好地实现力与位移控制模式之间自动而平滑的切换,可以应用到大刚度试件拟动力试验中。
Pseudo-dynamic (PSD) testing is an important tool to evaluate and studyseismic performance of structures. With the development of economy andtechnology, modern engineering structures become much larger and more complexand the traditional scaled model tests cannot satisfy the needs of the scientificresearch and engineering applications any more. Therefore, large-scale evenfull-scale model tests have obtained increasingly attention in structural experimentalengineering, in which the stiffness of the test specimen is usually very large.However, owing to the limited resolution of the displacement control of the actuator,it may be difficult to impose small displacement commands on large stiffnessspecimens in displacement control, and hence reliable PSD test results are also hardto attain. Thus, it is necessary to study the PSD testing method for the large stiffnessspecimens, which is of great significance in enriching and improving the traditionalseismic test methods.
     This study focuses on problems of PSD testing for large stiffness specimens.Main work and finding are as follows:
     1. A discriminate formula defining the range of large stiffness specimens isproposed from the view point of tests, which can be used to establish a reasonabletest plan. A full-scale single-storey single-bay masonry model is fabricated tosimulate a single-layer ten-bay original structure. At first, the mechanical propertytest of the structural material is carried out. Then, the PSD test of this model underlarge earthquake excitation is performed to explore its seismic performance. Resultsshow that this kind of structures has excellent seismic behavior that greatly exceedsthe seismic precautionary criterion under the rare earthquake attack of our country.Finally, numerical simulations of the PSD test of this model are performed. Resultsshow that PSD tests of large stiffness specimens under small earthquake excitationwith displacement control is difficult to accomplish.
     2. In order to clearly further demonstrate difficulties in displacement control,loading tests of small displacements are carried out. A mixed displacement-forcecontrol method is presented, which brings a high-resolution sensor into thedisplacement control loop to circumvent insufficient accuracy of the loading devices.The stability and steady state error of this method with a proportional-integraldisplacement controller are analyzed, and then a practical method for designingparameters of the displacement controller is introduced. Finally, the feasibility andeffectiveness of this method for tests of large stiffness specimens is verified by numerical simulations and real experiments. Research shows that this particularapproach can well resolve problems in displacement control of large stiffnessspecimens.
     3. The reaction force of large stiffness specimens is usually larger even at asmall displacement response and thus force control mode is more suitable forhydraulic-servo actuators. For this reason, force control mode of actuators isproposed to incorporate to the equivalent force (EF) control method, which is a PSDmethod based on an implicit integration algorithm replacing numerical iteration withforce feedback control. The stability condition and steady state error of the outerloop with a proportion-integration EF controller are analyzed. Numericalsimulations and real experiments are performed to verify the feasibility andeffectiveness of this method. Results show that this method is superior to the EFcontrol method with displacement control of actuators.
     4. A force-displacement switching control method based on the positivedisplacement feedback loop is proposed in order to combine the advantages of theforce control mode and the displacement control mode and to accomplish automaticswitching in PSD. Firstly, the switching process is theoretically analyzed. Numericalsimulations and test results demonstrate that this method can provide automatic andsmooth switching between force control and displacement control, which can bewell applied to the PSD with large stiffness specimens.
引文
[1]胡聿贤.地震工程学[M].北京:地震出版社,2006:1-3.
    [2]邱法维,钱稼茹,陈志鹏.结构抗震实验方法[M].北京:科学出版社,2000:1-78.
    [3]宗周红,陈亮,黄福云.地震模拟振动台台阵试验技术研究及应用[J].结构工程师,2011,27, sup:6-14.
    [4]将华戈,闫维明,李力,等.3000kN电液伺服阻尼器试验系统组成与应用[J].结构工程师,2011,27, sup:22-26.
    [5]陈利民,李振宝,周宏宇,等.40000kN多功能电液伺服加载试验系统[J].结构工程师,2011,27, sup:27-30.
    [6]纪金豹,李晓亮,闫维明,等.九子台地震模拟振动台台阵系统及应用[J].结构工程师,2011,27, sup:31-36.
    [7]蔡新江,田石柱.振动台试验方法的研究进展[J].结构工程师,2011,27,sup:42-46.
    [8]中华人民共和国行业标准.建筑抗震试验方法规程(JGJ101-96)[S].北京:中国建筑工业出版社,1997.
    [9] R. T. Leon, G. G. Deierlein. Considerations for the Use Quasi-static Testing[J].Earthquake Spectra,1996,12(1):87-109.
    [10] T Kabeyasawa. Experimental Study on Slip Behavior of the Vertical Joints inMulti-storey Precast Shear Walls[J]. Transactions of Japan Concrete Institute,1993,15:471-478.
    [11] K Takanashi. Experimental Behavior of Multi-storey Steel Frames[J].Construction of Steel Research,1994,29:175-189.
    [12] K Morita. Structural Behavior of2Bay2Storey Steel Frame Connected withSemi-rigid Connection[J]. Journal of Structure Construction Engineering, AIJ,No.473, July1995:197-205.
    [13]赵刚,潘鹏,聂建国,等.基于力和位移混合控制的多自由度结构拟静力实验方法研究[J].结构工程师,2011,27, sup:37-41.
    [14] K Kobayashi. Study on the Restoring Force Characteristics of RC Colomn toBi-directional Deflection History[C]. Pro. Of Eighth WCEE, San Francisco,Vol.6,1984:537-544.
    [15] S. S. Low, J. P. Moehle. Experimental Study of Reinforced Concrete ColomnSubjected to Multi-axial Loading[R]. Report No. UCB/EERC-87/14,University of California, Berkeley, California,1987.
    [16]孙飞飞,顾祥林,沈祖炎,等.双向地震作用下钢筋混凝土柱的损伤累积试验研究[R].1997年度工作报告,国家基础性重大项目《重大土木与水利工程安全性与耐久性的基础研究》,课题编号4.1,1997年12月.
    [17]李国强,沈祖炎.钢结构框架体系弹性及弹塑性分析与计算理论[M].上海:上海科学出版社,1998:28-64.
    [18]邱法维.结构抗震实验方法进展[J].土木工程学报,2004,37(10):19-27.
    [19]邱法维,潘鹏.结构拟静力加载实验方法及控制[J].土木工程学报,2002,35(1):1-5.
    [20]邱法维,潘鹏,宋贻焱,等.结构多维拟静力加载实验方法及控制[J].土木工程学报,2001,34(2):32-38.
