用户名: 密码: 验证码:
铜及其化合物一维纳米材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文进一步发展和拓宽了液相中制备一维纳米材料的方法。提出了一些新的合成纳米线和纳米管以及复合结构的技术。在合成半导体材料硫化铜微管,Cu@PVA纳米电缆,Cu@C亚微以及系列功能金属氧化物纳米管的实践上获得了显著进展。利用乙酸辅助的方法合成了特殊结构的硫化铜微管;在铜离子的存在下,诱发聚乙烯醇的交联反应,通过一步的水热反应得到Cu@PVA纳米电缆;通过聚乙烯醇辅助水热碳化过程,制备了长度超过了100μm的Cu@C亚微电缆;使用高活性富碳纳米纤维为模板合成了一系列功能金属氧化物纳米管,并将这一普适方法可以进一步扩展用来合成均匀的三元氧化物纳米管。详细内容归纳如下:
     1.通过乙酸辅助的液相反应,在80℃的条件下,控制合成了具有特殊结构的硫化铜微管。该微管由六方片组成,直径为800nm,长度可达16μm。乙酸的存在和适宜的浓度,以及TAA和CuCl_2合适的投料比例都是合成特殊硫化铜微管的重要影响因素。在这个管状硫化铜的合成过程中,前驱物[Cu-(TAA)_2]Cl_2的一维纳米棒扮演了牺牲模板的角色,引导硫化铜的六方片在其骨架上取向生长,从而组装成具有特殊结构的微管。
     2.由于铜离子可以诱发聚乙烯醇的交联,通过一步水热法成功合成了铜/交联聚乙烯醇的纳米电缆。在200℃的条件下,得到的产物由直径为0.5-1μm长度达100μm的铜/交联聚乙烯醇的纳米电缆组成。在制备这种纳米电缆的过程中,溶液的PH值,反应温度以及反应时间都起着非常重要的作用。伴随纳米电缆的出现,球形或不规则形状的交联聚乙烯醇聚集体也出现在产物中。这一结果证实,在不同金属离子的存在下聚乙烯醇交联反应具有不同的反应速度,这就决定了产品的均一性和其线状核壳结构的质量。
     3.氯化铜和麦芽糖作原料通过聚乙烯醇辅助水热碳化过程合成了直径0.4-0.6μm长度超过了100μm的Cu@C亚微电缆。在此合成过程中,聚乙烯醇发挥了结构导向剂的重要作用,同时,碳水化合物和聚乙烯醇的协同效应也有利于Cu@C亚微电缆的形成。在相同条件下还研究了其它糖类如葡萄糖、β-环状糊精和淀粉对形成Cu@C亚微电缆的影响,并研究了Cu@C亚微电缆的热力学稳定性。此外,在盐酸和过氧化氢的混合溶液中清除铜核可得到良好的无定形碳亚微管。
     4.使用高活性富碳纳米纤维做为模板合成了一系列功能金属氧化物纳米管,如:TiO_2、Fe_2O_3、SnO_2、ZrO_2和SnO_2@Fe_2O_3复合物。与以前使用的碳纳米管相比,这种水热方法合成的富碳纳米纤维具有更高的反应活性,因此它更适合用来合成金属氧化物纳米管,这种普适的方法可以进一步扩展用来合成均匀的三元氧化物纳米管BaTiO_3。用这种方法所合成的SnO_2纳米管具有良好的气敏性,从而显示了此类一维纳米结构的优异性能。
In this dissertation, solution routes have been successfully developed to synthesize of one dimensional nanostructure including copper sulfide complex microtubes constructed by hexagonal nanoflakes, copper@cross-linked PVA nanocables, Cu@carbonaceous sub-microcables and a family of functional metal oxide nanotubes. Copper sulfide microtubes constructed by hexagonal nanoflakes were synthesized by an acetic acid-assisted solution route. Cross-linking reaction of poly (vinyl alcohol) (PVA) can be initiated in the presence of copper ions, resulting in the formation of copper@cross-linked PVA nanocables by one-step hydrothermal approach. (PVA)-assisted hydrothermal carbonization process can be well controlled to synthesize ultralong Cu@carbonaceous sub-microcables. A family of functional metal oxide nanotubes such as TiO_2, Fe_2O_3, SnO_2, ZrO_2, and SnO_2@Fe_2O_3 composite can be successfully synthesized by using highly active carbonaceous nanofibers as templates. The main results were summaried as follows:
     1. An acetic acid-assisted solution reaction at 80℃has been developed to synthesize complex microtubes with a diameter about 800nm and length up to 16μm, which were constructed by hexagonal copper sulfide nanoflakes. The presence of acetic acid, its concentration, and an appropriate molar ratio of [TAA]/[CuCl_2] played crucial roles for the formation of the unusual CuS microtubes. The formation process of complex microtube-like structures suggested that one-dimensional microrods of the initial precursor [Cu-(TAA)_2]Cl_2 complex acted as a sacrificial template for the self-aggregation and oriented growth of CuS nanoflakes onits backbone.
     2. Cross-linking reaction of poly (vinyl alcohol) (PVA) can be initiated in the presence of copper ions, resulting in the formation of copper@cross-linked PVA nanocables by one-step hydrothermal approach. The product obtained at 200℃is composed of copper@cross-linked PVA nanocables with a diameter of 0.5-1μm and length up to 100μm, where the pH value, and temperature play key role in the formation of such nanocables and cross-linking of PVA. Besides the formation of nanocables, the cross-linked PVA aggregates with near spherical shape and irregular shapes have also been found, underlying that the cross-linking reaction in the presence of different metal ions has different reaction rates, which determine the uniformity of the product as well as the quality of the cable-like core-shell structures.
     3. Ultralong Cu@carbonaceous sub-microcables with a diameter of 0.4-0.6μm and length up to more than 100μm have been fabricated successfully by poly (vinyl alcohol) (PVA)-assisted hydrothermal carbonization process using copper chloride and maltose as materials. In this one-pot synthesis, poly (vinyl alcohol) (PVA) has played an important role in the formation of these sub-microcables as a structure directing agent. In addition, the combined synergistic effect of both the carbohydrates and the PVA make it possible for the formation of elegant Cu@carbonaceous sub-microcables. The effects of other saccharides such as glucose, P-cyclodextrin and starch on the formation of Cu@carbonaceous sub-microcables were also examined under the similar condition and the thermal stability of as-prepared Cu@carbonaceous sub-microcables has been studied in detail. Furthermore, removal of copper cores of Cu@carbonaceous sub-microcables at ambient temperature in a mixed solution of hydrochloric acid and H_2O_2 can form well-defined amorphous carbonaceous sub-microtubes.
     4. A family of functional metal oxide nanotubes such as TiO_2, Fe_2O_3, SnO_2, ZrO_2, and SnO_2@Fe_2O_3 composite can be successfully synthesized by using highly active carbonaceous nanofibers as templates. Compared with the previous strategy of using carbon nanotubes as templates, the carbonaceous nanofibers synthesized by hydrothermal approach have higher reactivity, thus making it more suitable for templating synthesis of a variety of metal oxide nanotubes. This general method can be further developed to synthesize uniform ternary oxide nanotubes such as BaTiO_3. The gas sensitivity of SnO_2 nanotubes synthesized by this approach has showed higher sensitivity, which exemplifies the distinct properties of such 1-D hollow nanostructures.
引文
[1]张立德.解思深.2005.纳米材料和纳米结构,化学工业出版社。
    
