用户名: 密码: 验证码:
磺化杂萘联苯聚醚酮酮及聚酰亚胺质子交换膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是目前世界上最成熟的一种能将氢气与空气中的氧气化合成洁净水并释放出电能的技术,由于其具有能量密度高、无噪音、工作温度低等特点和优势,而成为发展最快、应用最广和最有前途的燃料电池,是具有能源革命意义的新一代能源动力系统。目前PEMFC中主要使用的是全氟磺酸型质子交换膜,但价格昂贵、使用温度低以及甲醇渗透率高等缺点限制了它们的广泛应用。因此,以成本低廉的碳氢主链以及主链含杂原子的芳香性聚合物为原料,通过磺化、掺杂无机电解质等方法制备质子交换膜成为学术界的研究热点。
     本文以4,4′-(4-氟苯甲酰基)苯(DFKK)、3,3′-二磺酸钠-4,4′-(4-氟苯甲酰基)苯(SDFKK)、六氟双酚A(BPAF)和4-(4-羟苯基)二氮杂萘酮(DHPZ)为单体,通过溶液亲核取代逐步聚合的方法合成了一系列不同磺化度高分子量的磺化聚醚酮酮(SPPFEKK)。聚合物的特性粘度在1.29~1.53 dL/g之间,通过溶液铸膜法制备的高分子量聚合物均质膜均表现出了较好的韧性。通过FT-IR,~1H-NMR等手段对SPPFEKK的结构进行了表征,并研究了膜的性能。结果表明,SPPFEKK磺酸基的热分解温度在340℃,主链分解温度在550℃以上;拉伸强度在57.1~69.2 MPa之间;膜的质子传导率和甲醇渗透系数均随着磺化度的增大而增大,磺化度(DS)为1.2的SPPFEKK-120膜的质子传导率(σ)达到1.0×10~(-1)S/cm(95℃);甲醇渗透系数在1.58×10~(-7)~2.76×10~(-7)cm~2/s,比Nation(?)117膜(10~(-6)cm~2/s)降低了一个数量级。
     以磺化度为1.0的SPPFEKK和SPPEKK(以DFKK,SDFKK和DHPZ为单体合成的磺化聚醚酮酮)为基体,采用溶胶凝胶法制备了有机-无机复合膜,并引入正硅酸乙酯以及能与无机质子导体作用的硅烷偶联剂γ-氨丙基三乙氧基硅烷(AS)进行水解缩合,进一步将无机质子导体“固定”在硅胶空间网状结构中。考察了PWA/AS/SiO_2的加入对复合膜的性能的影响。实验证明,与直接掺杂以及溶胶共混法掺杂杂多酸无机质子导体相比,PWA/AS/SiO_2的加入更加有效地抑制了PWA的渗漏。PWA/AS/SiO_2加入量为15%的SPPFEKK-15和SPPEKK-15在95℃的质子传导率分别达到1.0×10~(-1)S/cm和8.9×10~(-2)S/cm,比纯膜提高了近一倍;复合膜的5%热失重温度分别为308和304℃;拉伸强度为76.7和70.8 MPa。通过连续测试7天来考察复合膜中PWA在水中的溶出性,发现PWA的溶出主要发生在前三天,每天的溶出量为0.7%左右,三天后PWA的溶出速度明显减小,每天的溶出量低于0.3%,测试七天时PWA在水中几乎不再溶出,溶出量低于0.1%,且复合膜仍具有较高的质子传导率(>6.1×10~(-2)S/cm)。
     以50%发烟硫酸为磺化剂,2-(4-氨基苯基)-4-[4-(4-氨基苯氧基)-苯基1-二氮杂萘-1-酮(DHPZDA)为原料,合成了一种新型的磺化二胺单体2-(2-磺酸基-4-氨基苯基)-4-[4-(2-磺酸基-4-氨基苯氧基)-苯基]-二氮杂萘-1-酮(S-DHPZDA),并对其合成工艺条件进行了优化。以4,4′-Z氨基二苯醚-2,2′-二磺酸基(ODADS),4,4′-二(4-氨基苯氧基)-2,2-′二磺酸基联苯(BAPBDS),S-DHPZDA为磺化二胺单体,4,4′-二氨基二苯醚(ODA),4,4′-二(4-氨基苯氧基)联苯(BAPB),DHPZDA为非磺化共聚二胺单体,1,4,5,8-萘四甲酸二酐(NTDA)为二酸酐单体,采用一步聚合法合成了六个系列不同磺化度的磺化聚酰亚胺(SPI-1~6),并通过溶液铸膜法制备了聚合物膜。对其结构进行了表征,并研究了溶解性、耐热稳定性、水解和抗氧化稳定性、含水率、尺寸稳定性、力学性能、阻醇性能以及质子传导率等性能与其结构的关系。结果表明,与其它磺化聚酰亚胺相比,扭曲非共面的二氮杂萘酮的引入极大地提高了SPI的溶解性能,随着磺化度增大,SPI-1~6可以溶解在N-甲基吡咯烷酮(NMP)、二甲基亚砜(DMSO)、N,N-二甲基甲酰胺(DMF)等非质子极性溶剂中;SPI膜具有优异的热稳定性能,磺酸基的降解温度均在310℃以上,且随着DS的增大而升高,主链的降解温度在560℃以上;SPI的质子传导率随DS的增大而增大,当DS大于0.6时,95℃时SPI的质子传导率达到10~(-2)S/cm;通过在SPI的主链中引入柔性基团以及碱性较强的磺化二胺单体可以提高SPI的水解稳定性能,高磺化度的SPI-6-80达到了1280 h;低磺化度的SPI均具有较好的水解稳定性能,SPI-6-20的水解稳定性达到6000 h以上;SPI的拉伸强度在50.1~98.1 MPa;SPI具有优异的阻醇性能,其甲醇渗透系数在10~(-8)~10~(-7) cm~2/s,比Nation(?)117膜(10~(-6)cm~2/s)降低了1~2个数量级。
Proton exchange membrane fuel cells (PEMFC) are one of the most full-blown technologies which can convert the chemical energy from the reaction of the hydrogen and oxygen into electrical energy. The only byproducts from PEMFC systems are the water and heat. They have been the most promising fuel cells because of their high power density, no noise, low working temperature, etc. Until now, perfluorosulfonic acid membranes have been almost the only PEM used either in practical systems or academics. However, they have disadvantages of high cost, high methanol permeability and reduced proton conductivity at high temperature which limited their abroad applications especially in high temperature fuel cell operation. Therefore, extensive attempts have been performed to the preparation of proton exhange membrane (PEM) by polymers with low cost through sulfonation or adulterating inorganic proton conductors.
     A series of sulfonated copoly (phthalazinone ether ketone ketone)s (SPPFEKK) were synthesized from 4-(4-hydroxyphenyl)-1(2H)-phthalazinone (DHPZ), 4,4'-hexafiuoroiso-propylidenediphenol (BPAF), 1,4-bi(4-fluorobenzoyl) benzene (DFKK) and 1,4-bi(3-sodium sulfonate-4-fluorobenzoyl) benzene (SDFKK) by direct nucleophilic polycondensation reaction. Their inherent viscosity values are ranged from 1.29 to 1.53 dL/g. The flexible SPPFEKK membranes are prepared by solution casting method from N-methyl-2- pyrrolidone (NMP). The chemical structures of the SPPFEKK are characterized by ~1H-NMR and FT-IR, and the properties of the membranes are investigated too. The