    [21]邱法维,杜问博,刘中田,等.结构在复杂加载路径下的拟静力加载实验方法及控制[J].土木工程学报,2003,36(12):8-13.
    [22] Khalid M. Mosalam, Richard N. White, Peter Gergely. Static response ofinfilled frames using quasi-static experimentation[J]. Journal of StructuralEngineering, November1997:1462-1469.
    [23] M. D. White, N. Jones, W. Abramowicz. A theoretical analysis for thequasi-static axial crushing of top-hat and double-hat thin-walled sections[J].International Journal of Mechanical Sciences,1999,41:209-233.
    [24] H.-N. Li, J.-W Zhang, L. Liu. Seismic Behavior of Insulated Hollow-brickCavity Walls Using Quasi-static Experimentation[J]. Society for ExperimentalMechanics,2004,44(4):396-406.
    [25] S. McKown, Y. Shen, W. K. Brookes, et al.. The quasi-static and blast loadingresponse of lattice structures[J]. International Journal of Impact Engineering,2008,35:795-810.
    [26]尚晓江,肖从真,王翠坤,等.混合结构静力弹塑性分析与拟静力试验对比[J].工程抗震与加固改造,2009,31(1):64-69.
    [27] T. M. Roberts, T. G. Hughes, V. R. Dandamudi, et al.. Quasi-static and hightcycle fatigue strength of brick masonry[J]. Construction and BuildingMaterials,2006,20:603-614.
    [28] B. P. DiPaolo, J.G. Tom. A study on an axial crush configuration response ofthin-wall, steel box components: The quasi-static experiments[J].International Journal of Solids and Structures,2006,43:7752-7775.
    [29]戴绍斌,张亮权,黄俊.混合结构中钢梁与混凝土墙刚性节点的拟静力试验[J].武汉大学学报(工学版),2008,41(1):72-76.
    [30]司炳君,李宏男,王东升.基于位移设计的钢筋混凝土桥墩抗震性能试验研究(I):拟静力试验[J].地震工程与工程振动,2008,28(1):123-129.
    [31]李兵,李宏男,曹敬党.钢筋混凝土高剪力墙拟静力试验[J].沈阳建筑大学学报(自然科学版),2009,25(2):230-234.
    [32]奉杰超,尚守平,刘沩等.空斗墙墙片的拟静力试验研究[J].铁道科学与工程学报,2009,6(3):31-35.
    [33]李兵,李宏男.钢筋混凝土低剪力墙拟静力试验及滞回模型[J].沈阳建筑大学学报(自然科学版),2010,26(5):869-874.
    [34]黄浩华.地震模拟振动台的发展情况介绍[J].世界地震工程,1986:47-51.
    [35]方重.模拟地震振动台的近况及其发展[J].世界地震工程,1999,15(2):89-96.
    [36]王燕华,程文襄,陆飞等.地震模拟振动台的发展[J].工程抗震与加固改造,2007,29(5):53-56.
    [37] D. P. Stoten, E. G. Gomez. Recent application results of adaptive control onmultiaxis shaking tables[A]. Seismic Design Practice into the NextCentury-Research and Application[C],1998:381-387.
    [38] D. P. Stoten, N. Shimizu. The feed forward minimal control synthesisalgorithm and its application to the control of shaking tables[J]. Journal ofSystems and Control Enginnering,2007,221(12):423-444.
    [39] R. F. Nowak, D. A. Kusner, R. L. Larson, et al.. Utilizing Modern Digital SignalProcessing for Improvement of Large Scale Shaking Table Performance[C].Proceedings of12WCEE, USA,2000.
    [40] J. P. Conte, T. L. Trombetti. Linear Dynamic Modeling of a Uni-axialservo-hydraulic shaking table system[J]. Earthquake Engineering and StructuralDynamics,2000,29:1375-1404.
    [41] Y. Dozona, T. Horiuchi, H. Katsumata, et al.. Shaking-table Control by Real-timeCompensation of the Reaction Force Caused by a Nonlinear Specimen[J]. Journalof Pressure Vessel Technology,2004,126:122-127.
    [42] S. A. Neild, D. P. Stoten, D. Drury, et al.. Control Issues Relating to Real-timeSubstructuring Experiments Using a Shaking Table[J]. Earthquake Engineeringand Structural Dynamics,2005,34(9):1171-1192.
    [43] Y. Tagawa, K. Kajiwara. Controller development for the E-Defense shakingtable[C]. Proceedings of the Institution of Mechanical Engineers, Part I: Journalof Systems and Control Engineering,2007,221(2):171-181.
    [44]李振宝,唐贞云,纪金豹.地震模拟振动台三参量控制算法超调修正[J].振动与冲击,2010,29(10):211-215.
    [45] Mauro Dolce, Donatello Cardone, Felice C. Ponzo, et al.. Shaking table tests onreinforced concrete frames without and with passive control systems[J].Earthquake Engineering and Structural Dynamics,2005,34:1687-1717.
    [46] Chiun-Lin Wu, Wu-Wei Kuo, Yuan-Sen Yang, et al.. Collapse of a nonductileconcrete frames: Shaking table tests[J]. Earthquake Engineering and StructuralDynamics,2009,38:205-224.
    [47] Pierino Lestuzzi, Hugo Bachmann. Displacement ductility and energy assessmentfrom shaking table tests on RC structural walls[J]. Engineering Structures,2007,29:1708-1721.
    [48] Omid Rezaifar, M. Z. Kabir, M. Taribakhsh, et al.. Dynamic behavior of3D-panelsingle-storey system using shaking table testing[J]. Engineering Structures,2008,30:318-337.
    [49] C. S. Tsai, Po-Ching Lu, Wen-Shin Chen, et al.. Finite element formulation andshaking table tests of direction-optimized-friction-pendulumsystem[J].Engineering Structures,2008,30:2321-2329.
    [50] Yi-Hsuan Tu, Tsung-Hua Chuang, Pai-Mei Liu, et al.. Out-of-plane shaking tabletests on unreinforced masonry panels in RC frames[J]. Engineering Structures,2010,32:3925-3935.
    [51] X. Lu, Y. Zhao, W. Lu, et al.. Shaking Table Model Test on Shanghai WorldFinancial Center Tower[J]. Earthquake Engineering and Structural Dynamics,2007,36:439-457.
