用户名: 密码: 验证码:
ZnO量子点的制备与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体量子点(Quantum dots,或称QDs),由于其通常大小为1~10nm,与生物大分子(如蛋白质)的直径相当,而且具有宽激发、窄发射、可调谐的发射波长、光稳定性好等独特的光学性质,作为一种新型的荧光探针而在生命科学研究领域中备受关注。目前,生物医学方面主要应用的是CdTe与CdSe量子点,其中的有毒Cd元素使它们的应用范围受到限制。而ZnO量子点具有优良的荧光性能,原料廉价易得,并且不含有毒元素。但是符合生物检测要求的水分散性ZnO量子点的研究现在还少有报道。因此,我们在以下方面作了一些工作,并得到一些创新性的结果,主要研究内容如下:
     (1)本文利用溶胶-凝胶法在乙醇中合成具有强烈可见荧光发射的ZnO量子点,通过对不同反应条件的控制,成功实现了对ZnO量子点可见荧光发射波长的精确调控。(2)本文通过3-氨丙基三乙氧基硅烷(APTES)对ZnO量子点实行硅烷化包覆,制备出核-壳结构的ZnO/Aminopropyl-siloxane量子点,这种量子点荧光强度提高一倍,具有良好的稳定性,且在水相中也能保持优良的荧光性能。(3)在ZnO/Aminopropyl-siloxane量子点的基础上,利用聚乙二醇(PEG-600)进行表面修饰,得到能够稳定分散于水溶液中的ZnO/Aminopropylsiloxane-PEG量子点(ZnO-ASP量子点)(4)通过利用水分散性的ZnO-ASP量子点对洋葱细胞的成像与对拟南芥的生长刺激影响,证实了合成的ZnO-ASP量子点具有较高的生物适用性与较低的毒性。
Semiconductor quantum dots (Quantum dots, also known as QDs), their size are usually 1~10nm, which are same as the diameter of biological macromolecules (proteins). Due to their unique optical properties, such as the wide excitation range, narrow emission peak, tunable emission wavelength and photostability, the quantum dots have been used in the field of life science research as a new kind of fluorescent probe. At present, these quantum dots which are applied to bio-medicine field are almost the CdTe and CdSe, where the toxic elements of Cd to make their application limited. However, the ZnO quantum dots have excellent fluorescent properties, cheap materials and not contain toxic elements. But the water-dispersible ZnO quantum dots what meet the biological testing requirements is still rarely reported. Therefore, some works and innovative results have been done, and the main research contents are as follows:
     (1) In this paper, ZnO quantum dots with a strong visible emission were synthesized in ethanol using a sol-gel method. By the control of different reaction conditions, the fluorescence emission wavelength of ZnO quantum dots can be precise regulated successfully. (2) In this paper, ZnO quantum dots were coated with silane by using 3-aminopropyl-triethoxysilane (APTES), and prepared the ZnO/Aminopropyl -siloxane quantum dots with a core-shell structure. The fluorescence intensity of these core-shell quantum dots is one time higher than ZnO quantum dots’. Besides, these core-shell quantum dots also have a good stability, and are able to maintain excellent fluorescent properties in the aqueous phase. (3) Based on ZnO/Aminopropyl-siloxane quantum dots, polyethylene glycol (PEG-600) was used for surface modification, with this method, the ZnO/Aminopropylsiloxane-PEG quantum dots (ZnO-ASP quantum dots) were synthesized which could be dispersed in the water stably. (4) Through the application of the water-dispersible ZnO-ASP quantum dot on the onion cells imaging and the effect of Arabidopsis thaliana growth-stimulating experiments, confirming these ZnO-ASP quantum dots have a high bio-availability.
