用户名: 密码: 验证码:
钛合金表面图案化处理及生物活性化机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金因其优异性能已越来越多的被应用于临床医学。表面改性是目前解决合金在医学领域应用的主要障碍的有效途径,其原因主要有两个方面,其一是将植入材料进行表面图案化,以改变材料表面形貌和提高表面粗糙度,从而提高骨组织与植入材料的机械锁合力和结合强度;其二是在金属表面制备生物强化层或活性层,来改善材料的生物活性,以提高骨组织与材料的结合力,同时减少基体材料中有害离子的溶出,降低材料的生物毒性。
     本文采用飞秒激光和喷砂后酸蚀工艺在Ti及其合金表面加工不同显微图案结构。比较分析了不同图案化表面和生物活性层对生物相容性的影响,采用计算机技术模拟了HA在样品表面的生长过程,制定合理的人工关节和骨修复器表面生物活化层制备工艺。
     主要研究结果表明:
     喷砂工艺能有效提高样品的表面粗糙度。当砂粒尺寸为150目时,得到了既满足精度要求又具有较大生物活性的样品表面。喷砂后的样品先经草酸处理再进行硝酸氧化的方法能够既有效去除表面污染,又能获得良好的氧化层,从而提高基体的生物相容性。采用飞秒激光在NiTi合金及纯Ti为基的样品上加工不同周期结构图案。仿生生长HA的实验表明,在这种具有多级拓扑结构并具有Ti氧化层的表面,HA的生长速度要高于在喷砂酸蚀处理的表面。
     通过体外实验比较不同的图案化表面和有无类骨磷灰石Ti合金表面对成骨细胞生长数量和形态的影响。MTT测试表明,经飞秒激光及喷砂酸蚀表面图案化处理的试样上细胞增殖总数及增殖速率均大于未处理试样,且样品表面的图案结构有利于诱导细胞生长更多的伪足,使其按图案化结构定向攀附,从而提高细胞的贴附生长能力。Ti合金表面生长类骨磷灰石层能有效屏蔽有害离子的溶出,从而显著提高细胞增殖速率。与仅经图案化处理的样品相比,仿生生长HA活性层的样品诱导细胞分泌ALP的能力更强,有利于Ca~(2+)的矿化沉积。
     根据第一性原理对溶液中各种离子在羟基化的TiO_2表面的沉积进行了模拟,分析羟基磷灰石的动态生长过程。结果表明,在反应的初始阶段,溶液中的PO43-首先与水反应生成H_2PO4-,H_2PO4-将诱导至羟基化的TiO_2表面。然后H_2PO4-离出的H+与TiO_2表面的OH-结合形成水分子进入溶液,从而引起溶液中PO43-的沉积。为保持溶液的电中性,沉积PO43-后的表面将吸附Ca~(2+),并诱导了Ca~(2+)的沉积,计算结果表明,Ca~(2+)将优先在PO43-与TiO_2表面形成的八面体间隙位置沉积。随着反应的不断进行,最终在TiO_2表面形成以化学方式结合的钙磷层。
     根据理论研究和前期试验结果,提出最终的在骨修复器件表面制备生物活化层的方案,采用自制设备在商用钛合金人工关节和骨修复器表面制备出均匀活性层,所处理的商用钛合金植入体尺寸精度符合植入要求。并进行了动物体内试验。体内试验表明,经喷砂加酸蚀预处理结合仿生化学法制备类骨磷灰石新工艺表面处理后的植入体,更有利于成骨细胞的生长矿化,加速骨的传导和生长过程,能够迅速与骨组织形成无缝隙的骨性结合。
Ti and Ti alloys have been applied to clinical medicine for their excellent properties. Surface modification is an efficient method to eliminate the restriction in medical applications for Ti alloys. For the surface modification, two aspects should be considered: one is the patterned surface of implant, which can modify the surface appearance and roughness, then improve the mechanical locking force and boning strength between the osseous tissue and the implant; another is the preparation of active layer on the metal surface, which can improve the bioactivity of implant and the binding force, depress the release of noxious ionic, and decrese the cytotoxity of the materials.