    [52] Yu-Lin Chung, Takuya Nagae, Toko Hitaka, et al.. Seismic Resistance Capacityof High-Rise Buildings Subjected to Long-Period Ground Motions: E-DefenseShaking Table Test[J]. Journal of Structural Engineering,2010,136(6):637-644.
    [53] A. R. Ghaemmaghami, M. Ghaemian. Shaking table test on small-scaleretrofitted model of Sefid-rud concrete buttress dam[J]. Earthquake Engineeringand Structural Dynamics,2010,39:109-118.
    [54] Rogério Bairrào, M. J. Falc o Silva. Shaking table tests of two differentreinforcement techniques using polymeric grids on an asymmetric limestonefull-scaled structure[J]. Engineering Structures,2009,31:1321-1330.
    [55] XiLin Lu, LinZhi Chen, Ying Zhou, et al.. Shaking Table Model Tests on aComplex High-rise Building with Two Towers of Different Height Connection byTrusses[J]. The Structural Design of Tall and Special Building,2009,18:765-788.
    [56] F. Ersubasi, H. H. Korkmaz. Shaking table tests on strengthening of masonrystructure against earthquake hazard[J]. Nat. Hazards Earth Syst. Sci.,2010,10:1209-1220.
    [57] A. M. Reinhorn, M. Bruneau, A. S. Whittaker, et al.. The UB-NEES versatilehigh performance testing facility[C]. The13thWorld Conference on EarthquakeEngineering(WCEE). Vancouver,2004.
    [58] A. M. Reinhorn, M. V. Sivaselvan, L. Zach, et al.. Large scale real time dynamichybrid testing technique-shake table substructure testing[C]. The FirstInternational Conference on Advances in Experimental StructuralEngineering(AESE). Nagoya,2005:457-464.
    [59]程绍革,马路,赵鹏飞.基于凝聚技术的结构抗震混合试验原理[J].工程抗震与加固改造,2008,30(2):62-67.
    [60]王向英,田石柱,张洪涛,等.位移控制的子结构地震模拟振动台混合试验方法[J].世界地震工程,2009,25(2):30-35.
    [61]王向英,田石柱.子结构地震模拟振动台混合试验原理与实现[J].地震工程与工程振动,2009,29(4):46-52.
    [62] Xiaodong Ji, Kouichi Kajiwara, Takuya Nagae, et al.. A substructure shakingtable test for reproduction of earthquake response of high-rise buildings[J].Earthquake Engineering and Structural Dynamics,2009,38:1381-1399.
    [63] M. V. Sivaselvan, A. Reinhorn, Z. Liang, et al.. Real-time Dynamic HybridTesting of Structural Systems[C]. In proceedings of13thWorld Conference inEarthquake Engineering, Vancouver, B. C., Canada,2004, No.1577.
    [64] S. K. Lee, E. C. Parka, K. W. Mina, et al.. Real-time Substructuring Technique forThe Shaking Table Test of Upper Substructures[J]. Engineering Structures,2006,doi:10.1016.
    [65] M. Hakuno, M. Shidowara, T. Hara. Dynamic Destructive Test of a CantileversBeam, Controlled by an Analog Computer[J]. Transactions of the Japan Societyof Civil Engineering,1969,171.
    [66] Takashi Kaminosono. US-JAPAN cooperation research on RC full scale buildingtest part I: single-degree-of–freedom[C]. Proceedings of English WorldConference on Earthquake Engineering, San Francisco, USA,1984,30(5):678-690.
    [67]梁兴文,王庆霖,梁羽凤.底部框架抗震墙砖房1/2比例模型拟动力试验研究[J].土木工程学报,1999,32(2):14-21.
    [68]马乐为,吴敏哲.12层异形柱小型混凝土空心砌块组合结构拟动力试验研究[J].世界地震工程,2002,18(4):159-162.
    [69] M. Nakashima, Nobuaki Masaoka. Real-time on-line test for MDOF systems[J].Earthquake Engineering and Structural Dynamics,1999,28(5):111-127.
    [70]唐岱新,朱本全,王凤来,等.底层大开间框剪组合墙1/3比例模型房屋子结构拟动力试验研究[J].建筑结构,2001,(31).
    [71]陈伯望.筒体结构拟动力试验及理论研究[D].长沙:湖南大学博士学位论文,2006:87-112.
    [72]施楚贤,黄靓,蔡勇,等.框支配筋砌块剪力墙抗震性能试验研究[J].建筑结构学报,2007,(1).
    [73]陆铁坚.高层建筑筒体结构理论分析及拟动力试验研究[D].长沙:中南大学博士学位论文,2008:91-135.
    [74]杨春侠.混凝土多孔砖砌体结构房屋拟动力试验研究及抗震性能分析[D].长沙:湖南大学博士学位论文,2007:69-110.
    [75]柴俊.型钢高强性能混凝土框架拟动力试验研究[D].西安:西安建筑科技大学硕士学位论文,2008:25-74.
    [76]陈再现.框支配筋砌块短肢砌体结构拟动力子结构试验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:39-135.
    [77] H. Iemura, Y. Yamada, W. Tanzo. Testing RC Specimen by a Substucture-basedHybrid Earthquake Loading System[J]. Proceedings of Ninth World Conferenceon Earthquake Engineering, August1988, Tokyo-Kyoto, Japan, Vol. IV.
    [78] Stephen P. Schneider, Charles W. Roeder. An Inelastic Substructure Technique forthe Pseudodynamic Test Method[J]. Earthquake Engineering and StructuralDynamics,1994,23:761-775.
    [79] F. J. Molina, G. Verzeletti, G. Magonette, et al.. Pseudodynamic tests on rubberbase isolators with numerical substructuring of the superstructure and strain-rateeffect compensation[J]. Earthquake Engineering and Structural Dynamics,2002,31:1563-1582.
    [80] P. Pegon, A. V. Pinto. Pseudo-dynamic testing with substructuring at the ELSALaboratory[J]. Earthquake Engineering and Structural Dynamics,2000,29:905-925.
    [81] A. V. Pinto, P. Pegon, G. Magonette, et al.. Pseudo-dynamic testing of bridgesusing non-linear substructuring[J]. Earthquake Engineering and StructuralDynamics,2004,33:1125-1146.
    [82] H. Taniguchi, K. Takanashi, H. Tanaka. A Restoring Force CharacteristicsModel of a H-shaped Steel Column Due to Bi-directional Horizontal Forces andIts Application to Earthquake Response Analysis[J]. Trans. of A. I. J.,1984,337:53-64.