results indicated that the decomposed temperatures of sulfonic group and the main chain in the SPPFEKK membranes are above 340℃and 550℃, respectively. The tensile strength of the membranes in dry state varies from 57.1 to 69.2 MPa. The proton conductivity and the methanol permeability are increasing with the sulfonation degree (DS) of the membranes. The proton conductivity of the SPPFEKK with sulfonation degree (DS) of 1.2 is 1.0×10~(-1) S/cm at 95℃. The methanol permeabilities of the SPPFEKK membranes rise from 1.58×10~(-7) cm~2/s to 2.76×10~(-7) cm~2/s with the increment of DS, which is considerably lower than that of Nafion(?) 117.
     Organic-inorganic hybrids of SPPFEKK or SPPEKK, heteropoly acids (PWA) and silica were prepared by in situ growth of the inorganic network by hydrolysis and condensation of tetraethoxy silane (TEOS) and 3-aminopropyltrimethoxysilane (AS). The AS has the interaction with the PWA and TEOS, which could fix the PWA in the net structure of the SiO_2. The influence of the introduction of the PWA/AS/SiO_2 in the composite membranes is investigated. The data proves that the introduction of the PWA/AS/SiO_2 can restrain the leak of the PWA. The proton conductivities of the SPPFEKK-15 and SPPEKK-15 are 1.0×10~(-1) S/cm and 8.9×10~(-2) S/cm at 95℃, which multiply one-fold comparing with pure membranes. The 5% weitht loss temperatures of the composite membranes are 308℃and 304℃. The tensile strength values of them are 76.7 MPa and 70.8 MPa. The stability of the PWA in the composite membranes is characterized by immersing the membranes in water for 7 days and tests the PWA concentration of the water everyday. The result shows that the leakness of the PWA mainly happens in the first three days, and the leak percentage is lower than 0.7%/day. Then the speed of the leakness becomes lower, and the leak percentage is less than 0.3%/day. At the 7th days, PWA in composite membranes gets to stable and the composite membranes still have considerable high proton conductivity (above 6.1×10~(-2) S/cm).
     A novel sulfonated diamine, 1,2-dihydro-2-(2-sulfonic-4-amino-phenyl)- 4-[4-(2-sulfonic-4-aminophenoxy)-phenyl]-phthalazin-1-one (S-DHPZDA), is successfully synthesized from 1,2-dihydro-2-(4-amino-phenyI)-4-[4-(4-aminophenoxy)-phenyl]-phthalazin-1-one(DHPZDA) by direct sulfonation. Six series of sulfonated polyimides (SPI-1-6) are prepared by sulfonated diamines, S-DHPZDA, 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid (BAPBDS), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), nonsulonated diamines, 4,4'-diaminodiphenyl ether (ODA), 4,4'-bis(4-aminophenoxy) biphenyl (BAPB), DHPZDA and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) by "one-step" copolymerization. The results demostrate that compared to other SPI, SPI-1-6 have improved solubility because of the introduction of the noncoplanar and twist structure phthalazinone moieties in the polymers main chain. The SPI-1-6 could soluble in aprotic organic solvents like m-cresol, NMP, DMSO. The decomposed temperatures of sulfonic group and the main chain in the SPI-1-6 membranes are above 310℃and 560℃, respectively. When the DS is higher than 0.6, the proton conductivity of the SPI reached to 10~(-2) S/cm at 95℃. The hydrolytic stability of the SPI membranes can be enhanced by inducting flexible bones and more basic sulfonated diamine to the SPI's main chain. SPI-6-80 with high DS (0.8) has the hydrolysis stability of 1280 h, while the SPI-6-20 can maintain its mechanical strength in the water for more than 6000 h at 80℃. The tensile strength of the SPI-1-6 membranes varies from 50.1 to 98.1 MPa. The methanol permeabilities of the SPPFEKK membranes rise from 10~(-8)~10~(-7) cm2/s with the increment of DS.
引文
[1] 衣宝廉.燃料电池.北京:化学工业出版社,2003.
    