    [2]张立德,牟季美.2002.纳米材料和纳米结构,科学出版社。
    
    [3]徐国财.2005.纳米科技导论,高等教育出版社。
    
    [4]X..G.Peng, L.Manna, W.D.Yang, J. Wickham, E. Scher, A.Kadavanich ,A.P. Alivisatos.Nature.2000, 404, 59.
    
    [5]T. S.Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A.EI-Sayed.Scienc.1996,272,1924.
    
    [6]M. Li, H. Schnablegger, S. Mann. Nature.1999, 402, 393.
    
    [7]S, Iijima, Nature. 1991,354, 56.
    
    [8]R. F. Service, Science. 2001, 2942,442.
    
    [9]T. Xie, M. H. Jiao, J. W. Yu, Y. C. Wu, L. D. Zhang. Journal of Materials science &Engineering, 2006, 24, 311.
    
    [10]H. Hofmeister, Twinning and multiple twin formation in the growth of metal andsemiconductor nanorods A academic report, Hefei, China, Oct. 2003.
    
    [11]A. M. Morales , C. M. Liber. Science. 1998,279,208.
    
    [12]T. J. Trentler, K. M.Hickman, S. C. Goel. Science. 1995, 75,2455.
    
    [13]P. D. Markowitz, M. P. Zach, P. C. Gibbons. JAm.Chem.Soc. 2001,123, 4502.
    
    [14]X. Jiang, Y. Xie, J . Lu, L. Y. Zhu, W. He, Y. T. Qian. Chem. Mater. 2001,73,1213.
    
    [16]a)H Shi, L Qi, J Ma et al. Chem. Commun. 2002 ,1704.b)H T Shi, L M Qi, J MMa et al. J .Am. Chem. Soc. 2003 ,125 ,3450.c)M. E.Spahr , P. Bitterli, R .Nesper et al. Angew. Chem.Int. Ed. 1998 , 37 ,1263.d)H.J .Muhr , F. Krumeich , U .P .Schnholzer et al . Adv. Mater.2000 , 12, 231.e)H .C. Lee , H.J. Kim, S .H. Chung et al . J . Am. Chem. Soc.2003 ,125,2882.f)K .Soulantica , A .Maisonnat , F. Senocq et al . Angew. Chem. Int . Ed. 2001 ,40,2983.g)V.F.Puntes,K.M.Krishnan,A.P.Alivisatos.Science.2001, 291 ,2115.h)J .Legrand ,A. T. Ngo, C. Petit et al. Adv. Mater.2001,13 ,58.
    
    [17]L. Guo, Z. Wu, T. Liu. Chem. Phys. Lett. 2000, 318, 49.
    
    [18]W. J. Kim, S. M. Yang. Adv. Mater. 2001,75, 1191.
    
    [19]S. K. Wan , F. Kim, J. Akana. Chem. Commun. 2001, 447;H .Shi, L.Qi, J. Ma et al. Chem.Commun. 2002, 1704.
    
    [20]A. Krost, J. Blaesing, H. Protzmann. Appl. Phys. Lett. 2000 , 76,1395.
    
    [21]M .E. Spahr, P. Bitterli, R. Nesper Angew. Chem. Int. Ed.. 1998, 37,1263.
    
    [22]H. J .Muhr, F Krumeich, U. P .Sch nholzer. Adv. Mater. 2000,12, 231.
    