    [83] H. Taniguchi, K. Takanashi. Inelastic Response Behavior of H-shaped SteelColumn to Bidirectional Earthquake Motion[C]. Proceedings of Eighth WorldConference on Earthquake Engineering, July,1984, San Francisco, USA, Vol. VI.
    [84] M. Seki, T. Okada. Nonlinear Earthquake Response Test of Torsionally CoupledReinforced Concrete Building Frames[J]. Proceedings of Eighth WorldConference on Earthquake Engineering, July1984, San Francisco, USA, Vol. VI:315-322.
    [85]李学才.双向拟动力抗震试验方法研究[D].西安:西安建筑科技大学硕士学位论文,2008:28-77.
    [86]李尤.单层钢框架双向拟动力试验研究[D].西安:西安建筑科技大学硕士学位论文,2008:30-56.
    [87] S. A. Mahin, P. B. Shing. Pseudodynamic Method for Seismic Testing[J]. J. Struct.Engng,1985,111(7):1482-1503.
    [88]邱法维.拟动力实验中的数值积分方法[J].哈尔滨建筑工程学院学报,1994,27(3):120-127.
    [89]邱法维.无条件稳定数值积分方法在拟动力实验中的应用研究[J].实验力学,1997,12(4):499-586.
    [90]祝辉,杨佑发.结构拟动力实验数值积分方法的比较研究[J].实验科学与技术,2009,7(3):40-43.
    [91]王德才,叶献国.拟动力试验中改进的显式数值积分方法[J].合肥工业大学学报(自然科学版),2010,33(7):1029-1034.
    [92] Koichi Takanashi. Non-linear earthquake response analysis of structures by acomputer-actuator on-line system[J]. J. of the Instute Science, University ofTokyo, Vol.27, No.12,1975.
    [93] K. Takanashi, M. Nakashima. Japanese activities on on-line testing[J]. Journal ofEngineering Mechanics(ASCE),1987,113:1014-1032.
    [94] M. Nakashima, T. Kaminosomo, M. Ishida. Integration techniques forsubstructure pseudodynamic test[C]. Proceedings of the4thUS NationalConference on Earthquake Engineering, Palm Springs, CA,1990:515-524.
    [95] M. T. Vannan. The pseudodynamic test method with substructuringapplications[D]. Doctoral Thesis, Univerisity of Colorado at Boulder, CO,1991.
    [96] G. Magonette. Development and application of large-scale continuouspseudo-dynamic testing techniques[J]. Dynamic Testing of Structures: Papers of aTheme, Philosophical Transactions of the Royal Society: Mathematical, Physicaland Engineering Science,2001,359:1771-1799.
    [97] A. K. Chopra. Dynamics of structures[M].2nded., Prentice Hall, Upper SaddleRiver, NJ,2001.
    [98] M. Nakashima. Development, Potential and Limitations of Real-timeOnline(Pseudo-dynamic) Testing[J]. Phil. Trans. R. Soc. Lond. A.2001,259(1786):1851-1867.
    [99] M. Nakashima, H. Kato, E. Takaoka. Development of Real-time PseudodynamicTesting[J]. Earthquake Engineering and Structural Dynamics,1992,21(2):79-92.
    [100]保海娥.实时子结构试验逐步积分算法的稳定性和精度[D].哈尔滨工业大学硕士学位论文.2005:12-56.
    [101] B. Wu, H. Bao, J. Ou, S. Tian. Stability and accuracy analysis of the centraldifference method for real-time substructure testing[J]. EarthquakeEngineering and Structural Dynamics,2005,34:705-718.
    [102] B. Wu, H. Bao. Stability Analysis of Central Difference Method for Real-timeSubstructure Testing of SDOF and MDOF Structure[C]. Proceedings of theThird International Conference on Earthquake Engineering, Nanjing, China,2004
    [103] B. Wu, L. X. Deng, X. D. Yang. Stability of Central Different Method forDynamic Real-time Substructure Testing[J]. Earthquake Engineering andStructural Dynamics,2009,38:1649-1663.
    [104] B. Wu, L. X. Deng, Z. Wang, et al.. Stability Analysis of Central DifferenceMethod for Dynamic Real-time Substructure Testing[C]. American ControlConference, St. Louis, America,2009:5216-5221.
    [105] P. B. Shing, S. A. Mahin. Experimental error propagation in pseudodynamictesting[R]. Report UCB/EERC-83/12, Earthquake Engineering ResearchCenter, University of California, Berkeley.
    [106] S. Y. Chang. Improved numerical dissipation for explicit methods inpseudodynamic tests[J]. Earthquake Engineering and Structural Dynamics,1997,26(9):917-929.
    [107] S. Y. Chang, K. C. Tsai, K. C. Chen. Improved time integration forpseudodynamic tests[J]. Earthquake Engineering and Structural Dynamics,1999,27(7):711-730.
    [108] S. Y. Chang. Explicit pseudodynamic algorithm with unconditional stability[J].Journal of Engineering Mechanics,2002,128(9):935-947.
    [109] S. Y. Chang. An explicit method with improved stability property[J].International Journal for Numerical Methods in Engineering,2009,77:1100-1120.
    [110]吴斌,保海娥.实时子结构实验Chang算法的稳定性和精度[J].地震工程与工程振动,2006,26(2):41-48.
    [111] Cheng Chen, James M. Ricles. Development of direct integration algorithmsfor structural dynamics using discrete control theory[J]. Journal ofEngineering Mechanics,2008,134(8):676-683.
    [112] Cheng Chen, James M. Ricles. Stability analysis of direct integrationalgorithms applied to nonlinear structural dynamics[J]. Journal of EngineeringMechanics,2008,134(9):703-711.
    [113] Cheng Chen, James M. Ricles. Real-time hybrid testing using theunconditionally stable explicit CR integration algorithms[J]. EarthquakeEngineering and Structural Dynamics,2009,38:23-44.
    [114] D. Combescure, P. Pegon. Alpha-operator Splitting Time IntegrationTechinque for Pseudodynamic Testing: Error Propagation Analysis[J]. SoilDynamic and Earthquake Engineering,1997,16:427-443.
    [115] B. Wu, G. Xu. Numerical Behavior of Operator-splitting Method for Real-timeSubstructure Testing[C]. The First International Conference on Advances inExperimental Structural Engineering, Nagoya, Japan,2005:377-384.