引文
[1] Cao G., Rabenberg L. K., Nunn C. M., Mallouk T. E. Formation of quantum-size semiconductor particles in a layered metal phosphonate host lattice [J]. Chem. Mater., 1991, 3(1): 149-156
    [2] Dabbousi B. O., J. Rodriguez-Viejo J., Mikulec F. V., Heine J. R., Mattoussi H., Ober R., Jensen K. F., Bawendi M. G. (CdSe)ZnS Core?Shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. J. Phys. Chem. B, 1997, 101: 9463-9475
    [3] Danek M., Jensen K. F., Murray C. B., Bawendi M. G. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using GdSe quantum dots passivated with an overlayer of ZnSe [J]. Chem. Mater., 1996, 8(1): 173-180.
    [4] Peng X. G., Schlamp M. C., Kadavanich A. V., Alivisatos A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J].J. Am. Chem. Soc., 1997, 119: 7019-7029
    [5] Mews A., Eychmuller A., Giersig M., Schooss D., Weller H. Preparation, characterization, and photophysics of the quantum dot quantum well system CdS/HgS/CdS[J]. J. Phys. Chem., 1994, 98(3): 934-941.
    [6] Battaglia D., Li J. J., Wang Y. J., Peng X. G. Colloidal Two-Dimensional Systems: CdSe Quantum Shells and Wells[J]. Angew. Chem. Int. Ed., 2003, 42(41): 5035-5039.
    [7] Zhong X. H., Xie R. G., Zhang Y., Basche T., Knoll W. High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals[J]. Chem. Mater., 2005, 17(16): 4038-4042.
    [8] Bleuse J., Carayon S., Reiss P. Optical properties of core/multishell CdSe/Zn (S, Se) nanocrystals[J]. Physica E, 2004, 21: 331-335.
    [9] Cheng C. T., Chen C. Y., Lai C. W., Liu W. H., Pu S. C., Chou P. T., Chou Y. H., Chiu H. T. Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots[J] J. Mater. Chem., 2005,15(3): 3409-3414.
    [10] Alivisatos A. P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271: 933-937
    [11] Henglein A., Ber Bunsenges. Electronics of colloidal nanometer Particles[J]. J. Phys. Chem., 1995,99: 903-913
    [12] Monticone S., Tufeu R., Kanaev V., Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles[J]. J. Phys. Chem. B, 1998, 102(16): 2854~2862
    [13]刘猛.水溶性ZnO量子点的制备研究[D].绵阳:西南科技大学, 2003
    [14]张阳德.纳米生物技术学[M].北京:科学出版社, 2005. 62-65
    [15] Jun Y. W., Choi J. S., Cheon J. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes[J]. Angew. Chem., 2006, 45(21): 3414-3439
    [16]关柏鸥,汤国庆,韩关云,等.半导体纳米材料的光学性能及研究进展[J].光电子·激光, 1998,9(3):260-263.
    [17]刘常升,才庆魁.激光表面改性与纳米材料制备[M].沈阳:东北大学出版社, 2001. 180-181
    [18] Alivisatos A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals[J]. J. Phys. Chem., 1996, 100(31): 13226-13239
    [19]朱屯,王福明,王习东.国外纳米材料技术进展与应用[M].北京:化学工业出版社, 2002, 18-26
    [20] Ladizhansky V., Hodes G., Vega S. Surface Properties of Precipitated CdS Nanoparticles Studied by NMR[J]. J. Phys .Chem. B., 1998, 102(43): 8505–8509
    [21] Routkevitch D., Tager A., A., Haruyam, J., Almawlawi D., Moskovits M., Xu J. M. Nonlithographic nano-wire arrays: fabrication, physics, and device applications[J] IEEE Transactions on Electron Devices, 1996, 43(10): 1646-1658
    [22] Bruchez M. J., Moronne M., Alivisatos A. P., et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016
    [23] Warren C. W., Nie S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science[J] 1998, 281(5385): 2016-2018