    [23]G. R. Patzke, F. Krumeich, R. Nesper. Angew. Chem. Int. Ed. 2002 , 41,2446.
    
    [24]M. H. Cao, C. W. Hu, E. B. Wang. J. Am. Chem. Soc. 2003,125,11196.
    
    [25]Y. F. Liu, J. B. Cao, J. H. Zeng. Eur. J. Inorg, Chem. 2003,644.
    
    [26]N. R. Jana, L. Gearheart, C. J. Murphy. Chem. Commun.2001,617.
    
    [27]M. Ikegame, K. Tajima, T .Aida. Angew. Chem. Int. Ed. 2003, 42 ,2154.
    
    [28]H. S. Qian; S. H. Yu; J. Y. Gong;L. B. Luo; Fei, L. F. Langmuir .2006, 22, 3830.
    
    [29]H. C(O|¨)lfen. Macromol. Rapid Commun.2001,22, 219.
    
    [30]S. H. Yu, H. C(O|¨)lfen, J. Hartmann, M. Antonietti, Adv.Funct, Mater. 2002,72,541.
    
    [31]M. Antonietti, M. Breulmann, C. G. Goltner, H. C(O|¨)lfen. Chem. Eur.l99S, 4, 2491.
    
    [32]A. Sugawara, T. Ishii, T. Kate, Angew. Chem.Int .Ed. 2003, 42, 5299.
    
    [33]F. S. Bates, G H. Fredrickson,Phys,Today.1998,52,32.
    
    [34]S. H. Yu, M. Antonietti, H. C(O|¨)lfen, M. Giersig. Angew. Chem.Int .Ed. 2002, 41 ,2356.
    
    [35]S. H. Yu, M. Antonietti, H. C(O|¨)lfen, J. Hartmann. Nano Lett.2003,3,379.
    
    [36]S .H. Yu, H. C(O|¨)lfen, K. Tauer, M. Antonietti, Nature Mater.2005,4,51.
    
    [37]P.C. Xue, R. Lu, D.M. Li, M. Jin, C.H. Tan,C.Y. Bao, Z.M. Wang,Y.Y.Zhao ,Langmuir .2004,20, 11234.
    
    [38]A. G. Kanaras, Z. X. Wang, A. D. Bates et al. Angew. Chem. Int. Ed. 2003 , 42 ,191.
    
    [39]E. Braun, Y. Eichen, U. Sivan. Nature. 1998, 397,775.
    
    [40]F. Patolsky, Y.Weizmann, O. Lioubashevski et al. Angew. Chem. Int. Ed. 2002 , 47,2323.
    
    [41]H. J. Liang, T. E. Angelini, J. Ho. J. Am. Chem. Soc. 2003 , 725,11786.
    
    [42]M. Fischler, U.Simon, H. Nir,Y.Eichen,G. A. Burley.J. Gierlich, P. M. E. Gramlich, T. Carell.small .2007, 3, 1049.
    
    [43]Z.B. He, S.H. Yu, Jiping Chem. Mater. 2005 , 77,2785.
    
    [44]R. R. Price, W.J. Dressick, A Singh. J. Am. Chem. Soc.2003 ,125,11259.
    
    [45]B. M. Rabatic, R. C. Claussen and S. I. Stupp Chem. Mater. 2005,17,5877.
    
    [46]J. H. Yan, Z. N. Wan. Mater Sci Eng (A) .2000 ,286,106.
    
    [47]]J .H.Jung, Y.O.No , K. Hanabusa et al. J . Am. Chem. Soc. 2000, 722,5008.
    
    [48]B. M. Rabatic,R. C. Claussen,S. I. Stupp. Chem. Mater. 2005, 17,5877.
    
    [49]J .H.Jung, Y.O.No, S .Shinkai. Langmuir. 2000,16,1643.
    
    [50]Z.H. He, S.H. Yu, X.Y. Zhou, X.G. Li, J.F. Qu Adv. Func.Mater. 2006,16, 1105.
    
    [51]L. Pu, X .Bao, J .Zou et al. Angew. Chem. Int. Ed .2001, 40,1490.
    
    [52]C. R .Martin. Chem. Mater. 1996 , 8,1739.
    
    [53]M .S .Sander, A. L. Prieto, R..Gronsky et al. Adv. Mater. 2002 ,14,665.
    
    [54]Y. Cui, C. M.Lieber, Science .2001, 291,851.
    
    [55]J. C .Hulteen, C. R .Martin, J. Mater. Chem. 1997 , 7,1075.
    
    [56]B. Cheng, E. T. Samulski. J . Mater. Chem. 2001, 11,2901.
    
    [57]F. Schuth,Angew. Chem.Int. Ed. 2003,42,3604.
    
    [58]M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem.Int. Ed. 2004, 43,1334.
    
    [59]B. A .Hernandez, K.S .Chang, E .R .Fisher et al. Chem. Mater. 2002 ,14,480.
    
    [60]B. A. Hernandez, K.S Chang, M. T. Scancella, J.L. Burris,S. K, E.R. Fisher, P. K. DorhoutChem. Mater. 2005, 17,5909.
    
    [61]B.B. Lakshmi, P. K.Dorhout, C .R Martin, Chem. Mater. 1997, 9,857.
    
    [62]B. B .Lakshmi, C. J. Patrissi, C. R. Martin, Chem. Mater. 1997, 9,2544.
    
    [63]M .Steinhart, J .H .Wendorff, A .Greiner et al. Science .2002 ,296,1997.
    