    [116]王焕定,等.非线性结构时程分析的高阶单步法[J].地震工程与工程振动,1996(3).
    [117]李进,王焕定,张永山,赵桂峰.高阶单步实时动力子结构试验技术研究[J].震工程与工程振动,2005,25(1):97-101.
    [118] O. S. Bursi, A. Gonzalez-Buelga, L. Vulcan, et al.. Novel CouplingRosenbrock-based Algorithms for Real-time Dynamic Substructure Testing[J].Earthquake Engineering and Structural Dynamics,2008,37(3):339-360.
    [119] C. P. Lamarche, A. Bonelli, O. S. Bursi, et al.. A Rosenbrock-W Method forReal-time Dynamic Substructuring and Pseudo-dynamic Testing[J].Earthquake Engineering and Structural Dynamics,2009,38(9):1071-1092.
    [120] O. S. Bursi, P. B. Shing. Evaluation of some implicit time-stepping algorithms forpseudodynamic tests[J]. Earthquake Engineering and Structural Dynamics,1996,25:333-355.
    [121]邱法维.采用隐式积分方法和子结构技术的拟动力实验[J].土木工程学报,1997,3(2):27-33.
    [122] P. B. Shing, M. T. Vannan, E. Carter. Implicit Time Integration forPseudodynamic Tests[J]. Earthquake Engineering and Structural Dynamics,1991,20(6):551-576.
    [123] H. M. Hilber, T. J. R. Hughes, R. L. Taylor. Improved Numerical Dissipationfor Time Integration Algorithms in Structural Dynamics[J]. EarthquakeEngineering and Structural Dynamics,1977,5(3):283-292.
    [124] C. R. Thewalt, S. A. Mahin. Hybrid solution techniques for generalizedpseudodynamic testing[R]. Report No. UCB/EERC-87/09, EarthquakeEngineering Research Center, University of California Berkeley, CA,1987.
    [125] R. Peek, W.-H. Yi, Error analysis for the pseudodyanmic test method[J]. J. Eng.Mech.,1990, ASCE116:1618-1656.
    [126] P. B. Shing, M. T. Vanna. On the accuracy of an implicit algorithm forpseudodynamic tests[J]. Earthquake Eng. Struct. Dyn.,1990,19:631-651.
    [127] P. B. Shing, Z. Wei, R. Y. Jung, et al.. Nees fast Hybrid Test System at theUniversity of Colorado[C]. Proceedings of the13thWorld Conference onEarthquake Engineering, Vancouver, Canada,2004, paper No.3497.
    [128] R. Y. Jung, P. B. Shing. Performance Evaluation of a Real-time PseudodynamicTest System[J]. Earthquake Engineering and Structure Dynamics,2006,35(7):789-810.
    [129] R. Y. Jung, P. B. Shing, E. Stauffer, et al.. Performance of a Real-time PseudoDynamic Test System Considering Nonlinear Structural Response[J]. EarthquakeEngineering and Structural Dynamics,2007,36(12):1785-1809.
    [130] F. Seible, G. A. Hegemier, A. Igarashi and G. R. Kingsley. Simulationseismic-load test on full-scale five story masonry building[J]. Journal ofStructural Engineering,1994,120(3).
    [131] T. Y. Yang, B. Stojadinovic, J. Moehle. Hybrid simulation of a zipper-braced steelframe under earthquake excitation[J]. Earthquake Engineering and StructuralDynamics,2009,38(1):96-113.
    [132] A. Stavridis, P. B. Shing. Hybrid testing and modeling of suspended zipper steelframe[J]. Earthquake Engineering and Structural Dynamics,2009,39(2):187-209.
    [133] A. Bonelli, O. S. Bursi. Generalized-α methods for seismic structural testing[J].Earthquake Engineering and Structural Dynamics,2004,33:1067-1102.
    [134] H. Tsutsumi, A. Higashiura. Pseudodynamic Testing Method Using the NewmarkImplicit Integration Method[C]. Proceedings of Ninth World Conference onEarthquake Engineering, August1988, Tokyo-Kyoto, Japan, Vol. IV.
    [135] T. Horiuchi, M. Inoue and T. Konno. Development of A Real-time HybridExperiment System Using A Shaking Table[J]. Proc.12thWorld Conf. EarthquakeEngineering, Auckland, New Zealand,2000, paper No.0843.
    [136] A. Blakeborough, M. S. Williams, A. P. Darby, et al.. The Development ofReal-time Substructure Testing[J]. Phil. Trans. R. Soc. Lond. A,2001,359:1869-1891.
    [137] V. Bayer, U.E Dorka, U. Füllekrug, et al.. On Real-time PseudodynamicSub-structure Testing: Algorithm, Numerical and Experimental Results[J].Aerospace Science and Technology,2005,9:223-232.
    [138]奚彩亚,吴斌.实时子结构实验的混合控制方法[C].第11届全国实验力学会议,中国大连,2005.
    [139]奚彩亚.实时子结构实验的混合控制方法[D].哈尔滨:哈尔滨工业大学硕士学位论文,2005:9-55.
    [140] B. Wu, Q. Wang, P. B. Shing and J. P. Ou. Equivalent Force Control Method forGeneralized Real-time Substructure Testing with Implicit Integration[J].Earthquake Engineering and Structural Dynamics,2007,36(9):1127-1149.
    [141]王倩颖.实时子结构试验方法及其应用[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:100-124.
    [142]冯涛.实时子结构试验等效力控制的无超调方法[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007:9-50.
    [143]许国山,吴斌.采用比例-积分控制的实时子结构试验等效力控制方法[J].工程力学,2009,26(9):251-256.
    [144]李妍.防屈曲支撑的抗震性能及子结构试验方法[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:82-126.
    [145] M. Nakashima, H. Takai. Use of Substructure Techniques in PseudodynamicTesting[C]. BRI Research Paper, No.111, March1995.
    [146] S. A. Mahin, P. B. Shing, C. R. Thewalt, et al.. Pseudodynamic testmethod-Current status and future directions[J]. J. Struct. Eng.,1989,115(8):2113-2128.
    [147] S. J. Dyke, B. F. Spencer, P. Quast, et al.. Role of control-structure interaction inprotective system design[J]. J. Eng. Mech.,1995,121(2):322-338.