    [2] 王筱武.燃料电池.科技通报,1999,15(3):242-243.
    
    [3] 杨遇春.燃料电池及其相关材料新进展(一).稀有金属,1999,23(2):121-124.
    
    [4] Brian C. H. Steele and Angelika Heinzel, Materials for fuel-cell technologies, Nature, 2000, 414 (15): 345-352.
    
    [5] 宋文生,李磊,王宇新,燃料电池汽车研发现状及发展前景,天津汽车,2003,1:5-7.
    
    [6] 雷永泉,万群,石永康,新能源材料,天津,天津大学出版社,2000.
    
    [7] Erich G. Alkaline fuel cells: a critical view. Journal of Power Sources, 1996,61(1-2): 99-104.
    
    [8] 宋文顺,化学电源工艺学,北京,中国轻工业出版社,1998.
    
    [9] Hung Z., Tu H.L., Zhang J.Q.,etc. The research and application of proton exchange membrane fuel cells.Beijing, Pubilishing company of metallurgical industry, 2000.
    
    [10] Mueller F, Brouwer J, Kang S et al. Quasi-three dimensional dynamic model of a proton exchangemembrane fuel cell for system and controls development. Journal of Power Sources, 2007, 163(2):814-829.
    
    [11] 吴洪,王宇新,王世昌.用于聚合物电解质燃料电池中的质子导电膜.高分子材料科学与工程,2001,17(4):7-11.
    
    [12] Hickner M A, Ghassemi H, Kim Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs). Chemical Reviews, 2004, 104 (10): 4587-4612.
    
    [13] 衣宝廉.燃料电池 高效、环境友好的发电方式.北京:化学工业出版社,2000.
    
    [14] 李文兵,齐智平.质子交换膜燃料电池研究进展.化工科技,2005,13(4):55-59.
    
    [15] Savadogo O. Emerging membranes for electrochemical systems: solid polymer electrolyte memes for fuel cell systems. Journal of New Materials for Electrochemical Systems, 1998, 1(1): 47-66.
    
    [16] 毛宗强.燃料电池.北京:化学工业出版社,2005.
    
    [17] Heinzel A, Barragan V M, A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, Journal of Power Sources, 1999, 84(1): 70-74
    
    [18] 蔡年生.质子交换膜在燃料电池中的应用.膜科学与技术.1996,16(4):1-6.
    
    [19] 李国欣.新型化学电源导论.上海:复旦大学出版社,1992.
    
    [20] 于景荣,邢丹敏,衣宝廉等.燃料电池用质子交换膜的研究进展.电化学,2001,7(4):385-395.
    
    [21] Yoshida N, Ishisaki T, Watanabe A, et al. Characterization of Flemion membranes for PEFC.Electrochimica Acta, 1998,43 (24): 3749-3754.
    
    [22] Wakizoe M, Velev O A, Srinivasan S. Analysis of proton exchange membrane fuel cell performancewith alternate membranes. Electrochimica Acta, 1995,40 (3): 335-344.
    
    [23] Yoshitake M, Tamura M, Yoshida N, et al. Studies of perfluorinated ion exchange membranes forpolymer elecrtolyte fuel cells. Denki Kagaku, 1996,64 (6): 727-736.
    
    [24] Carla H-W, Recent advances in perfluorinated ionomer membranes: structure, properties andapplications. Journal of Membrane Science, 1996,120(1): 1-33.
    [25] Gierke T D, Munn G E, Wilson F C, et al., The morphlolgy in Nafion perfluorinated membrane products, as determined by wide-and small-angle X-ray studies. Journal of Polymer Science: Polymer Physics Edition, 1981,19(11): 1687-1704.
    
    [26] Porat Z, Fryer J R, Huxham M, et al., Electron microscopy investigation of the microstructure of Nafion films. Journal of Physical Chemistry, 1995, 99(13): 4667-4671.
    
    [27] Halim J, Buchi F N, Haas O, et al., Characterization of perfluorosulfonic acic membranes by conductivity measurements and small-angle X-ray scattering. Electrochimica Acta, 1994, 39(8-9): 1303-1307.
    
    [28] Fontanella J J, Wintersgill M C, Chen R S, et al., Charge transport and water molecular motion in variable molecular weight Nafion membranes: high pressure electrical conductivity and NMR. Electrochimica Acta, 1995,40 (13-14): 2321-2326.
    
    [29] Yeager H L, Steck A. Cation and water diffusion in Nafion ion exchange membranes: influence of polymer structure. Journal of Electrochemical Society, 1981,128(9): 1880-1884.
    
    [30] Komoroski R A, Mauritz K A. A sodium_23 nuclear magnetic resonance study of ionic mobility and contact ion pairing in a perfluorosulfonate ionomer. Journal of America Chemical Society, 1978(24), 100: 7487-7489.
    
    [31] Hsu W Y, Girerke T D. Ion transport and clustering in Nafion perfluorinated membranes. Journal of Membrane Science, 1983, 13 (3): 307-326.
    
    [32] Lee P C, Meisel D. Luminescence quenching in the cluster network of perfluonsulfonat emembrane. Journal of America Chemical Society, 1980,102 (17): 5477-5481.
    
    [33] Jr.Zawodzinski T A, Springer T E, Davey J, et al. A comparative study of water uptake by and transport through ionomeric fuel cell membrance. Journal of Electrochemical Society, 1993, 140 (7): 1981-1985.
    
    [34] Pourcelly G, Oikonomou A, Gavach C. Influence of the water content on the kinetics of counter ino transport in perfluorosulphonic membranes. Journal of Electroanalytical Chemistry, 1990,287(1): 43-59.
    
    [35] Jr.Zawodzinski T A, Derouin C, Radziski S, et al. Water uptake by transport through Nafion117 membrane. Journal of Electrochemical Society, 1993, 140 (4): 1041-1047.
    
    [36] Jr.Zawodzinski T A, Neeman M, SillerudL O, et al. Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. Journal of Physical Chemistry, 1991, 95 (15): 6040-6044.
    
    [37] Yeo R S, Zeldin A N, Kukacka L E, Corrosion of polymer-concrete composites in hydrochloric acid at elevated temperature, Journal of Applied Polymer Science, 1981, 26 (4): 1159-1165.
    