    [64]S. L. Tao ,T. A. Desai .Nano Lett.2007,7,1463.
    
    [65]郜涛.2003.中国科学院固体物理研究所博士学位论文,(D).[博士].
    
    [66]P.M .Ajayan, O.Stephan, P. Redlich et al. Nature. 1995,375,564.
    
    [67R. A .Caruso, M .Antonietti. Chem. Mater .2001,13 ,3272.
    
    [68]B .C Satishkumar, A.Govindaraj, E .M .Vogl et al. J. Mater. Res .1997, 12,604.
    
    [69]B.C.Satishkumar, A.Govindaraj, M .Nath et al. J. Mater. Chem . 2000, 10,2115.
    
    [70]C .N. R .Rao, B .C. Satishkumar, A .Govindaraj. Chem. Commun.. 1997,581.
    
    [71]Z .W. Pan, H.L. Lai, F .C. KAu et al. Adv. Mater. 2000, 12 ,1186.
    
    [72]Y .Zhang, J .Zhu, Q .Zhang et al. Chem. Phys. Lett. 2000,317,504.
    
    [73]G .R. Patzke, F.Krumeich, R .Nesper. Angew. Chem. Int. Ed..,2002 , 41,2446.
    
    [74]M. Gao, S. M. Huang, L .M .Dai et al. Angew. Chem. Int. Ed. 2000, 39,3664.
    
    [75]J . Goldberger, R. He, Y. Zhang, S. Lee , H. Yan, H. J .Choi, P. Yang. Nature .2003 , 422,599.
    
    [76]Y. Yang, X. W.Sun, B. K.Tay, J.X. Wang, Z. L. Dong, H. M.Fan Adv. Mater. 2007,19, 1839.
    
    [77]J . H. He, I. Ichinose , T .Kunitake et al. J. Am. Chem. Soc.2003 ,125,11034.
    
    [78]B. Gates, Y .Y.Wu, Y.D .Yin et al. J. Am. Chem. Soc. 2001,123,11500.
    
    [79]C. Y. Wu, S. H. Yu,S. F. Chen, G. N. Liu, B. H. Liu, J. Mater. Chem. 2006 ,16,3326.
    
    [80]C.R. Xiong, M J. Kim, and K. J. Balkus Jr. small .2006,2, 52.
    
    [81]L. J. Pan, L. Pu, Y. Shi, S. Y. Song, Z. Xu, R. Zhang, Y. D. Zheng Adv. Mater. 2007,19, 461.
    
    [82]X. F .Duan, Y.Huang, Y. Cui, B. Wang, C. M. Lieber, Nature.2001, 409, 66.
    
    [83]Z. L. Wang, Adv. Mater. 2000,12,1295.
    
    [84]J. Hu, T.W.Odom ,C.M.Lieber, Acc. Chem. Res. 1999 ,32, 435.
    
    [85]L.J. Lauhon,M.S. Gudidsen,D.L.Wang,C.M.Lieber. Nature .2002 ,420,57.
    
    [86]J. T. Hu, M. Ouyang, P. D.Yang, C. M. Lieber, Nature. 1999,399,48 .
    
    [87]X..Feng, X. L.Yuan,T. Sekiguchi, W. Z. Lin, J. Y. Kang, J.Phys.Chem.B. 2005,109,15786.
    
    [88]Y. Zhang, K. Suenage, C. Coliex, C. Iijima, Science. 1998,281,973.
    
    [89]Q. Li,C. R. Wang, J. Am. Chem. Soc. 2003, 125,9892.
    
    [90]Y. J. Xing,Q. L. Hang, H. F. Yan, H. Y. Pan, J. Xu, D. P. Yu,Z. H. Xi, Z. Q. Xue, S. Q. Feng,Chem. Phys. Lett .2001,345,29.
    
    [91]L. D. Zhang, G W. Meng, F .Phillipp Mater. Sci. Eng. 2000,286,34.
    
    [92]Y. B .Li, Y .Bando, D .Golberg ,Adv. Mater. 2004 ,16,93.
    
    [93]C .Liu, R. W .Li, A .Belik , D .Golberg, Y .Bando , H.M .Cheng Appl. Phy. Lett. 2006 ,88,043105.
    
    [94]X. C. Wu, W.H.Song, B .Zhao, W.D .Huang, M.H .Pu, Y.P .Sun, J.J.Du, solid state comm. 2000 ,115,683.
    
    [95]G. W .Meng , L. D. Zhang, C. M. Mo , S.Y. Zhang, Y .Qin, S. P. Feng , H. J. Li, JOURNALOF MATERIALS RESEARCH. 1998,13 ,2533.
    
    [96]Y. C .Zhu, Y .Bando, R.Z .Ma,Adv. Mater. 2003,15,1377 .
    
    [97]Y. B .Li, P.S .Dorozhkin, Y .Bando, D .Golberg,Adv. Mater. 2005,17, 5458.
    
    [98]R. Z .Ma, Y .Bando, T .Sato, Adv. Mater. 2002 ,14, 366 .
    
    [99]Y. C. Zhu, Y .Bando, Y .Uemura, Chem. Comm ,2003 ,7,836.
    
    [100]Y. B .Li, Y .Bando, D .Golbeig. Chem. Phy. Lett. 2003 ,375,102.
    
    [101]S. Mathur, H. Shen, N.Donia, T. Rugamer, V.Sivakov, U.Werner J. Am.ChemSoc.2007,129,9746.
    