    [148] A. Alleyne. Nonlinear Force Control of an Electro-Hydraulic Actuator[C].Proceedings of the1996Japan/USA Symposium of Flexible Automation, Boston,MA, pp.193-200.
    [149] J. A. Mureck. Evaluation of the Effective Force Testing Method using a SDOFModel[D]. Master Thesis, University of Minnesota, MN.1996.
    [150] J. Dimig, C. Shield, C. French, F. Bailey, et al.. Effect force testing: A method ofseismic simulation for structural testing[J]. J. Struct. Eng.,1999,125(9):1028-1037.
    [151] J. Timm. Natural Velocity Feedback Correction for Effective Force Testing[D].Master Thesis, University of Minnesota, MN.1999.
    [152] C. Shield, K. French, J. Timm. Development and Implementation of the EffectiveForce Testing Method for Seismic Simulation of Large-Scale Structures[J]. Phil.Trans. Royal Society, London,2001,359:1911-1929.
    [153] M. J. Spink. MDOF Implementation of Effective Force Testing: A Method ofSeismic Simulation[D]. Master Thesis, University of Minnesota, MN,2002.
    [154] J. Zhao. Development of EFT for Nonlinear SDOF Systems[D]. Dissertation,University of Minnesota, MN,2003.
    [155] J. Zhao, C. Shield, C. French, et al.. Nonlinear System Modeling and VelocityFeedback Compensation for Effective Force Testing[J]. Journal of EngineeringMechanics,2005,131(3):244-253.
    [156] J. Zhao, C. French, C. Shield, et al.. Development of EFT for Nonlinear SDOFSystem[C].7NCEE, Boston, MA2002.
    [157] J. Zhao, C. French, C. Shield, et al.. Comparison of Tests of a Nonlinear StructureUsing a Shake Table and the EFT Method[J]. Journal of Structural Engineering,2006,132(9):1473-1481.
    [158] A. M. Reinhorn, M. V. Sivaselvan, S. Weinreber, et al.. A Novel Approach forDynamic Force Control[C]. Proceedings of Third European Conference onStructural Control(3ECSC), Vienna University of Technology, Vienna, Austria,July2004.
    [159] G. Magonette, P. Pegon, F. J. Molina,et al.. Development of Fast ContinuousPseudodynamic Substructuring Tests[C]. Second World Conference on StructuralControl, Kyoto,1998.
    [160] F. J. Molina, G. Verzeletti, G. Magonette, et al.. Pseudodynamic Tests on RubberBase Isolators with Strain-rate effect Compensation[J]. Earthquake Engineeringand Structural Dynamics,2002,31:1563-1582.
    [161] Y. Yamazaki, T. Kaminosono, M. Nakashima. Correlation Between Shaking TableTest and Pseudodynamic Test on Steel Structural Models[R]. BRI Research Paper,No.119,1986.
    [162] Y. Kitagawa, M. Nakashima, T. Kaminosono. Correlation Study on Shaking TableTests and Pseudodynamic Tests by RC Modes[C]. Proceedings of Ninth WorldConference on Earthquake Engineering, San Francisco, USA,1984,5:667-674.
    [163] P. B. Shing, S. A. Mahin. Rate of Loading Effects on Pseudodynamic Test[J]. J.of Structural Engineering,1987,114:2403-2420.
    [164] M. Nakashima, H. Kato, E. Takaota. Development of Real-time PseudodynamicTesting[J]. Earthquake Engineering and Structural Dynamics,1992,21(1):79-92.
    [165]吴斌.实时子结构试验技术及其在结构控制中的应用[C].第四届全国结构减震控制学术研讨会,广州,2003.
    [166] J. P. Conte, T. L. Trombetti. Linear dynamic modeling of a uni-axialservohydraulic shaking table system[J]. Earthquake Engineering and StructuralDynamics,2000,29:1375-1404.
    [167]吴斌,王向英,王倩颖.电液伺服加载系统的滑动模态控制及其在实时子结构试验中的应用[J].第四届中国结构控制年会,中国大连,2004.
    [168]王向英,吴斌,王倩颖.实时子结构的滑动模态控制[J].工程力学,2007,24(6):174-179.
    [169] T. Y. Yang, A. Schellenberg. Advance implementation of nonlinear controlalgorithms for shaking table tests[J]. Proceedings of the9thUS. National and10thCanadian Conference on Earthquake Engineering, Toronto, Tsunami SocietyInternational,2010:1108.
    [170]周惠蒙,吴斌.采用滑动模态控制器的等效力控制方法[J].结构工程师,2011,27, sup:88-94.
    [171]汤青波,张文汉.最优滑模控制在电液伺服系统中的应用研究[J].液压与气动,2007,(1):70-72.
    [172] D. J. Wagg, D. P. Stoten. Substructuring of Dynamical Systems via theAdaptive Minimal Control Synthesis Algorithm[J]. Earthquake Engineeringand Structural Dynamics,2001,30:865-877.
    [173] D. Drury, D. P. Stoten, D. J. Wagg, et al.. Advances in NumericalExperimental Substructuring Techniques Using MCS control[C].12EuropeanConference on Earthquake Engineering,2002, Paper Reference277.
    [174] C. N. Lim, S. A. Neild, D. P. Stoten, et al.. Real-time Dynamic SubstructureTesting Via an Adaptive Control Strategy[C]. Proceedings of the FirstInternational Conference on Adaptive in Experimental Structural Engineering,Nagoya, Japan,2005:393-400.
    [175] D. W. Clarke, C. J. Hinton. Adaptive Control of Material-testing MachinesAutomatica[J].1997,33(6):1119-1131.
    [176] P. A. Bonnet, C. N. Lim, M. S. Williams, et al.. Real-time Hybrid Experimentswith Newmark Integration, MCSmd Outer-loop Control and Multi-taskingStrategies[J]. Earthquake Engineering and Structural Dynamics,2007,36:119-141.
    [177]邓利霞.实时子结构试验的自适应控制方法[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007.
    [178] Y. N. Kyrychko, K. B. Blyuss, A. Gonzalez-Buelga, et al.. Real-time DynamicSubstructuring in a Coupled Oscillator-pendulum System[J]. PhilosophicalTransactions of the Royal Society of London Series A: Mathematical andPhysical Science,2006,462(2068):1271-1294.
    [179] O. Mercan, J. M. Ricles. Stability and Accuracy Analysis of Outer LoopDynamics in Real-time Pseudodynamic Testing of SDOF Systems[J].Earthquake Engineering and Structural Dynamics,2007,36(11):1523-1543.
