用户名: 密码: 验证码:
磨削加工中磨削区流场建模仿真及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削加工是机械加工中一种重要的加工方式。在磨削加工中,磨削液的使用可以起到抑制温升、降低砂轮磨损、防止粘连和提高工件加工质量的作用。因此,对磨削加工区磨削液流体的研究是十分必要的。
     本文主要针对浇注方式下和油气射流润滑方式下磨削加工时磨削区的流场进行了研究。
     基于流体动压理论,建立了传统浇注法磨削加工中磨削区流场的光滑数学模型,并应用多重网格法得出光滑模型下的数值解。计算结果表明,砂轮圆周速度越大,接触区磨削液流体动压力越大;改变砂轮直径,接触区流体动压力几乎不改变;砂轮与工件间的最小间隙越小,磨削区流体动压力越大。
     在光滑模型的基础上进一步考虑砂轮和工件的真实表面形貌,进而建立了粗糙接触区流场模型,用多重网格法计算得出流体动压力及流体流速值。通过光滑模型和粗糙模型解的比较,得出粗糙模型的解和光滑模型的解基本吻合。
     在磨削加工的实验研究中,主要分析了砂轮圆周速度和砂轮与工件间的最小间隙对接触区流体动压力的影响。实验结果表明,随着砂轮圆周速度增大,接触区流体动压力增大;随着砂轮与工件间最小间隙的减小,接触区流体动压力增大;将光滑模型理论值和实验值进行比较,得知两者基本吻合。
     最后,阐述了MQL润滑技术及油气润滑机理,并分析油气射流润滑方式下磨削加工区流体的特性,建立了数学模型。
Grinding process is an important way of machining. In grinding, grinding fluid can play important roles in restraining temperature rise, reducing grinding wheel wear, preventing adhesion and improving the surface quality of the workpieces. Therefore, it is essential to study grinding fluid field in grinding process.
     Grinding fluid field under the grinding zone in floods and in oil-gas jet flow lubrication were studied in this thesis.
     The mathematical model of smooth grinding flow field based on fluid lubrication theory was setted up, and the numerical results of smooth model by means of multigrid technique was obtained. The results of calculation show that with circumferential velocity of grinding wheel increasing the hydrodynamic pressure increases. Changing diameter of grinding wheel, hydrodynamic pressure remained virtually unchanged. With minimum clearance between grinding wheel and workpieces decreasing, hydrodynamic pressure in grinding zone increases.
     The mathematical model of smooth grinding flow field was built based on smooth grinding model and real surface topography of grinding wheel and workpiece, and the numerical results of smooth model by means of multigrid technique was obtained. The numerical results show good correlation through comparing smooth model with rough model.
     In the experimental study of grinding, circumferential velocity of grinding wheel and minimum clearance that impacted hydrodynamic pressure were analyzed. Experimental results show that with circumferential velocity of grinding wheel increasing the hydrodynamic pressure increases. With minimum clearance between grinding wheel and workpieces decreasing, hydrodynamic pressure in grinding zone increases. The numerical results show good correlation with experiments qualitatively through comparing smooth model with experiments.
     Finally, MQL lubrication technique and oil-gas lubrication mechanism were introduced, and properties of grinding flow field in oil-gas jet flow lubrication were analyzed, and the mathematical model was built.
引文
[1]李伯明,赵波.现代磨削技术.机械工业出版社,2003.1
    [2]温诗铸.摩擦学原理.北京:清华大学出版社,1990
    [3]刘晓旭,袁松梅,刘强.准干切削技术及应用.制造技术与机床.2008(4):75-77
    [4](日)横田秀雄,吴敏镜译.MQL切削的现状和发展.航空精密制造技术,2004(40):24-26
    [5]K.Ramesh,H.Huang,L.Yin.Analytical and experimental investigation of coolant velocity in high speed grinding.International Journal of Machine Tool&Manufacture.2004(44):1069-1076
    [6]Ahmed Hassan,YAO Zhen-qiang.MQL:A New Way to Clean Production.Journal of Shanghai Jiaotong University(Science),Vol.E-9,ON.2,2004,50-54
    [7]K.Ramesh,S.H.Yeo,Z.W.Zhong,K.C.Sim.Coolant shoe development for high efficiency grinding.Journal of Materials Processing Technology.2001(114):240-245
    [8]周春宏,赵汀,姚振强.最少量润滑切削技术.机械设计与研究,2005(21):81-83
    [9]李新龙,何宁,李亮.绿色切削中的MQL技术.航空精密制造技术.2005(4):24-28
    [10]温诗铸,黄平,摩擦学原理,北京:清华大学出版社,2002
    [11]杨沛然.流体润滑数值分析.北京:国防工业出版社,1998
    [12]温诗铸,杨沛然.弹性流体动力润滑.北京:清华大学出版社,1992
    [13]Kaliszer,H,Trmal,G..Mechanics of Grinding Fluid Delivery.SMEMR 75-614:1-16
    [14]杨沛然.等温稳态点接触弹流润滑的多重网格解法.青岛摩擦学前沿研讨会EHL Workshop讲义,2005
    [15][美]孙大成,润滑力学讲义.中国友谊出版公司,1991
    [16]Elrod,H.G.A general theory for laminar lubrication with Reynolds Roughness.ASME.Lubr.Technol,1982,108:305-312
    [17]P.Hryniewicz,A.ZSzeri and S.Jahanmir.Application of Lubrication Theory to Fluid Flow in Grinding:PartⅠ-Flow Between Smooth Surfaces.Transactions of the ASME,2001(123):96-100