    [102]M. Aslam, R. Bhobe, N .Alem, S .Donthu, V.P .Dravid, J. App. Phy. 2005,98,074311 .
    
    [103]J. P. Lellouche, S .Govindaraji, A Joseph, J Jang, K.J .Lee, Chem. Comm. 2005 ,34,4357.
    
    [104]C. G.Jin, X.Q .Xiang, C. Jia, W. F .Liu, W. L .Cai, L. Z.Yao, X.G. Li, J. Phy.Chem.B. 2004,108,1844.
    
    [105]C.C .Chen , Y .Bisrat, Z.P. Lu , R.E .Schaak , C.G. Chao , D.C.Lagoudas, Nanotechnology.2006,17,367.
    
    [106]P .L .Chen, J.K .Chang, F.M .Pan, C.T. Kuo, Diam. Rela. Mater. 2005,3, 804 .
    
    [107]P. L. Chen, J.K .Chang, C.T .Kuo, F.M .Pan, Appl. Phy. Lett. 2005,86, 123111.
    
    [108]Y. Y. Xi, J.Z .Zhou, H.H .Guo, C.D .Cai, Z.H .Lin, Chem. Phys. Lett. 2005,412,60.
    
    [109]M. C .Hsu, I.C. Leu, Y.M .Sun, M.H .Hon, J. Cry. Grow. 2005,285,642.
    
    [110]Q. T.Wang, G.Z .Wang, X..H. Han, X.P.Wang, J. G. Hou J. Phys. Chem. B. 2005,109,23326.
    
    [111]B. Daly, D.C. Arnold, J .S. Kulkarni, O.Kazakova,M.T. Shaw, S. Nikitenko, D.Erts , M.A.Morris, J. D. Holmes, small. 2006,2, 1299.
    
    [112]Y. D .Yin, Y .Lu, Y.G .Sun, Y.N .Xia, Nano. Lett. 2002,2, 427 .
    
    [113]X.C Jiang, B .Mayers , T. Herricks, Y.N .Xia, Adv. Mater. 2003 ,15,1740 .
    
    [114]Z.Y Jiang , Z.X. Xie , X.H .Zhang , R.B .Huang , L.S .Zheng ,Chem. Phys. Lett.. 2003,378,313.
    
    [115]M.Z .Liu, P .Guyot-Sionnest, J. Phys. Chem. B.2004 ,108, 5882 .
    
    [116]J. Cao, J.Z .Sun, H.Y .Li, J .Hong, M .Wang, J. Mater. Chem. 2004,14, 1203 .
    
    [117]G .Decher, Science. 1997,277,1232.
    
    [118]W. Jin, X .Shi, E .Caruso, J. Am. Chem. Soc. 2001,123,8121.
    
    [119]S.H.Yu, X.J.Cui, L.L .Li, K..Li, , B. Yu, M .Antonietti, H..C(o|¨)lfen, Adv. Mater. 2004, 16, 1636.
    
    [120]L.B. Luo, S.H .Yu, H.S .Qian, J.Y .Gong, T.Zhou J. Am. Chem. Soc. 2005,127,2822.
    
    [121]H.S .Qian, S.H .Yu, L.B. Luo, J.Y .Gong, L.F .Fei, X.M .Liu, Chem Mater. 2006, 18,2012.
    
    [122]W.B. Bu, Z.l. Hua, H.R. Chen, J.L Shi J. Phys. Chem. B.2005,109, 14461.
    
    [123]T. Luo, L.Y. Chen, K.Y. Bao, W.C. Yu, Y.T. Qian Carbon.2006,44,2844.
    
    [124]J.M. Du, J.L. Zhang, Z.M. Liu, B.X. Han, T. Jiang.Y. Huang ,Langmuir 2006,22, 1307.
    
    [125]Y. Xie, Z.P .Qiao, M .Chen, X.M .Liu, Y.T .Qian, Adv. Mater. 1999,11,1512 .
    
    [126]W.T.Wu ,Y.S.Wang,L .Shi,Q.R.Zhu ,W.M .Pang,G.Y.Xu, F .Lu, Nanotechnology. 2005,16 3017.
    
    [127]K .Zou, X..H .Zhang, X..F .Duan, X..M .Meng, S.K. Wu, J. Crys. Grow. 2004,273, 285.
    
    [128]J.M .Yu, X.L .Hu, Q .Li, L.Z .Zhang, Chem. Comm. 2005,2704 .
    
    [129]A.H .Chen, H.Q .Wang, X.Y .Li, Chem. Comm. 2005,14, 1863.
    
    [130]A.H .Chen, K .Kamate, M .Nakagawa, T .Iyoda, H.Q .Wang, X.Y. Li, J. Phys. Chem. B.. 2005,109,18283.
    
    [131]D.H .Reneker, A.L .Yarin, H .Fong, S .Koombhongse, J. Appl. Phys. 2000,87,4531.
    
    [132]Z.Y. Li, H.M .Huang, C .Wang, Macromolecular rapid communication. 2006,27,152.
    
    [133]Z.C .Sun, Z. Eyal, A.L .Yarin, J.H .Wendorff, A .Greiner, Adv. Mater. 2003 ,15,1929 .
    
    [134]X.M .Liu, K.F .Yao, Nanotechnology .2005,16, 2932.
    
    [135]Z .Yao, W.C. Postma., L .Balents, C .Dekker, Nature .1999,402, 273.
    