    [180] T. Horiuchi, M. Inoue, T. Konno, et al.. Real-time Hybrid ExperimentalSystem with Actuator Delay Compensation and Its Application to A PipingSystem with Energy Absorber[J]. Earthquake Engineering and StructuralDynamics,1999,28:1121-1141.
    [181] T. Horiuchi, T. Konno. A New Method for Compensating Actuator Delay inReal-time Hybrid Experiments[J]. Phil. Trans. R. Soc. Lond. A,2001,359:1893-1909.
    [182] P. J. Gawthrop, M. I. Wallace, S. A. Neild, et al.. Robust Real-timeSubstructuring Techniques for Under-damped Systems[J]. Structural Controland Health Monitoring,2007,14(4):591-608.
    [183] M. Ahmadizadeh, G. Mosqueda, A. M. Reinhorn. Compensation of ActuatorDelay and Dynamics for Real-time Hybrid Structural Simulation[J].Earthquake Engineering and Structural Dynamics,2008,37(1):21-42.
    [184] M. I. Wallace, D. J. Wagg, S. A. Neild. An Adaptive Polynomial BasedForward Prediction Algorithm for Multi-actuator Real-time DynamicSubstructuring[C]. Proceedings of the Royal Society A-MathematicalPhysical and Engineering Sicences,461(2064):3807-3826.
    [185] A. P. Darby, M. S. Williams, A. Blakeborough. Stability and DelayCompensation for Real-time Substructure Testing[J]. Journal of EngineeringMechanics,2002,128(2).
    [186] C. Chen, J. M. Ricles. Improving the Inverse Compensation Method forReal-time Hybrid Simulation through a Dual Compensation Scheme[J].Earthquake Engineering and Structural Dynamics,2009,38(10):1237-1255.
    [187] C. Chen, J. M. Ricles, R. Sause, et al.. Real-time Hybrid Simulation withAdaptive Actuator Control for Structural Engineering Research[C].Proceedings of the Third International Conference on Advances inExperimental Structural Engineering, San Francisco,2009, No.16.
    [188] M. Nakashima. Development, Potential, and Limitations of Real-time Online(Pseudo-Dynamic) Testing[J]. Phil. Trans. R. Soc. Lond. A,2001,359:1851-1867.
    [189] A. P. Darby, A. Blakeborough, M. S. Williams. Real-time Substructure TestsUsing Hydraulic Actuator[J]. Journal of Engineering Mechanics,1999,125:1133-1139.
    [190]袁涌,朱宏平,熊世树.运用新型实时子结构实验验证橡胶隔震垫的隔震效果[J].防灾减灾工程学报,2007,27, Suppl:378-382.
    [191] I. Buckle, R. Reitherman. The Consortium for the George E. Brown J.Network for Earthquake Engineering Simulation[C].13thWorld Conferenceon Earthquake Engineering, Vancouver, Canada,2004, Paper No.4016.
    [192] B. Stojadinovic, G. Mosqueda, S. A. Mahin. Event-driven control system forgeographically distributed hybrid simulation[J]. Journal of StructuralEngineering(ASCE),2006,132(1):68-77.
    [193] J. K. Kim. KOCED collaborator program[C]. In: ANCER Annual Meeting:Networking of Young Earthquake Engineering Researchers and Professionals,Hawaii, USA.2004.
    [194] K. Ohtani, N. Ogawa, T. Katayama, et al.. Project E-Defense(3-D Full-ScaleEarthquake Testing Facility)[C]. Proceedings of Joint NCREE/JRC Workshopon International Collaboration on Earthquake Disaster Mitigation Research,Taipei, Taiwan,2003.
    [195]肖岩,胡庆,郭玉荣,等.结构拟动力远程系统试验网络平台的开发研究[J].建筑结构学报,2005,26(3):122-129.
    [196] Y. Xiao, Q. Hu, Y. R. Guo, et al.. Network platform for remote structuraltesting and shared use of laboratories[J]. Progress In Natural Science,2005,15(12):1135-1142.
    [197] E. Watanabe, K. Sugiura, K. Nagata. Parallel Computing for Non-linearResponse of Large Structural Systems[C]. In: Proceedings of the6thNTU-KAIST Tri-lateral Seminar/Workshop on Civil Engineering, Taejon,Korea,1996:143-148.
    [198] E. Watanabe, K. Sugiura, K. Nagata, et al.. Development of ParallelPseudo-dynamic Testing System and Its Verification[C]. In: Proceedings ofthe10thEarthquake Symposium of Japan, Japan,1998:2205-2210.
    [199] K. Sugiura, N. Nagata, Y. Suzuka, et al.. Internet Related StructuralTesting[C]. In: Proceedings of the8thKKNN Seismic on Civil Engineering,Singapore,1998:219-224.
    [200] C. B. Yun, I. W. Lee, D. U. Part, et al.. Remote Parallel ParallelPseudo-dynamic Testing on Based-isolated Bridge Using Internet[C]. In:Proceedings of13thKKNN Symposium on Civil Engineering, Taipei, Taiwan,2000:87-82.
    [201] E. Watanabe, C. B. Yun, K. Sugiura, et al.. Online Internet Testing betweenKAIST and KYOTO University[C]. In: Proceedings of the InternationalWorkshop on Steel and Concrete Composite Construction, Taipei,2001:301-310.
    [202] K. C. Tsai, B. C. Hsiao, J.W. Lai, et al.. Pseudo-dynamic ExperimentalResponse of a full scale CFT/BRB Composite Frame[C]. National Center ofResearch on Earthquake Engineering, Taipei, Taiwan,2005.
    [203]郭玉荣,范云蕾,肖岩,等.基于网络的结构非线性地震反应协同分析[C].计算机技术在工程建设中的应用,2004:36-40.
    [204]张国伟,郭玉荣,肖岩.远程控制下的CFT柱拟动力试验和模拟[C].中国钢结构协会钢-混凝土组合结构分会第十次年会,2005,302:204-206.
    [205]王大鹏.远程协同结构拟动力试验方法与技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:24-146.
    [206] Y. R. Guo, Q. Hu. NetSLab-Based Remote Hybrid Testing in CurrentHierarchical Network Environment[C]. Proceedings of the4thInternationalConference on Earthquake Engineering, Taipei, Taiwan,2006, Paper No.255.