    [38] Yeo R S, Orehotsky J, Visscher W, et al. Ruthenium-Based Mixed Oxides as Electrocatalysts for Oxygen Evolution in Acid Electrolytes, Journal of Electrochemical Society, 1981, 128 (9): 1900-1904.
    
    [39] Sumner J J, Creager S E, Ma J J, et al. Proton Conductivity in Nation117 and in a Novel Bis[(perfluoroalkyl)sulfonyl]imide Ionomer Membrane, Journal of Electrochemical Society, 1998, 145 (1): 107-110.
    
    [40] Kikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Progress in Polymer Science, 2000,25 (10), 1463-1502.
    
    [41] Penner R M, Martin C R. Ion transporting composite membranes. Journal of Electrochemical Society, 1985, 132 (2): 514-515.
    [42] Verbrugge M W, Hill R F, Schneider E W. Composite membranes for fuel cell applications. AICHE Journal, 1992, 38(1): 93-100.
    
    [43] Liu C, Martin C R. Ion transporting composite membrances. Journal of Electrochemical Society, 1990, 137(2):510-515.
    
    [44] Tazi B, Savadogo O. Parameters of PEM fuel cells based on new membranes fabricated from Nafion, silicotungstic acid and thiophene. Electrochimica Acta, 2000,45(24): 4329-4339.
    
    [45] Savinell R, Yeager E, Tryk D, et al. A polymer electrolyte for operation at temperatures up to 200°C. Journal of Electrochemical Society, 1994, 141(4): L46-L48.
    
    [46] Antonucci P L, Arico A S, Creti P, et al. Investigation of a direct methanol fuel cell based on a composite nafion-silica electrolyte for high temperature operation. Solid State Ionics, 1999, 125(1-4): 431-437.
    
    [47] Malhotra Sand Datta R. Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton exchange membrane fuel cells. Journal of Electrochemical Society, 1997, 144(2): L23-L26.
    
    [48] Doyle M, Choi S K, Proulx G. High-temperature proton conducting membranes based on perfluorinated ionomor membrane-ionic liquid composites. Journal of Electrochemical Society, 2000, 147 (1): 34-37.
    
    [49] Basura V I, Beattie P D, Holdcroft S. Solid-state electrochemical oxygen reductionat Pt/Nafionl 17 and Pt/BAM3GTM 407 interfaces. Journal of Electroanalysis Chemistry, 1998,458 (1): 1-5.
    
    [50] Basura V I, Beattie P D, Holdcroft S. Temperature and pressure dependence of O2 reductionat Pt/Nafionl 17 and Pt/BAMTM407 interfaces. Journal of Electroanalytical Chemistry, 1999, 468 (2): 180-192.
    
    [51] Wang H, Capuano G A. Behaviour of raipore radiation-grafted polymer membranes in H2/O2 fuel cells. Journal of Electrochemical Society, 1998, 145 (3): 780-784.
    
    [52] Gupta B, Buchi F N, Scherer G G. Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. 1. Influence of synthesis conditions. Journal of Applied Polymer Science: Part A: Polymer Chemistry, 1994, 32 (10): 1931-1938.
    
    [53] Lehtinen T, Sundholm G, Holmberg S, et al. Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells. Electrochimica Acta, 1998,43 (12-13): 1881-1890.
    
    [54] Rouilly M V, Kotz E R, Haas O, et al. Proton exchange membranes prepared by simultaneous radiation grafting of styreneon to Teflon-FEP films. Synthesis and Characterization. Journal of Membrane Science, 1983, 81(1-2): 89-95.
    
    [55] Gupta B, Buchi F N, Staub M, et al. Cation exchange membranes by preirradiation grafting of styrene in FEPfilms. II. Properties of copolymer. Journal of Applied Polymer Science: Part A: Polymer Chemistry, 1996,34(10): 1873-1880.
    
    [56] Buchi F N, Gupta B, Haas O, et al. Performance of differently cross-linked, partially fluorinated proton exchange membrane sinpolymer electrolyte fuel cells. Journal of Electrochemical Society, 1995, 142 (9): 3044-3048.
    
    [57] Miyatake K, Hay A. S. Synthesis and properties of poly (arylene ether)s bearing sulfonic acid groups on pendant phenyl rings. Journal of Polymer Science: Part A: Polymer Chemistry, 2001, 39 (19): 3211-3217.
    
    
    [58] Miyatake K, Oyaizu K, Tsuchida E, et al. Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers. Macromolecules, 2001, 34 (7): 2065-2071.
    
    [59] Roziere J, Jones D J. Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annual Review of Materials Research, 2003, 33 (2): 503-555.
    
    [60] 于非,张高文,周震涛.新型芳环聚合物质子交换膜研究进展.化工新型材料,2006,34(3),1-5.
    
    [61] Wyman P, Crook V, Hunt B J, et al. Improved synthesis of phosphorus-containing styrenic monomers. Designed monomers and polymers, 2004, 7 (3): 301-309.
    
    [62] 魏芸,章书兰,孟丽等.含氯氧化剂中A_3碳钢缓蚀剂的合成及缓蚀率测试,四川大学学报(工程科学版),2000,32(4):68-71.
    
    [63] Derouet D, Mulder-Houdayer S, Brosse J C. Chemical.modification of polyd(?)enes in latex medium:Study of epoxidation and ring opening of oxiranes. Journal of Applied Polymer Science, 2005, 95 (1):39-52.
    
    [64] Gaboyard M, Jeanmaire T, Pichot C, et al. Seeded semicontinuous emulsion copolymerization ofmethyl methacrylate, butyl acrylate, and phosphonated methacrylates: Kinetics and morphology. Journal ofPolymer Science, Part A: Polymer Chemistry, 2003,41 (16): 2469-2480.
    