    [136]M.S .Gudiksen, L.J .Lauhon, J .Wang, D.C .Smith, CM. Lieber, Nature .2002, 415, 617.
    
    [137]J.H. Zhan, Y .Bando, J.Q .Hu, Y.B .Li, D .Golberg, Chem. Mater. 2004,16,5158 .
    
    [138]X.D .Wang, P.X.. Gao, J.Li, C.J .Summers, Z.L .Wang, Adv. Mater. 2002 ,14,1732.
    
    [139]L. Fu,Y.Q .Liu , Z.M .Liu , B.X. Han , L.C .Cao , D.C .Wei, G .Yu , D.B .Zhu, Adv. Mater.2006,19,181.
    
    [140]H. J.Choi, J.C. Johnson, H. R, S.K. Lee, F .Kim, P. Pausauskie, J .Goldberg, R.J .Saykally,P.D .Yang, J. Phys ,Chem. B. 2003,107,8721.
    
    [141]L J .Lauhon. Nature , 2002 ,420,57.
    
    [142]M .Gao , L .Dai. Synthetic Metals. 2003 , 137,1393.
    
    [1]Anders, H.Michael, G. Chem. Rev. 1995,95,49.
    
    [2](a) Kong, X. Y. Ding, Y.Yang, R.Wang, Z. L. Science 2004,303,1348.(b) Wang, Z. L. Kong, X.Y.Ding, Y. Gao, P. X. Hughes, W. L.Yang, R. S. Zhang, Y. Adv. Funct. Mater. 2004,14, 944. (c)Firestone, M. A.Williams, D. E.Seifert, S.; Csencsitits, R. Nano Lett. 2001,1, 129.
    
    [3](a) C(o|¨)lfen, H.; Mann, S. Angew. Chem., Int. Ed. 2003, 42, 2350. (b) Yin, Y; Rioux, R. M.;Erdonmez, C. K.; Hughes, S.; Somorjai, G A.; Alivisatos, A. P. Science 2004, 304, 711. (c)Xia, Y; Yang, P.; Sun, Y; Wu, Y; Mayers, B.; Gates, B.; Yin, Y; Kim, F.; Yan, H. Adv. Mater.2003,15, 353.
    
    [4](a) Nair, M. T. S.; Nair, P. K. Semicond. Sci. Technol. 1989, 4,191. (b) Jiang, X.; Xie, Y; Lu,J.; He, W.; Zhu, L.; Qian, Y. T. J. Mater. Chem. 2000,10, 2193. (c) Wang, S.; Yang, S. H. Chem.Phys. Lett. 2000, 322,567.
    
    [5]Parkin, I. P. Chem. Soc. Rev. 1996,25, 199.
    
    [6]Zhang, P.; Gao, L. J. Mater. Chem. 2003,13, 2007.
    
    [7]Zhu, L. Y; Xie, Y; Zheng, X. W; Liu, X.; Zhou, G. E. J. Cryst. Growth. 2002, 260,494.
    
    [8]Wan, S. M.; Guo, F.; Peng, Y. Y; Shi, L.; Y, T, Qian, J. Mater. Chem. 2004,14, 2489.
    
    [9]Wan, S. M.; Guo, F.; Peng, Y. Y; Shi, L.; Y, T, Qian, Chem. Lett. 2004, 33,1068.
    
    [10]Larsen, T. H.; Sigman, M.; Ghezelbash, A.; Doty, R.C.; B.A. Korgel, J. Am. Chem. Soc. 2003,125, 5638.
    
    [11]Chen, L.; Chen. Y. B.; Wu, L. M. J. Am. Chem. Soc. 2004,126,16334.
    
    [12]Lu, Q. Y.; Gao, F.; Zhao, D. Y Nano Lett. 2002, 2, 725.
    
    [13]Xu. F.; Zhang. X.; Wu, C. Z.; Wang, X.; Hong, J.; Tian, X. B. New J. Chem. 2003, 27, 1331.
    
    [14]Penn, R. L.; Oskam, G.; Strathmann, T.; Searson, J. P. C; Stone, A.T.; Veblen, D. R. J. Phys.Chem. B 2001,105,2177.
    
    [15]Banfield, J. F.; Welch, S. A.; Zhang, H. Z.; Ebert, T. T.; Penn, R. L. Science 2000,289, 751.
    
    [16]Alivisatos, A. P. Science 2000,289, 736.
    
    [17]Penn, R. L.; Banfield, J. F. Geochim. Cosmochim. Acta 1999, 63, 1594.
    
    [18]Santosh, K. H.; Anand, R. M.; Sharad, G. D. J. Phys. Chem. 1996, 100, 5868.
    
    [19]Yanezawa, T.; Onoue, S.; Kimizuka, N.Adv. Mater. 2001,13,140.
    
    [20]Rolies, M. M.;De Ranter, C. J. Acta Cryst.1978, B34, 3216.
    
    [21]De Ranter, C. J.; ROUES, M. Cryst. Struct.Commun. 1977. 6, 399.
    
    [1](a) C. M. Lieber, Sci. Am., 2001, 285, 58; (b) J. Hu, T. W. Odom ,C. M. Lieber, Acc. Chem.Res., 1999, 32, 435.
    
    [2]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin,F. Kim , H. Yan, Adv. Mater.,2003,15, 353.
    