    [207] Y. R. Guo, Q. Hu, Y. Xiao. Discussion of Paper, Online hybrid test by Internetlinkage of distributed test-analysis domains[J]. Earthquake Engineering andStructural Dynamics,35(12):1581-1583,2006.
    [208] G. Mosqueda, B. Stojadinovic, S. Mahin. Impementation and Accuracy ofContinuous Hybrid Simulation with Geographically DistributedSubstructures[R]. UBC/EERC2005-02, Earthquake Engineering ResearchCenter, University of California, Berkeley,2005.
    [209] F. Seible, G. A. Hegemier, A. Igarashi, et al.. Five-story Masonry building[J].Journal of Structural Engineering,120(3):903-924,1994.
    [210] F. Seible, M. J. N. Priestley, G. R. Kingsley, et.al. Seismic response offull-scale five-story reinforced masonry building[J]. Journal of StructuralEngineering,120(3):925-946,1994.
    [211] M. V. Sivaselvan, A. M. Reinhorn, X. Shao, et al.. Dynamic force controlwith hydraulic actuators using added compliance and displacementcompensation[J]. Earthquake Engineering and Structural Dynamics,00:1-10,2007.
    [212]中华人民共和国国家标准. GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [213]刘锡荟,张鸿熙,刘经纬,等.用钢筋混凝土构造柱加强砖房抗震性能的研究[J].建筑结构学报,1981,2(06):47-55.
    [214] M. Toma evi, Klemenc Iztok. Seismic behavior of confined masonrywalls[J]. Earthquake Engineering and Structural Dynamics,1997,26(10),1059-1071.
    [215] Kenneth A. Gent Franch, Gian M. Giuliano Morbelli, Maximiliano A. AstrozaInostroza, et al. A seismic vulnerability index for confined masonry shear wallbuildings and a relationship with the damage[J]. Engineering Structures,2008,30(10):2605-2612.
    [216] Abdelkrim Bourzam, Tetsuro Goto, Masakatsu Miyajima. Shear capacityprediction of confined masonry walls subjected to cyclic lateral loading[J].Structural Eng.Earthquake Eng., JSCE,2008,25(2):692-704.
    [217]邬瑞锋,吕和祥,奚肖凤.具有构造柱墙体弹塑性、开裂、裂缝开展的分析[J].大连工学院学报,1979,18(1):60-72.
    [218]夏敬谦,黄泉生.构造柱与配筋砌体房屋抗震能力的试验研究[J].地震工程与工程振动,1989,9(2):82-96.
    [219] Jocelyn Paquette, Michel Bruneau. Pseudo-dynamic testing of unreinforcedmasonry building with flexible diaphragm and comparison with existingprocedures[J]. Construction and Building Materials,2006,20(4):220-228.
    [220] J. Paquette, M. Bruneau. Pseudo-Dynamic Testing of Unreinforced MasonryBuilding with Flexible Diaphragm. Journal of Structural Engineering,2003,129(6):708–716
    [221] M. T. Kazemi, M. Hoseinzadeh Asl, A. Bakhshi, et al. Shaking table study of afull-scale single storey confined brick masonry building[J]. Transaction A:Civil Engineering,2010,17(3):184-193.
    [222] A. San Bartolomé, E. Delgado and D. Quiun. Seismic behavior of a two storymodel of confined adobe masonry[C]//Wael W. El-Dakhakhni, Robert G.Drysdale. Proceedings11th Canadian Masonry Symposium. Toronto, Ontario:McMaster University, May31-June3,2009.
    [223]陈再现.框支配筋砌块短肢砌体结构拟动力子结构试验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:39-135.
    [224]李志鹏.隔震砌体结构的抗震性能分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009:13-50.
    [225]吴振顺.液压控制系统[M].北京:高等教育出版社,2008:12-128.
    [226]刘季,李暄,张培卿.大刚度结构力控制拟动力实验方法[J].地震工程与工程振动,16(4):55-59,1996年12月.
    [227]李暄,刘季,田石柱.结构拟动力试验力控制实现技术[J].地震工程与工程振动,17(1):49-53,1997.
    [228] Peng Pan, Masayoshi Nakashima, Hiroshi Tomofuji. Online test usingdisplacement-force mixed control[J]. Earthquake Engineering andStructural Dynamics,34:869-888,2005.
    [229]王凤来,陈再现,王焕定,等.高阶单步力控制拟动力试验方法研究[J].地震工程与工程振动,28(6):233-238,2008.
    [230] Narutoshi Nakata, B. F. Spencer, Jr. Amr S. Elnashai. MixedLoad/Displacement Control Strategy for Hybrid Simulation[A].4thInternational Conference on Earthquake Engineering[C], Taipei, Taiwan,October12-13,2006, Paper No.094.
    [231] H. K. Kim, B. Stojadinovic, T. Y. Yang, A. Schellenberg. AlternativeControl Strategies in Hybrid Simulation[A].2ndEFAST Workshop and4thInternational Conference on Advances in Experimental StructuralEngineering[C], Ispra Italy, June,2011:1-14.
    [232]许国山,吴斌.弹性试验的实时子结构试验等效力控制方法[J].振动与冲击, Vol.29(5):101-105,2010.
    [233]李妍,吴斌,欧进萍.基于能量守恒积分的子结构试验方法[J].工程力学,27(1):1-7,2010年1月.
    [234]许国山,吴斌.采用等效力控制方法的非线性结构实时子结构试验[J].振动工程学报, Vol.23(3):237-242,2010年6月.
    [235]周大睿,许国山,吴斌,等.等效力控制方法在连梁阻尼器拟动力子结构试验中的应用[J].振动与冲击, Vol.30(8):72-76,2011.
    [236]唐志贵.电液伺服疲劳试验过程中控制方式的转换[J].试验机与材料试验,(1):50-52,1985.
    [237]陈申,何肖瑜.材料试验机控制状态的自动切换[J].试验机与材料试验,(3):24-28,1986.
    [238]黄勇,崇生,史维祥.电液伺服试验机中负刚度问题的研究[J].机床与液压,(1):9-11,1999.
    [239]许国山,吴斌.采用等效力控制方法的非线性结构实时子结构试验[J].振动工程学报,Vol.23(3):237-242,2010年6月.
    [240]许国山,吴斌.等效力控制方法拟动力试验中的应用[J].地震工程与工程振动,Vol.30(2):79-85,2010年4月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700