    [65] Mequanint K, Sanderson R. Nano-structure phosphorus-containing polyurethare dispersions: synthesisand crosslinking with melamine formaldehyde resin. Polymer, 2003,44 (9): 2631-2639.
    
    [66] Xiao G Y, Sun G M, Yan D Y, et al. Synthesis of sulfonated poly (phthalazinone ether sulfone)s bydirect polymerization. Polymer, 2002, 43 (19): 5335-5339.
    
    [67] Wu S,Jorgensen J D, Skaja A D, et al. Effects of sulphonic and phosphonic acrylic monomers on thecrosslinking of acrylic latexes with cycloaliphatic epoxide. Progress in Organic Coatings, 1999, 36 (1-2):21-33.
    
    [68] Wycisk R, Pintauro P N. Sulfonated polyphosphazene ion-exchange membranes. Journal of MembraneScience, 1996, 119(1): 155-160.
    
    [69] Guo Q H, Pintauro P N, Tang H, et al. Sulfonated and crosslinked polyphosphazene-basesproton-exchange membranes. Journal of Membrane Science, 1999,154 (2): 175-181.
    
    [70] 王亚琴,张宏伟.燃料电池用非氟质子交换膜研究现状.安徽建筑工业学院学报,2006,14(3),81-87.
    
    [71] Kim J, Kim B, Jung B. Proton Conductivities and methanol permeabilities cf membranes made frompartially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-poly-styrene copolymers. Journalof Membrane Science, 2002, 207 (1): 129-137.
    
    [72] Won J, Choi S W, Kang Y S, et al. Structural characterization and surface modification of sulfonatedpolystyrene-(ethylene-butylene)-styrene triblock proton exchange membranes. Journal of MembraneScience, 2003, 214 (2): 245-257.
    
    [73] Elabd Y A, Walker C W, Beyer F L. Triblock copolymer ionomer membranes: PartⅡ. Structurecharacterization and its effects on transport properties and direct methanol fuel cell performance. Journal ofMembrane Science, 2004, 231 (2): 181-188
    
    [74] Wang Z, Li X F, Zhao C J, et al. Synthesis and characterization of sulfonated poly(arylene etherketone ketone sulfone) membranes for application in proton exchange membrane fuel cells. Journal ofPower Sources. 2006, 160 (2): 969-976.
    
    [75] 王国庆.杂萘联苯型聚芳醚腈(酮)及其磺化改性超滤膜的研制:(博士学位论文),大连:大连理工大学,2005.
    
    [76] 那辉,吴忠文,张宏放等.聚醚醚酮酮和含联苯聚醚醚酮酮共聚物的熔融热.高等学校化学学报,1996,17(7):1133-1137.
    
    [77] 那辉,苑晶,倪余伟等,含联苯结构聚醚醚酮酮共聚物和共混物的制备及性能研究,高等学校化学学报,1997,18(5):826-828.
    
    [78] Bai Z W, Durstock M F, Dang T D. Proton conductivity and properties of sulfonated poly (arylene ether sulfone)s as proton exchange membranes in fuel cells. Journal of Membrane Science, 2006, 281 (1-2): 508-516.
    
    [79] 陈勇,王栓紧,肖敏等.新型的含芳香二腈基磺化聚芳醚腈酮的合成与表征.高等学校化学学报.2007,28(2):362-365.
    
    [80] Jones D J, Roziere J. Recent advances in the functionalisation of polybenzimidazole and poly (etherketone) for fuel cell applications. Journal of Membrane Science, 2001,185 (1): 41-58.
    
    [81] Wang F, Hickner M, Kim Y S, et al. Direct polymerization of sulfonated poly(arylene ether sulfone)random (statistical) copolymers: candidates for new proton exchange membranes. Journal of MembraneScience. 2002, 197 (1-2):231-242.
    
    [82] Nunes S P, Ruffmann B, Rikowski E. Inorganic modification of proton conductive polymermembranes for direct methanol fuel cells, Journal of Membrane Science, 2002, 203 (1-2): 215-225.
    
    [83] 曾繁涤,易回阳,谈晓红,磺化聚醚酮酮的合成和表征,高分子学报,1997,(2):131-135
    
    [84] 邢丹敏,付永柱,刘富强等.燃料电池用磺化聚醚醚酮质子交换膜的研究.高分子材料科学与工程.2005,21(3):282-285.
    
    [85] Linkous C A, Anderson H R, Kopitzke R W, et al. Development of new proto n exchange membrane electrolytes for water electrolysis at higher temperatures. International Journal of Hydrogen Energy, 1998, 23 (7): 525-529.
    
    [86] 李磊,许莉,王宇新等.磺化聚醚醚酮膜的制备及其阻醇和质子导电性能.高分子学报.2003,(3):452-455.
    
    [87] Xing P X, Robertson G P, Guiver M D, et al. Synthesis and characterization of sulfonated poly(etherether ketone) for proton exchange membranes. Journal of Membrane Science, 2004, 229 (1-2): 95-106.
    
    [88] Swier S, Chun Y S, Gasa J, et al. Sulfonated poly (ether ketone ketone) ionomers as proton exchangemembranes. Polymer Engineering and Science, 2005,45 (8): 1081-1091.
    
    [89] Daoust D, Devaux J, Godard P. Mechanism and kinetics of poly (ether ether ketone) (PEEK)sulfonation in concentrated sulfuric acid at room temperature Part 1. Qualitative comparison betweenpolymer and monomer model compound sulfonation. Polymer International, 2001, 50 (8): 917-924.
    
    [90] Xiao G Y, Sun G M, Yan D Y. Polyelectrolytes for Fuel Cells Made of Sulfonated Poly(phthalazinone ether ketone)s. Macromolecular Rapid Communication, 2002, 23 (8): 488-492.
    
    [91] Wang F, Chen T L, Xu J P. Synthesis of poly (ether ether ketone) containing sodium sulfonate groupsas gas dehumidification membrane material. Macromolecular Rapid Communications, 1998, 19 (2):135-137.
    