    [3](a) Z. L. Wang, J. Mater. Chem., 2005, 15, 1021; (b) Z. L. Wang,X. Y. Kong, Y. Ding, P. X.Gao, W. L. Hughes, R. S. Yang ,Y. Zhang, Adv. Funct. Mater., 2004,14, 943; (c) X. S. Fang,C.H. Ye, X. S. Peng, Y. H. Wang, Y. C. Wu and L. D. Zhang,J. Mater. Chem., 2003,13,3040.
    
    [4]G. M. Whitesides, Small, 2005,1,172.
    
    [5](a) F. Caruso, Adv. Mater., 2001, 13, 11; (b) K. J. C. Van Bommel,A. Friggeri , S. Shinkai,Angew. Chem., Int. Ed., 2003, 42, 3027.
    
    [6](a) A. M. Morales , C. M. Lieber, Science, 1998, 279, 208; (b)W. S. Shi, H. Y. Peng, L. Xu, N.Wang, Y. H. H. Tang ,S. T. Lee, Adv. Mater., 2000,12, 1927.
    
    [7]Y. Zhang, K. Suenaga, C. Colliex and S. Iijima, Science, 1998, 281,973.
    
    [8]G. W. Meng, L. D. Zhang, C. M. Mo, S. Y. Zhang, Y. Qin,S. P. Feng ,H. J. Li, J. Mater. Res.,1998, 13, 2533.
    
    [9]Y. Xie, Z. Qiao, M. Chen, X. Liu ,Y. Qian, Adv. Mater, 1999,11, 1512.
    
    [10]Y. Yin, Y. Lu, Y. Sun , Y. Xia, Nano Lett., 2002,2,427.
    
    [11]C. F. Monson, A. T. Woolley, Nano Lett., 2003,3, 359.
    
    [12]L. B. Luo, S. H. Yu, H. S. Qian ,T. Zhou, J. Am. Chem. Soc.,2005, 127,2822.
    
    [13]S. H. Yu, X. J. Cui, L. Li, K. Li, B. Yu, M. Antonietti andH. Co¨lfen, Adv. Mater., 2004,16,1636.
    
    [14]Z. P. Liu, Y. Yang, J. P. Liang, Z. K. Hu, S. Li, S. Peng andY. T. Qian, J. Phys. Chem. B,2003,107, 12658..
    
    [15]Y. Sun , Y. Xia, Adv. Mater. 2002,14, 833.
    
    [1](a) Caruso, F. Adv. Mater. 2001,13,11. (b) Daniel, M. C.; Astruc, D. Chem. Rev. 2004,104,293. (c) Van Bommel, K. J. C; Friggeri, A.; Shinkai, S. Angew. Chem. Int. Ed. 2003, 42,3027.
    
    [2](a) Wong, Y. H.; Li, Q. J. Mater. Chem. 2004, 14, 1413. (b) Lauhon, L. J.; Gudiksen, M. S.;Wang, D. L.; Lieber, C. M. Nature 2002, 420, 57. (c) Li, Q.; Wang, C. R. J. Am. Chem.Soc. 2003, 125, 9892. (d) Wu, Y. Y; Yang, P. D. Appl. Phys. Lett. 2000, 77, 43. (e) Zhang,Y; Suenaga, K.; Colliex, C; Iijima, S. Science 1998, 281, 973. (f) Jang, J.; Lim, B.; Lee, J.;Hyeon, T. Chem. Commun. 2001, 83. (g) Obare, S. O.; Jana, N. R.; Murphy, C. J. Nano Lett.2001,1, 727.
    
    [3]Yin, Y. D.; Lu, Y.; Sun, Y.G.; Xia, Y. N. Nano Lett. 2002,2, 427.
    
    [4]Yu, S. H.; Cui, X. J.; Li, L.; Li, K., Yu, B.; Antonietti, M.; C(o|¨)lfen, H. Adv. Mater. 2004,16,1636.
    
    [5]Sun, X. M.; Li. Y. D. Adv. Mater. 2005,17, 2626.
    
    [6](a) Molares, M. E. T.; Buschmann, V.; Dobrev, D.; Neumann, R.; Scholz, R.; Schuchert, I. U.;Vetter, J. Adv. Mater. 2001,13, 62; (b) Choi, H. Park, S. H. J. Am. Chem. Soc. 2004,126,6248; (c) Monson, C. F.; Woolley, A. T. Nano Lett. 2003, 3, 359; (d) Yen, M. Y.; Chiu, C.W.; Hsia, C. H.; Chen, F. R.; Kai, J. J.; Lee, C. Y.; Chiu, H. T. Adv. Mater. 2003,15, 235.
    
    [7]Monson, C. F.; Woolley, A. T. Nano Lett. 2003, 3, 359.
    
    [8]Luo, L. B.; Yu, S. H.; Qian, H. S.; Zhou, T. J. Am. Chem. Soc. 2005,127, 2822.
    
    [9]Gong, J. Y; Luo, L. B.; Yu, S. H.; Qian, H. S. J. Mater. Chem. 2006, 1,101.
    
    [10]Qian, H. S.; Luo, L. B.; Gong, J. Y.; Yu, S. H.; Li, T. W.; Fei, L. F. Cryst. Growth Des. 2006, 6,607.
    
    [11]Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y; Fei, L. F.; Liu, X. M. Chem. Mater. 2006,18,2102.
    