    [24] Li Y., Xu D. S., Zhang Q. M., et al. Preparation of cadmium sulfide nanowire arrays in anodic aluminum oxide templates[J]. Chem. Mater., 1999, 11(12): 3428-3433
    [25] Ute R. G., Markus G., Sara C. J., Roland N., Thomas. Nann Quantum dots versus organic dyes as fluorescent labels[J]. nature methods, 2008, 5(9): 763-775
    [26] Medintz I. L., Uyeda H. T., Goldman E. R., Mattoussi H. Quantum dot bioconjugates for imaging, labeling and sensing[J]. Nat. Mater., 2005, 4(6): 435-446
    [27] Takada T., Yano T., Yasumori A., et al. Preparation of quantum-size CdS-doped Na2O-B2O3-SiO2 glasses with high non-linearity[J]. J. Non-Crystalline Solid.,1992, 147: 631-635
    [28] LaMer C.V., Dinegar R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols[J]. J. Am. Chem. Soc., 1950, 72(11): 4847-4854
    [29] Rossetti R., Ellison J. L., Gibson J. M., Brus L. Size effects in the excited electron states of small colloidal CdS crystallites[J]. J. Chem. Phys., 1984, 80(9): 4464-4469
    [30] Rossetti R., Hull R., Gibson J. M. Excited electronic states and optical spectra of ZnS and CdS crystallites in the≈15 to 50? size range: evolution from molecular to bulk semiconducting properties[J]. J. Chem. Phys, 1985, 82(1): 552-559
    [31] Hines M. A., Guyot S. P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals[J]. J. Phys. Chem., 1996, 100(2): 468-471
    [32] Bowen-Katari J. E., Colvin V. L., Alivisatos A. P. X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface[J]. J. Phys. Chem., 1994, 98(15): 4109-4117
    [33] Peng X. G., Wickham J., Alivisatos A. P. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions[J]. J. Am. Chem. Soc., 1998, 120(21): 5343-5344
    [34] Peng Z. A., Peng X. G. Mechanisms of the Shape Evolution of CdSe Nanocrystals[7]. J. Am. Chem. Soc., 2001, 123(7): 1389-1395
    [35]舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒的制备[J].无机化学学报, 1999, 15(1): 1-7
    [36] Stuczynski S. M. , Brennan J. G. , Steigerwald M. L. Formation of metal-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides[J]. Inorganic Chemistry, 1989, 28(25): 443-4432
    [37] Murray C. B., Norris D. J., Bawendi M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715
    [38] Peng Z. A., Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. J. Am. Chem. Soc., 2001, 123(1): 183-187
    [39] Marcus J., Jovan N., Randy J. E., et a1. Photoenhancement of luminescence in colloidal CdSe quantum dot solutions[J] J. Phys. Chem. B, 2003, 107(41): l134-11353
    [40] Haggata S. W., Azad M. M., Motevalli M., et a1. Synthesis and characterization of some mixed alkyl thiocarbamates of gallium and indiam precursors for II-VI materials: the X-ray single-crystal structures of dimcthy1 and diethylindium diethylditif carbamate[J]. Chem. Mater., 1995, 7(4): 716-722
    [41] Wang Y., Herron N., Chen S., Optical properties of cadmium sulfide and lead(II) sulfide clusters encapsulated in zeolites[J]. J. Phys. Chem., 1987, 91(2): 257-260
    [42]丛日敏,罗运军,李国平,谭惠民. PAMAM树形分子模板法原位制备CdS-ZnS核-壳结构量子点[J]高等学校化学学报, 2006, 27(5): 793-796
    [43] Aooklal K., Hanus L. H., Ploehn H. J., et a1. A blue emitting CdS/dendrimer nanocomposite[J]. Advanced Materials, 1998, 10(14): 1083-1087
    [44] Burova L. I., Petukhov D. I., Eliseev A. A., Lukashin A. V., Tretyakov Yu. D. Preparation and properties of ZnO nanoparticles in the mesoporous silica matrix[J]. Superlattices and Microstrutures, 2006, 39(1-4): 257-266