    [92] Wang F, Chen T L, Xu J P. Sodium sulfonate-functionalized poly(ether ether ketone)s.Macromolecular Chemistry and Physics, 1998,199 (7): 1421-1426.
    
    [93] Liu S Z, Wang F, Chen T L. Synthesis of poly(ether ether ketone)s with high content of sodiumsulfonate groups as gas dehumidification membrane materials. Macromolecular Rapid Communications,2001, 22(8): 579-582.
    
    [94] Wang F, Li J K, Chen T L, et al. Synthesis of poly(ether ether ketone) with high content of sodiumsulfonate groups and its membrane characteristics. Polymer, 1999,40(3): 795-799.
    
    [95] Xiao G Y, Sun G M, Yan D Y. Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinoneether ketone)s. Macromolecular Rapid Communications, 2002,23 (8): 488-492.
    
    [96] Dai Y, Jian X G, Guiver M D, et al. Thin film composite (TFC) membranes with improved thermalstability from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK). Journal of MembraneScience, 2002, 207 (2): 189-197.
    
    [97] Gao Y, Guiver M D, Jian X G, et al. Sulfonation of poly(phthalazinones) with fuming sulfuric acidmixtures for proton exchange membrane materials. Journal of Membrane Science, 2003,227 (1-2): 39-50.
    
    [98] Sun Y M, Guiver M D, Gao Y, et al. Sulfonated poly(phthalazinone ether ketone) for proton exchangemmbranes in direct methanol fuel cells. Journal of Membrane Science, 2005, 265 (1-2): 108-114.
    
    [99] Gao Y, Robertson G P, Guiver M D, et al. Sulfonated copoly(phthalazinone ether ketone nitrile)s asproton exchange membrane materials. Journal of Membrane Science, 2006,278 (1-2): 26-34.
    
    [100] 王国庆,朱秀玲,张守海等.一种杂环磺化聚芳醚腈酮质子交换膜材料的合成及表征.高分子学报,2006,(2):209-212.
    
    [101] Ghosh M K, Mittal K L, Polyimides: fundamentals and applications. New York: Marcel Dekker,1996, P. 7.
    
    [102] Chauvin J, Faure S. Mercier R. Subglass transition and relaxation of oriented chromophores inpolyimides for second order nonlinear optics. Synthetic Metals, 2000,115 (1-3): 245-250.
    
    [103] Genies C. Mercier R, Sillion B. Soluble sulfonated naphthalenic polyimides as materials for protonexchange membranes. Polymer, 2001. 42 (2): 359-371.
    
    [104] 浦鸿汀,乔磊.磺化聚酰亚胺类质子导电材料的研究进展.材料导报,2004,8(12),47-50.
    
    [105] Genies C, Mercier R, Sillion B, et al. Stability study of sulfonated phthalic and naphthalenicpolyimide structures in aqueous medium. Polymer, 2001,42 (12): 5097-5105.
    
    [106] Vallejo E, Pourcelly G, Gavach C, et al. Sulfonated polyimides as proton conductor exchangemembranes. Physicochemical properties and separation H+/Mz+ by electrodialysis; comparison with aperfluorosulfonic membrane. Journal of Membrane Science, 1999 ,160 (1): 127-137.
    
    [107] Piroux F, Espuche E, Mercier R, et al. Sulfonated copolyimides: influence of structural parameters ongas separation properties. Desalination, 2002, 145 (1-3): 371-374.
    
    [108] Piroux F, Espuche E, Mercier R. Water vapour transport mechanism in naphthalenic sulfonatedpolyimides. Journal of Membrane Science, 2004,232 (1-2): 115-122.
    
    [109] Piroux F, Espuche E, Mercier R,et al. Gas transport mechanism in sulfonated polyimides:Consequences on gas selectivity. Journal of Membrane Science, 2002,209 (1): 241-253.
    
    [110] Higuchi E, Asano N, Miyatake K, et al. Distribution profile of water and suppression of methanolcrossover in sulfonated polyimide electrolyte membrane for direct methanol fuel cells. ElectrochimicaActa, 2007, 52 (16): 5272-5280.
    
    [111] Song J M, Miyatake K, Uchida H, et al. Investigation of direct methanol fuel cell performance ofsulfonated polyimide membrane. Electrochimica Acta, 2006, 51(21): 4497-4504.
    
    [112] Zhai F X, Guo X X, Fang J H, et al. Synthesis and properties of novel sulfonated polyimidemembranes for direct methanol fuel cell application. Journal of Membrane Science, 2007, 296 (1-2):102-109.
    
    [113] Fang J H, Guo X X, Okamoto K, et al. Sulfonated polyimides: Synthesis, proton conductivity andwater stability. Journal of Power Sources, 2006, 159 (1): 4-11.
    
    [114] Shang Y M, Xie X F, Guo J W, et al. Synthesis and characterization of novel sulfonated naphthalenicpolyimides as proton conductive membrane for DMFC applications. European Polymer Journal, 2006, 42(11): 2987-2993.
    
    [115] Watari T, Wang H Y, Okamoto K,et al. Water vapor sorption and diffusion properties of sulfonatedpolyimide membranes. Journal of Membrane Science, 2003,219 (1-2): 137-147.
    
    [116] Yan Yin, Jianhua Fang, Ken-ichi Okamoto, et al. Synthesis, proton conductivity and methanolpermeability of a novel sulfonated polyimide from 3-(2',4'-diaminophenoxy)propane sulfonic acid.Polymer, 2003,44 (16): 4509-4518.
    
    [117] Yamada O, Yin Y, Okamoto K, et al. Polymer electrolyte fuel cells based on main-chain-typesulfonated polyimides. Electrochimica Acta, 2005, 50 (13): 2655-2659.
    