    [18]P.Hryniewicz,A.ZSzeri,and S.Jahanmir.Application of Lubrication Theory to Fluid Flow in Grinding:PartⅡ-Influence of Wheel and Workpiece Roughness.Transactions of the ASME,2001(123):101-107
    [19]Vladimir Gviniashvili,John Webster,Brian Rowe.Fluid Flow and Pressure in the Grinding Wheel-Workpiece.Interface.Transactions of the ASME,2005(127):198-205
    [20]Tripp,J.H.Surface roughness effects in hydrodynamic lubrication.The Flow Factor Method.ASME.Lubr.Technol,1978,43:391-399
    [21]方新燕.三维表面形貌的表征及润滑特性的研究.合肥工业大学硕士学位论文,2006
    [22]N.Patir,H.S.Cheng.An average flow model for determing effects of three dimensional roughness on partial hydrodynamic lubrication.Trans.ASME.1979,116:710-716
    [23]万长森,轴承润滑问题的有限元法.轴承,1978(3)
    [24]胡元中.三维粗糙平面润滑效应的理论研究与应用,清华大学博士学位论文,1985
    [25]Maksoud,T.M.A.,and Howes,T.D.Effect of Hydrodynamic Pressure of High Viscosity Coolants on the Stability of the Surface Grinding Process.Grinding Fundamentals and Applications,1989:183-199
    [26]Ganesan,M.,Guo C and Malkin,S.Measurement of Hydrodynamic Forces in Grinding.Trans.NAMRI/SME,ⅩⅩⅢ,1995:103-107
    [27]H.K.Tonshoff,E.Brinksmeier,H.Z.Choi.Abrasive and their influence on force,temperatures and surface,in:Proceedings of the International Grinding Conference,SME Technical Paper MR86-626,June 1986
    [28]Dowson D.,Higginson G.and Archard J.,Elastohydrodynamic lubrication,SI Edition,Pergamon press,Oxford,1977.
    [29]Hu Yuanzhong,Zheng Linqing.Effect of Three Demensional Roughness on Lubrication.Proceedings of the JSLE International Tribology Conference,1985
    [30]Brinksmeier,Minke.High-Performance Surface Grinding-The Influence of Coolant on the Abrasive Process.CIRP Ann,1993,42(1):367-370
    [31]储兴华.磨削原理.北京:机械工业出版社.1988
    [32]曲贵龙.磨削加工技术的发展趋势.磨床与磨削,2004(4):24-28
    [33]张纹.磨削加工中产生裂纹的原因和防止措施(J).农业装备技术,2008(2):58-59
    [34]Katsushi Furutani,Nguyen Trong Hieu,Noriyuki Ohguro,Takashi Nakamura.Automatic compensation for grinding wheel wear by pressure based in-process measurement in wet grinding.Precision Engineering 2003(27):9-13
    [35]谢锋,沈维蕾.磨削加工中的绿色制造.组合机床与自动化加工技术,2002(6):18-20
    [36]王丽,田中武司.MQL深孔钻削中关键因素的最适化研究.机床与液压,2007(35):45-47
    [37]Leonardo Roberto da Silva,Eduardo Carlos Bianchi 等.Analysis of surface integrity for minimum quantity lubricant-MQL in grinding[J].International Journal of Machine Tools & Manufacture(47),2007:412-418
    [38]H.Z Choi,S.W.Lee,H.D.Jeong.A comparison of the cooling effects of compressed cold air and coolant for cylindrical grinding with a CBN wheel.Journal of Materials Processing Technology,2001(111):265-268
    [39]Brinksmeier E.Heinzel M Friction,Cooling and Lubrication in Grinding [J].AnnMs of the CIRP,1999(48):581-598
    [40]H.Honma,K.Yokgawa,M.Yokgawa.Study of environment conscious CBN cooling air grinding technology,JSPE 1992,62(11).(in Japanese)
    [41]Kawamura,Grinding and Abrasive Machining.Kyouritsu Publishing,1990(in Japanese)
    [42]周德生.磨削液的供给方式[J]_机械制造,1995(5):12-14
    [43]R.Aris,Vectors,Tensors,and the Basic Equations of Fluid Mechanics,Prentice Hall,1962
    [44]D.Dowson,G.R.Higginson.Elasto-Hydrodynamic Lubrication.Pergamon Press,1977
    [45]李长河,蔡光起.磨削中的摩擦冷却与润滑(一)(二).磨料磨具通讯,2007(199):4-7
    [46]R.Aris,Vectors,Tensors,and the Basic Equations of Fluid Mechanics,Prentice Hall,1962 Efimov,V.V.Grinding Fluid Flow in the Wheel Workpiece Contact Zone.Russian Eng(J),1980,60(11):50-51
    [47]Jeong-Du Kim,Motion analysis of particles in EEM using cylindrical polyurethane wheel.International Journal of Machine Tool&Manufacture.2002(42):21-28
    [48]陈之航,曹柏林,赵在三.气液双相流动和传热.北京:机械工业出版社,1983
    [49]闰通海,田爱华.气液两相流体润滑技术及其应用.实用技术.1998(9):3-4
    [50]杨和中,刘厚飞.气液两相流体冷却润滑技术-油气润滑.液压与气动.连载讲座,2004
    [51]张勇,张文法,温诗铸.粗糙表面弹流润滑膜的实验研究.摩擦学机理研究,清华大学,1986
    [52]温诗铸.边界元方法在润滑问题中的应用-Rayleigh阶梯轴承.润滑与密封.1982(3)
    [53]温诗铸,朱东.弹性流体动力润滑椭圆接触问题的完全数值解.第三届摩擦学学术研讨会论文,1982
    [54]温诗铸,朱东.弹性流体动力润滑问题的直接迭代解.第三届摩擦学学术研讨会论文,1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700