    [45] Tsuzuki T., Ding J., McCormick P. G. Mechanochemical synthesis of ultrafine zinc sulfide particles, Physica Bulletin, 1997, 239(3-4): 378-387
    [46] Takayuki H., Hiroshi S., Isao K. Mechanism of formation of CdS and ZnS ultrafine particles in reverse micelles[J]. Industrial Engineering Chemical Reviews, 1994, 33(12): 3262-3269
    [47] Rajeshwar K., Tacconi N. R., Chenthamarakshan C. R., Semiconductor-based composite materials: preparation, properties and performance[J]. Chem. Mater., 2001, 13(9): 2765-2782
    [48] Bhat D. K. Facile Synthesis of ZnO Nanorods by Microwave Irradiation of Zinc-Hydrazine Hydrate Complex[J]. Nanoscale Res. Lett., 2008 3(1):31-35
    [49] Yissar V, P,, Katz E,, Waserman J,, et al. Acetylcholine esterase-labeled CdS nanoparticles on electrodes: photoelectrochemical sensing of the enzyme inhibitors[J]. J. Am. Chem. Soc., 2003, 125(3): 622-623
    [50] Canizal G., Schabes-Retchkiman P.S., Palc U., Liu H. B., Ascencio J. A. Controlled synthesis of ZnO nanoparticles by bioreduction[J]. Materials Chemistry and Physics, 2006, 97(2): 321-329
    [51] Yang L. M., Ye Z .Z., Zeng Y. J., Xu W. Z., Zhu L. P., Zhao B.H. Density controllable growth of ZnO quantum dots by MOCVD[J]. Solid State Communications, 2006, 138(12): 577-579
    [52]彭英才.半导体量子点的自组织生长及其应用[J].半导体杂志, 1999, 24(3): 40-50
    [53] Norris D. J., Sacra A., Bawendi M. G., et al. Measurement of the size dependent hole spectrum in CdSe quantum dots[J]. Physical Review Letters, 1994, 72(16): 2612-2615
    [54] Tran P.T., Goldman E.R., Anderson G.P., Mauro J.M., Mattoussi H. Application of luminescent CdSe-ZnS quantum dot bioconjugates in immuno and fluorescence quenching assays[J]. Proceedings of the SPIE-The International Society for Optical Engineering, 2002, 46(36): 23-30
    [55] Goldman E. R., Balighian E. D., Mattoussi H., Kuno M. K., Mauro J. M., Tran P. T., Andersont G. P. Avidin: A natural bridge for quantum dot-antibody conjugates[J]. J. Am. Chem. Soc., 2002, 124(22): 6378-6382
    [56] Goldman E. R., Anderson G. P., Tran P. T., Mattoussi H., Charles P. T., Mauro J. M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays[J]. Analytical Chemistry, 2002, 74(4): 841-847
    [57] Han M. Y., Gao X. H., Su J. Z., Nie S. Quantum-dot-tagged microbeads for multiplexedoptical coding of biomolecules[J]. nature biotechnology, 2001 ,19(7): 631-635
    [58] Xu H. X., Sha M. Y., Mahoney W., et al. Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay[J]. Nucleic Acids Research, 2003, 31(8): e43/1-e43/10
    [59] Tank H. J., Dirk R. W., Raap T. Fish and immunocytochemistry: towards visualising single target molecules in living cells[J]. Curr.Opin.Biotech., 2005, 16: 1-6
    [60] Gao X. H., Cui Y. Y., Levenson R. M., Chung L. W. K., Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nature Biotechnology, 2004, 22(8): 969-976
    [61] So1 M. K., Xu C. J., Loening A. M., Gambhir S. S., Rao J. H. Self-illuminating quantum dot conjugates for in vivo imaging[J]. Nature Biotechnology, 2006, 24(3): 339-343
    [62] Michalet X., Pinaud F. F., Bentolila L. A., Tsay J. M., Doose S.,. Li J. J., Sundaresan G., Wu A. M., Gambhir S. S., Weiss S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics[J]. Science, 2005, 307(5709): 538-544