    [118] Chen S W, Yin Y, Okamoto K, et al. Synthesis and properties of novel side-chain-sulfonatedpolyimides from bis[4-(4-aminophenoxy)-2-(3-sulfobenzoyl)]phenyl sulfone.Polymer, 2006, 47 (8):2660-2669.
    
    [119] Tanaka K, Islam M N, Okamoto K, et al. Gas permeation and separation properties of sulfonatedpolyimide membranes. Polymer, 2006,47 (12): 4370-4377.
    
    [120] Hu Z X, Yin Y, Ken-ichi Okamoto, et al. Synthesis and properties of novel sulfonated polyimidesbearing sulfophenyl pendant groups for polymer electrolyte fuel cell application. Polymer, 2007, 48, (7):1962-1971
    
    [121] Ueda M, Nakamura K, Okamoto K,et ah Water-resistant humidity sensors based on sulfonatedpolyimides. Sensors and Actuators B: Chemical, 2007, 127 (2): 463-470
    
    [122] 李传峰,邵怀启,钟顺和.有机无机杂化膜材料的制备技术.化学进展,2004,16(1):83-89
    
    [123] Lio, Her, Jensen J, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operation above 100℃. Chemical Material, 2003, 15 (26): 4896-4915.
    
    [124] 伍艳辉,康峰,冯炳康等.无机-有机复合质子交换膜研究进展.电源技术,2006,130(2):169-172
    
    [125] Ruffmann B, Silva H, Schulte B, et al. Organic/inorganic composite membranes for application in DMFC, Solid State Ionics, 2003,162-163: 269-275.
    
    [126] 梁勇芳.磺化杂萘联苯聚芳醚质子交换膜的研究:(博士学位论文).大连:大连理工大学,2007
    
    [127] Nakajma H, Honma I. Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cell. Solid State Ionics, 2002,148 (3-4):607-610.
    
    [128] Nunes S P, Peinemann K V, Ohlrogge K, et al. Membranes of poly(ether imide) and nanodispersedsilica. Journal of Membrane Science, 1999, 157 (2): 219-226.
    
    [129] Kerres J, Cui W, Disson R, et al. Development and characterization of crosslinked ionomermembranes based upon sulfinated and sulfonated PSU Crosslinked PSU blend membranes bydisproportionation of sulfinic acid groups. Journal of Membrane Science, 1998,139(2): 211-225.
    
    [130] Xue S, Yin G P. Proton exchange membranes based on poly (vinylidene fluoride) and sulfonatedpoly (ether ether ketone). Polymer, 2006,47 (14): 5044-5049.
    
    [131] 尹燕.关于高分子电解质型燃料电池用新型侧链型磺化聚酰亚胺的合成剂性能研究:(博士学位论文).天津:天津工业大学,2003.
    
    [132] Hu Z X, Yin Y, Kita H, et al. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application. Polymer, 2007,48 (7): 1962-1971.
    
    [133] Wu S Q, Qiu Z M, Zhang S B, et al. The direct synthesis of wholly aromatic poly( p-phenylene)s bearing sulfobenzoyl side groups as proton exchange membranes. Polymer, 2006,47(20): 6993-7000.
    
    [134] 曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    
    [135] 冯炳康.直接甲醇燃料电池中质子交换复合膜的研究:(硕士学位论文).上海:同济大学,2006.
    
    [136] Jones D J, Roziere J. Recent advances in the functionalisation of polybenzinidazole and polyetherketones for fuel cell applications. Journal of Membrane Science, 2001,185 (1): 41 - 58.
    
    [137] Kreuer K D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science, 2001,185(1):29-39.
    
    [138] 梁勇芳,朱秀玲,蹇锡高等.一种非氟掺杂型质子交换膜材料的制备及表征.功能材料,2007,38(3):408-411.
    
    [139] Liang Y F, Pan H Y, Zang Y X,et al. Synthesis of sulfonated poly(phthalazinone ether nitrile sulfone ketone)s for exchange membrane materials Ⅰ. The 3rd International Conference on Functional Molecule, Dalian, 2005,286-287.
    
    [140] Liang Y F, Pan H Y, Zhu X L. Synthesis of sulfonated poly (phthalazinone ether nitrile sulfone ketone)s for exchange membrane materials Ⅱ, The 3rd International Conference on Functional Molecule, Dalian, 2005, 288-290.
    
    [141] 梁勇芳,朱秀玲,蹇锡高等.耐高温质子交换膜用磺化聚芳醚腈砜酮共聚物的合成与表征.中国有色金属学报,2005,1:205-209.
    
    [142] 李先锋,那辉,陆辉.一种新型的用于质子交换膜燃料电池的磺化聚醚醚酮酮.高等学校化学学报,2004,25(8):1563-1566.
    
    [143] 刘凤歧,汤心颐.高分子物理.北京:高等教育出版社,2004.
    
    [144] Liu F Q, Yi B L, Xing D M et al. Nafion/PTFE composite membranes for fuel cell applications. Journal of Membrane Science, 2003, 212 (1-2): 213-223.
    
    [145] Watari T, Fang J H, Kazuhiro, et al. Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid. Journal of Membrane Science, 2004, 230 (1-2):111-120.
    
    [146] 张耀霞.磺化聚芳醚质子交换膜材料的合成及改性研究:(硕士学位论:之).大连:大连理工大学,2007
    
    [147] 窦志宇.新型燃料电池用质子交换摸的合成和性能研究:(博士学位论文).吉林:吉林大学,2006.
    
    [148] Chikashige Y, Chikyu Y, Miyatake K et al. Poly(arylene ether) ionomers containing sulfofluorenyl groups for fuel cell applications. Macromolecules, 2005, 38 (16): 7121-7126.
    
    [149] Kreuer KD, Dippel TH, Meyer Wolfgang, et al.. Nafion membranes: molecular diffusion,proton conductivity and proton conduction mechanism. Mater. Res. Soc. Symp. Proa, 1993, 293: 273-282.
    
    [150] 王新乐.试论质子的输运机理.希望月报,2007,2,47.
    