     In the present work,femtosecond laser technology (FLT) and sand blasting followed by acid treatment treatment (SLA) were used to prepare the pattern surface of Ti and Ti alloys. The effects of pattern surface and bioactivity layer on biocompatibility were investigated by compartion analysis, and hydroxyaptite (HA) growing process on the specimen with various pattern surfaces was simulated. Furthermore uniform bioactivity layer was prepared on medical implants. The research results show that SLA can effectively improve the surface roughness of specimen. When the sand grain size is 150#, the specimen surface is satisfied for the accuracy requirement and exhibits good bioactivity. The oxalic acid by nitric acid oxidation treatment after sand blasting can eliminate the surface contamination. Meanwhile, the favorable oxide layer is formed, which can improve the biocompatibility.
     The pattens on the NiTi and Ti with different periodic structures were fabricated by FLT. The experiments show that the growthing rate of HA layer on the Ti oxide layer with multiplevel topology structure is faster than that on the surface treated by SLA.
     The vitro experiments were used to investigate the influence of Ti alloy surface with different pattern on the quantity and shape of osteoblast. The influence of Ti alloy surface with or without bone-like apatite was also studied using same method. MTT (3-4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide) reduction assay shows that the cell multiplication quantity and multiplication rate on the pattern surface subjected to FLT and SLA are greater than those on the untreated surface. Moreover, the pattern structure favor to induce the growth of cell pseudopod, which can speel directionally along the pattern microstucture. Therefore, the ability of cell anchorage growth is improved. The HA layer on the Ti alloy can depress the release of noxious ions, furthermore increase the rate of cell multiplication. As compared with the specimen only subjected to pattern treatment, the specimen with bionic growth HA layer has better ability for indcucing the alkaline phosphatase secretion, which is in favor of the mineralize precipitation of Ca~(2+).
     According to the first principles,the deposition processs of different ions in solution on the hydroxylating TiO_2 surface were simulated by a computer to analyze the HA dynamic growth process. The results show: the PO43- reacts with H_2O to form H_2PO4- group, and the H_2 PO4- group deposites on the hydroxylating TiO_2 surface at the initial stage. And then, the H+ in the H_2PO4- group separates out and combined with OH- on the TiO_2 surface to form H_2O. This would result in the acumulation of PO43- group in the solution. To keep the electroneutrality of solution, the alloy surface would absorb the Ca~(2+) to form the precipitation of Ca~(2+)group. The results of computer simulation show that the Ca~(2+)group deposits at the octahedral interstices sites of the PO43- group and TiO_2 surface. With further reaction, the calcium phosphorus layer with chemical combination mode would be form on the TiO_2 surface.
     According to the theroretical investingation and experimental results, the method to prepare bioactivity layer on medical implants (artificial joints and bone restoring body) was established, and the layer, which were prepared by special equipment, are homogenous. The dimensional accuracy of the implants subjected to treatment can meet the demand of implantations. The vivo-tests were also carried out. The results show that the implants subjected to the surface treatment combining the acid erosion after sandblasting and biomimetic chemistry growthing HA layer are favourable to the growth mineralization of osteoblast, which accelerates osseous conduction, bone growth and the formation of seamless synostosis with osseous tissue.
引文
[1] Fernandez-Pradas J.M., Cleries L., Sardin G., et al, Characterization of calcium phosphate coatings deposited by Nd : YAG laser ablation at 355 nm: influence of thickness, Biomaterials, 2002,23(9):1989-1994
    [2]陈锦安,李嘉宝,邢浩旭,人体骨骼力学特性探讨,暨南大学学报(自然科学版), 1999,20(1):74-78
    [3]董安莉,陈璐璐,丁桂芝,成骨细胞形成机制研究进展, Chinese Journal Of Osteoporsis, 1999,5(3):60-64