    [12](a) Sun, X. M.; Li, Y. D. Adv. Mater. 2005,17, 2626. (b) Sun, X. M.; Li, Y. D. Angew. Chem.Int.Ed. 2004, 43, 597. (c) Wang, Q.; Li, H.; Chen, L. Q.; Huang, X. J. Carbon 2001, 39,2211.
    
    [13]Titirici, M.-M.; Antonietti, M.; Thomas, A. Chem. Mater. 2006,18,3808.
    
    [14]Sun, X. M.; Li,Y. D. Langmuir 2005,21, 6019.
    
    [15]Sun, X. M.; Liu, J. F.; Li,Y. D. Chem. Mater. 2006, 18,3486.
    
    [16]Luo, L. B.; Yu, S. H.; Qian, H. S.; Gong, J. Y. Chem. Commun. 2006, 7, 793.
    
    [17](a) Liu, Z. P.; Yang, Y.; Liang, J. B.; Hu, Z. K.; Li, S.; Peng, S.; Qian, Y. T. J. Phys. Chem. B 2003,107, 12658; (b) Chang, Y.; Lye, M. L.; Zeng, H. C. Langmuir 2005,21, 3746.
    
    [18]Deng, B.; Xu, A.W.; Chen, G. Y.; Song, R. Q.; Chen, L. P. J. Phys. Chem. B 2006, 110,11711
    
    [19]Ilie, A.; Durkan, C.; Milne, W. I.; Welland, M. E. Phys. Rev. B 2002, 66, 045412.
    
    [20]Aggarwal, P.; Dollimore, D. A. Thermochim. Acta 1998,319, 17.
    
    [21]Aggarwal, P.; Dollimore, D. A. Thermochim. Acta 1998, 324,1.
    
    [1]F. Favier, E. C. Walter, M. P. Zach, T. Benter, R. M. Penner, Science 2001,293,2227.
    
    [2]S. P. Huang, W. D. Cheng, D. S. Wu, J. M. Hu, J. Shen, Z. Xie, H. Zhang, Y. J. Gong, Appl.Phys. Lett. 2007,90.
    
    [3]O. Lourie, H. D. Wagner, Y. G. Zhang, S. Iijima,Adv. Mater. 1999, 11, 931.
    
    [4]M. L. Tian, J. G. Wang, N. Kumar, T. H. Han, Y. Kobayashi, Y. Liu, T. E. Mallouk, M. H. W.Chan, Nano Letters 2006, 6,2773.
    
    [5]M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, Adv. Mater. 2001,13,113.
    
    [6]C. R. Martin, Science 1994,266, 1961.
    
    [7]M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U.Gosele, Science 2002,296, 1997.
    
    [8]F. Schuth, Angew. Chem.Int. Ed. 2003, 42, 3604.
    
    [9]M. Lahav, T. Sehayek, A. Vaskevich, I. Rubinstein, Angew. Chem.Int. Ed. 2003,42, 5575
    
    [10]M. Steinhart, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Angew. Chem.Int. Ed. 2004, 43,1334.
    
    [11]J. Chen, L. N. Xu, W. Y. Li, X. L. Gou,Adv. Mater. 2005,17, 582.
    
    [12]Y. Ono, K. Nakashima, M. Sano, Y. Kanekiyo, K. Inoue, J. Hojo, S. Shinkai, Chem.Commun.1998, 1477.
    
    [13]G. Gundiah, S. Mukhopadhyay, U. G. Tumkurkar, A. Govindaraj, U. Maitra, C. N. R. Rao, J.Mater. Chem. 2003,13,2118.
    
    [14]J. H. Jung, S. H. Lee, J. S. Yoo, K. Yoshida, T. Shimizu, S. Shinkai, Chem. Eur. J.2003, 9,5307.
    
    [15]C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, Chem. Commun. 1997, 1581.
    
    [16]B. C. Satishkumar, A. Govindaraj, M. Nath, C. N. R. Rao, J. Mater. Chem. 2000,10, 2115.
    
    [17]a) H. Ogihara, M. Sadakane, Y. Nodasaka, W. Ueda, Chem. Mater. 2006, 18, 4981. b)R. S.Yuan, X. Z. Fu, X. C. Wang, P. L. Liu, L. Wu, Y. M. Xu, X. X. Wang, Z. Y. Wang, Chem.Mater. 2006,18, 4700.
    
    [18]X. M. Sun, J. F. Liu, Y. D. Li, Chem. Eur. J. 2006,12, 2039.
    
    [19]X. G. Peng, Chem. Eur. J. 2002,8, 335.
    
    [20]H. S. Qian, S. H. Yu, L. Ren, Y. P. Yang, W. Zhang, Nanotechnology 2006,17, 5995.
    
    [21]H. S. Qian, S. H. Yu, J. Y. Gong, L. B. Luo, L. F. Fei, Langmuir 2006,22, 3830.
    
    [22]H. S. Qian, S. H. Yu, L. B. Luo, J. Y. Gong, L. F. Fei, X. M. Liu, Chem. Mater. 2006, 18,2102.
    
    [23]J. Chen, L. N. Xu, W. Y. Li, X. H. Gou,Adv. Mater. 2005,17, 582.
    
    [24J. F. Liu, X. Wang, Q. Peng,Y. D. Li, Adv. Mater. 2005,17, 764.
    
    [25]W.Gopel, K.D. Schierbaum, Sens. Actuators B 1995,26,1.
    
    [26]G.S. Korotchenkov, S.V. Dmitriev, V.I. Brynzari, Sens. Actuators B 1999, 54, 202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700