    [63] Dubertret B., Skourides P Norris D. J., Noireaux V., Brivanlou A. H., Libchaber A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles[J]. Science, 2002, 298(29): 1759-1762
    [64] Kim ed al. near-Infrared Fluorescent Type-II Quantum Dots for Sentinel Lymph Node Mapping[J]. Nature Biotech, 2004, 22: 94-97
    [65] Chen F. Q., Gerion D. Fluorescent CdSe/ZnS Nanocrystal?Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells[j]. Nano, Lett., 2004, 4(10): 1827-1832
    [66] Wu X. Y., Liu H. J., Liu J. Q., Haley K. N., Treadway J. A., Larson J. P., Ge N. F., Peale F., Bruchez M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. nature biotechnology, 2003, 21(1): 14-46
    [67] Pinaud F., Michalet X., Bentolila L. A., Tsay J. M., Doose S., Li J. J., Iyer G., Weiss S. Advances in fluorescence imaging with quantum dotbio-probes[J]. Biomaterials, 2006, 27(9): 1679–1687
    [68]陈启凡,杨冬芝,王文星,等. CdTe量子点对胰凝乳蛋白酶的荧光标记[J].分析测试学报, 2008, 27(2): 188-191
    [69] Gerion D., Pinaud F., Williams S. C., et al. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots[J]. J. phys. Chem. B., 2001, 105(37): 8861-8871
    [70]马剑刚.低维ZnO材料的微结构和光学性质研究[D].长春:东北师范大学, 2002
    [71] Van Dijken A., Meulenkamp E. A., Vanmaekelbergh D., et al. The luminescence of nanocrystalline ZnO particles : the mechanism of the ultraviolet and visible emission[J]. J. Lumin., 2000, 87: 454-456
    [72] Agashe C., Kluth O., Hupkes J., et al. Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films[J]. J. Appl. Phys., 2004, 95(4): 1911-1917
    [73] Spanhel L., Anderson M. A. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids[J]. J. Am. Chem. Soc., 1991, 113: 2826-2833
    [74] Fu Y. S., Du X. W., Kulinich S. A., Qiu J. S., Qin W. J., Li R., Sun J., Liu J. Stable Aqueous Dispersion of ZnO Quantum Dots with Strong Blue Emission via Simple Solution Route [J]. J. Am. Chen. Soc., 2007, 129(51): 16029-16033
    [75]刘猛,庄稼,迟燕华.水溶性ZnO量子点的制备及其光学性质[J].无机化学学报, 2006, 22(4): 651-655
    [76] Xiong H. M., Xu Y., Ren Q. G., Xia Y. Y. Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging[J]. J. Am. Chen. Soc., 2008, 130(24): 7522–7523
    [77] Brus L. Quantum crystallites and nonlinear optics[J]. Appl. Phys., 1991, 53(6): 465-474
    [78] Bera D, Qian L, Sabui S, et al. Photoluminescence of ZnO quantum dots produced by a sol-gel process[J]. Opt. Mater., 2008, 30(8): 1233-1239
    [79] Van Dijken A., Meulenkamp E. A., Vanmaekelbergh D., et al. Identification of the transition responsible for the visible emission in ZnO using quantumsize effects[J]. J. Lumin., 2000, 90(3-4): 123-128
    [80] Jana N. R., Yu H., Ali E. M., Zheng Y., Ying J. Y. Controlled photostability of luminescent nanocrystalline ZnO solution for selective detection of aldehydes[J]. Chem. Commun., 2007, 14: 1406-1408
    [81] Watts B, Thomsen L, Fabien J R, et al. Understanding the Conformational Dynamics of Organosilanes:γ-APS on Zinc Oxide Surfaces[J]. Langmuir, 2002, 18(1): 148-154
    [82] Sun W. C., Gee K. R., Klaubert D. H., Haugland R. P. Synthesis of Fluorinated Fluoresceins[J]. J. Org. Chem., 1997, 62(19): 6469-6475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700