    [4]张刚生,生物矿物材料及仿生材料工程,矿产与地质, 2002, 16(2):98-102
    [5] Taton T.A., Nanotechnology - Boning up on biology, Nature, 2001,412(6846):491-492
    [6]蒋挺大,张春萍,胶原蛋白,北京:化学工业出版社, 2001.1-8
    [7] Jones F.H., Teeth and bones: applications of surface science to dental materials and related biomaterials, Surface Science Reports, 2001,42(3-5):79-205
    [8] Long M., Rack H.J., Titanium alloys in total joint replacement - a materials science perspective, Biomaterials, 1998,19(18):1621-1639
    [9] Niinomi M., Mechanical properties of biomedical titanium alloys, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1998,243(1-2):231-236
    [10] Donachie M., Biomedical alloys, Advanced Materials & Processes, 1998,154(1):63-65
    [11] Niinomi M., Mechanical biocompatibilities of titanium alloys for biomedical applications, Journal of the mechanical behavior of biomedical materials 2008(1):30~42
    [12]周彦邦,钛合金铸造概论,北京:航空工业出版社, 2000.14
    [13] Wang K., The use of titanium for medical applications in the USA MATERIALS SCIENCE AND ENGINEERING A STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1996,213(1-2):134-137
    [14]浦素云,金属植入材料及腐蚀,北京:北京航空航天大学出版社, 1990.1
    [15]隋金玲,李木森,吕宇鹏,人体承重骨替换用碳/碳复合材料的研究现状,生物医学工程学杂志, 2004,21(4):686~689
    [16] Jiang G.W., Shi D.G., Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes, Journal of Biomedical Materials Research, 1998,43(1):77-81
    [17] Rapacz-Kmita A., Slosarczyk A., Paszkiewicz Z., et al, Phase stability of hydroxyapatite-zirconia (HAp-ZrO_2) composites for bone replacement, Journal of Molecular Structure, 2004,704(1-3):333-340
    [18] Kim H.W., Lee S.Y., Bae C.J., et al, Porous ZrO_2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer, Biomaterials, 2003,24(19):3277-3284
    [19] Hernandez A.Q., Barba M.C.P., Physical and chemical characterization of bone cement with ZrO_2, Revista Mexicana De Fisica, 2003,49(2):123-131
    [20] Vallet-Regi M., Ceramics for medical applications, Journal of the Chemical Society-Dalton Transactions, 2001(2):97-108
    [21] Dorozhkin S.V., Epple M., Biological and medical significance of calcium phosphates, Angewandte Chemie-International Edition, 2002,41(17):3130-3146
    [22] Wahl D.A., Czernuszka J.T., Collagen-hydroxyapatite composites for hard tissue repair, European Cells & Materials, 2006,11:43-56
    [23] Brett P.M., Harle J., Salih V., et al, Roughness response genes in osteoblasts, Bone, 2004,35(1):124-133
    [24] Dunn G.A., Brown A.F., Alignment of Fibroblasts on Grooved Surfaces Described by a Simple Geometric Transformation, Journal of Cell Science, 1986,83:313-340
    [25] Meyle J., Gultig K., Nisch W., Variation in Contact Guidance by Human-Cells on a Microstructured Surface, Journal of Biomedical Materials Research, 1995,29(1):81-88
    [26]贝建中,屈雪,王身国,生物材料与细胞的相互作用,北京生物医学工程, 2005,24(1):64-70
    [27] Barbucci R., Magnani A., Lamponi S., et al, The use of hyaluronan and its sulphated derivative patterned with micrometric scale on glass substrate in melanocyte cell behaviour, Biomaterials, 2003,24(6):915-926
    [28] Papenburg B.J., Vogelaar L., Bolhuis-Versteeg L.A.M., et al, One-step fabrication of porous micropatterned scaffolds to control cell behavior,Biomaterials, 2007,28(11):1998-2009
    [29] To Y., Hasuda H., Sakuragi M., et al, Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling, Acta Biomaterialia, 2007,3(6):1024-1032
    [30] Ito Y., Regulation of cell functions by micropattern-immobilized biosignal molecules, Nanotechnology, 1998,9(3):200-204
    [31] Hyun J., Chilkoti A., Surface-initiated free radical polymerization of polystyrene micropatterns on a self-assembled monolayer on gold, Macromolecules, 2001,34(16):5644-5652
    [32] Silvan M.M., Valsesia A., Hasiwa M., et al, Surface characterization of biopolymer micropatterns processed by ion-beam modification and PECVD, Chemical Vapor Deposition, 2007,13(5):211-218
    [33] Parker J., Walboomers X.F., Von Den Hoff J.W., et al, Soft-tissue response to silicone and poly-L-lactic acid implants with a periodic or random surface micropattern, Journal of Biomedical Materials Research, 2002,61(1):91-98
    [34] Song M., Uhrich K.E., Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations, Annals of Biomedical Engineering, 2007,35(10):1812-1820