    [151] 吴洪,王宇新,王世昌.水分子参与下的质子输运机理.化学通报(网络版),1999,13:c99035.
    
    [152] Kreuer KD. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science, 2001,185 (1): 29-39.
    
    [153] Woo Y, Oh S Y, Kang Y S, et al. Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. Journal of Membrane Science, 2003,220(1-2): 31-45.
    
    [154] 周济.新型磺化聚醚醚酮与磷钨酸复合膜的制备和性能研究:(硕士学位论文).长春:吉林大学,2005.
    
    [155] 钮振强.有机/无机质子交换复合膜的制备和性能研究:(硕士学位论文),大连:大连理工大学,2007
    
    [156] 邓会宁.含有杂萘联苯的聚芳醚电解质膜研究:(博士学位论文).天津:天津大学,2004.
    
    [157] Zhong S L, Cui X J, Cai H L et al. Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications. Journal of Power Sources, 2007, 164 (1): 65-72.
    
    [158] Lehtinen, T.; Sundholm, G.; Holmberg, S.; et al. Electrochimica Acta, 1998,43 (12-13): 1881-1890.
    
    [159] Staiti P, Freni S, Hocevar S. Synthesis and characterization of proton-conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported on silica. Journal of Power Sources, 1999,79(2): 250-255.
    
    [160] Staiti P. Proton conductive membranes constituted of silicotungstic acid anchored to silica-polybenzimidazole matrices. Journal of New Materials for Materials for Electrochemical Systems, 2001,4(1): 181-186.
    
    [161] 虞鑫海,胡志强.新型聚酰亚胺的合成及其性能.绝缘材料通讯,2000,(6):10-12.
    
    [162] 丁孟贤,何天白编著.聚酰亚胺新型材料.北京:科学出版社,1998.
    
    [163] Mittal K L. Polyimides: Synthesis, Characterization, Application Plenum Press, New York, 1984, 1-2.
    
    [164] 彭秧锡.聚酰亚胺新型材料及其应用.化学教育,2004,(4):7-10.
    
    [165] 祁喜旺,陈翠仙,蒋维钧.一种新型的膜材料——聚酰亚胺.化工进展,1995,5:24-28.
    
    [166] 王彦,史国芳.聚酰亚胺的发展和应用.航空材料学报,1994,14(1):56-62.
    
    [167] Yan G, Zhang L R, Zhang C Q, et al. The synthesis of new type sulfonated polyimides. ActaScientiarum Naturalium Universitatis Sunyatseni, 2003,42 (1): 88-90.
    
    [168] Ayad A, Bouet J, Fauvarque J F, et al. Comparative study of protonic conducting polymersincorporated in the oxygen electrode of the PEMFC. Journal of Power Sources, 2005, 149: 66-71.
    
    [169] Woo Y T, Oh S Y, Kang Y S, et al. Synthesis and characterization of sulfonated polyimidemembranes for direct methanol fuel cell. Journal of Membrane Science, 2003, 220 (1-2): 31-45.
    [170] Einsla B R, Kim Y S, Hickner M A, et al. Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells: II. Membrane properties and fuel cell performance. Journal of Membrane Science, 2005,255 (1-2): 141-148.
    
    [171] Meyer G, Gebel G, Gonon L, et al. Degradation of sulfonated polyimide membranes in fuel cell conditions. Journal of Power Sources, 2006,157 (1): 293-301.
    
    [172] Meyer G, Perrot C, Gebel G, et al. Ex situ hydrolytic degradation of sulfonated polyimide membranes for fuel cells. Polymer, 2006,47 (14): 5003-5011.
    
    [173] Ye X H, Bai H, Ho W W S. Synthesis and characterization of new sulfonated polyimides as proton-exchange membranes for fuel cells. Journal of Membrane Science, 2006, 279 (1-2): 570-577.
    
    [174] Park H B, Lee C H, Sohn J Y, et al. Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. Journal of Membrane Science, 2006, 285 (1-2): 432-443.
    
    [175] Li Y H, Jin R Z, Cui Z M, et.al. Synthesis and characterization of novel sulfonated polyimides from 1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid. Polymer, 2007,48 (8): 2280-2287.
    
    [176] Einsla B R, Hong Y T, Kim Y S, et al. Sulfonated naphthalene dianhydride based polyimide copolymers for proton exchange membrane fuel cells. 1. Monomer and copolymer synthesis. Journal of Polymer Science: Part A: Polymer Chemistry, 2004,42 (4): 862-874.
    
    [177] Zhu X L, Jian X G. Soluble aromatic poly (ether amide)s containing aryl-, alkyl-, and chloro-substituted phthalazinone segments. Journal of Polymer Science, Part A: Polymer Chemistry, 2004, 42(8), 2026-2030.
    
    [178] Cheng L, Jian X G. Synthesis and characterization of novel poly(aryl amide imide)s. Journal of Wuhan Institute of Chemical Technology, 2000,22 (3): 40-46.
    
    [179] Fang J H, Guo X X, Okamoto K, et al. Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid. Macromolecules, 2002, 35 (24): 9022-9028.
    
    [180]Yan Yin, Yoshiki Suto, Takaaki Sakabe, et al. Water stability of sulfonated polyimide membranes. Macromolecules, 2006, 39(3), 1189-1198.
    
    [181]Yuming Shang, Xiaofeng Xie, Hao Jin, et al. Synthesis and characterization of novel sulfonated naphthalenic polyimides as proton conductive membrane for DMFC applications. European Polymer Journal, 2006,42(11), 2987-2993.
    
    [182] Guo X X, Fang J H, Okamoto K, et al. Novel sulfonated polyimides as polyelectrolytes for fuel application. 2. Sythesis and proton conductivity of polyimides from 9,9-bis (4-aminophenyl) fluorine-2,7-disulfonic acid. Macromolecules, 2002, 35(17): 6707-6713.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700