    [35] Song H.K., Toste B., Ahmann K., et al, Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: A new platform for characterizing neurite extension in complex environments, Biomaterials, 2006,27(3):473-484
    [36] Johann R.M., Baiotto C., Renaud P., Micropatterned surfaces of PDMS as growth templates for HEK 293 cells, Biomedical Microdevices, 2007,9(4):475-485
    [37] Nalayanda D.D., Kalukanimuttam M., Schmidtke D.W., Micropatterned surfaces for controlling cell adhesion and rolling under flow, Biomedical Microdevices, 2007,9(2):207-214
    [38] Ito Y., Chen G.P., Imanishi Y., Micropatterned immobilization of epidermal growth factor to regulate cell function, Bioconjugate Chemistry, 1998,9(2):277-282
    [39] Zhu X.L., Chen J., Scheideler L., et al, Effects of topography and composition of titanium surface oxides on osteoblast responses, Biomaterials, 2004,25(18):4087-4103
    [40] Klein C.P.A.T., P. Patka J.G.C.W., Blieck-Hogervorst J.M.A.d., et al, Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite andα-tricalcium phosphate, Biomaterials, 1994,15(2):146一150
    [41] Conforto E., Aronsson B.O., Salito A., et al, Rough surfaces of titanium and titanium alloys for implants and prostheses, Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2004,24(5):611-618
    [42] Citeau A., Guicheux J., Vinatier C., et al, In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting, Biomaterials, 2005,26(2):157-165
    [43] Aparicio C., Manero J.M., Conde F., et al, Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants, Journal of Biomedical Materials Research Part A, 2007,82A(3):521-529
    [44] Forsgren J., Svahn F., Jarmar T., et al, Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates, Acta Biomaterialia, 2007,3:980-984
    [45] Wei D.Q., Zhou Y., Jia D.C., et al, Characteristic and in vitro bioactivity of a microarc-oxidized TiO_2-based coating after chemical treatment, Acta Biomaterialia, 2007,3:817-827
    [46] Guizzardi S., Galli C., Martini D., et al, Different titanium surface treatment influences human mandibular osteoblast response, Journal of Periodontology, 2004,75(2):273-282
    [47] Refai A.K., Textor M., Brunette D.M., et al, Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines, Journal of Biomedical Materials Research Part A, 2004,70A(2):194-205
    [48] Lu X., Leng Y., Zhang X.D., et al, Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo, Biomaterials, 2005,26(14):1793-1801
    [49] Wong M.H., Cheng F.T., Pang G.K.H., et al, Characterization of oxide film formed on NiTi by laser oxidation, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007,448(1-2):97-103
    [50] den Braber E.T., Jansen H.V., de Boer M.J., et al, Scanning electronmicroscopic, transmission electron microscopic, and confocal laser scanning microscopic observation of fibroblasts cultured on microgrooved surfaces of bulk titanium substrata, Journal of Biomedical Materials Research, 1998,40(3):425-433
    [51] Feng B., Chen J.Y., Qi S.K., et al, Characterization of surface oxide films on titanium and bioactivity, Journal of Materials Science-Materials in Medicine, 2002,13(5):457-464
    [52] Khosroshahi M.E., Mahmoodi M., Tavakoli J., Characterization of Ti6A14V implant surface treated by Nd : YAG laser and emery paper for orthopaedic applications, Applied Surface Science, 2007,253(21):8772-8781
    [53] Mirhosseini N., Crouse P.L., Schmidth M.J.J., et al, Laser surface micro-texturing of Ti-6Al-4V substrates for improved cell integration, Applied Surface Science, 2007,253(19):7738-7743
    [54] Fork R.L., Green B.L., Shank C.U., Generation of optical pulses shorter than 0.1 psec by colliding pule mode locking, PPL. Phys. lett. 1981 38(9):671
    [55] J.A.Valdmanis, R.L.Fork, J.P.Gordon, Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self phase modulation,group velocity dispersion, saturable absorption,and saturable gain, Opt.Lett., 1985,10:131~133
    [56] R.L.Fork, Cruz G.H.B., P.C.Becker, et al, Compression of optical pulses to six femtoseconds by using cubic phase compensation, Opt.Lett., 1987,12(7):483-485
    [57] Mourou G.A., Barty C.P.J., Perry M.D., Ultrahigh-intensity lasers: Physics of the extreme on a tabletop, Physics Today, 1998,51(1):22-28
    [58]张兴权,周建忠,王广龙,飞秒激光在材料微加工中的应用,电加工与模具, 2005(1):4-6
    [59] Tamura K.R., Nakazawa M., Femtosecond soliton generation over a 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber, Ieee Photonics Technology Letters, 1999,11(3):319-321
    [60] Kobayashi T., Saito T., Ohtani H., Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization, Nature, 2001,414(6863):531-534
    [61] Tirlapur U.K., Konig K., Cell biology - Targeted transfection by femtosecond laser, Nature, 2002,418(6895):290-291
    [62] Udem T., Reichert J., Holzwarth R., et al, Absolute optical frequency measurement of the cesium D-1 line with a mode-locked laser, Physical Review Letters, 1999,82(18):3568-3571
    [63] Kodama R., Norreys P.A., Mima K., et al, Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, Nature, 2001,412(6849):798-802
    [64] Rodriguez M., Sauerbrey R., Wille H., et al, Triggering and guiding megavolt discharges by use of laser-induced ionized filaments, Optics Letters, 2002,27(9):772-774
    [65] Jia W., Peng Z.N., Wang Z.J., et al, The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy, Applied Surface Science, 2006,253(3):1299-1303
    [66] Tsukamoto M., Asuka K., Nakano H., et al, Periodic microstructures produced by femtosecond laser irradiation on titanium plate, Vacuum, 2006,80(11-12):1346-1350
    [67] Borowiec A., Haugen H.K., Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses, Applied Physics Letters, 2003,82(25):4462-4464
    [68] Nedyalkov N.N., Miyanishi T., Obara M., Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse, Applied Surface Science, 2007,253(15):6558-6562
    [69] Parthasarathy A., Mehta J.S., Ming P.Y., et al, The use of the femtosecond laser in penetrating keratoplasty, American Journal of Ophthalmology, 2007,144(6):975-976
    [70] Farid M., Kim M., Steinert R.F., Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report, Ophthalmology, 2007,114(12):2208-2212
    [71] Coskunseven E., Kymionis G.D., Talu H., et al, Intrastromal corneal ring segment implantation with the femtosecond laser in a post-keratoplasty patient with recurrent keratoconus, Journal of Cataract and Refractive Surgery, 2007,33(10):1808-1810
    [72] Mehta J.S., Por Y.M., Cajucorn-Uy H., et al, Femtosecond laser for endothelial keratoplasty, Journal of Cataract and Refractive Surgery, 2007,33(7):1141-1141
    [73] Buratto L., Bohm E., The use of the femtosecond laser in penetratingkeratoplasty, American Journal of Ophthalmology, 2007,143(5):737-742
    [74] Steinert R.F., Ignacio T.S., Sarayba M.A., "Top hat"-shaped penetrating keratoplasty using the femtosecond laser, American Journal of Ophthalmology, 2007,143(4):689-691
    [75] Holzer M.P., Rabsilber T.M., Auffarth G.U., Penetrating keratoplasty using femtosecond laser, American Journal of Ophthalmology, 2007,143(3):524-526
    [76] Zhao Q.Z., Malzer S., Wang L.J., Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses, Optics Express, 2007,15(24):15741-15746
    [77] Guo Z.G., Qu S.L., Han Y.H., et al, Multi-photon fabrication of two-dimensional periodic structure by three interfered femtosecond laser pulses on the surface of the silica glass, Optics Communications, 2007,280(1):23-26
    [78] Ma H.L., Guo Y., Zhong M.J., et al, Femtosecond pulse laser-induced self-organized nanogratings on the surface of a ZnSe crystal, Applied Physics a-Materials Science & Processing, 2007,89(3):707-709
    [79] Li C.D., Nikumb S., Wong F., An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices, Optics and Lasers in Engineering, 2006,44(10):1078-1087
    [80] Nayab S.N., Jones F.H., Olsen I., Effects of calcium ion-implantation of titanium on bone cell function in vitro, Journal of Biomedical Materials Research Part A, 2007,83A(2):296-302
    [81] Krupa D., Baszkiewicz J., Rajchel B., et al, Effect of calcium-ion implantation on the corrosion resistance and bioactivity of the Ti6Al4V alloy, Vacuum, 2007,81(10):1310-1313
    [82] Yang C.Y., Chen C.R., Chang E., et al, Characteristics of hydroxyapatite coated titanium porous coatings on Ti-6Al-4V substrates by plasma sprayed method, Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2007,82B(2):450-459
    [83] Oh I.K., Nomura N., Chiba A., et al, Microstructures and bond strengths of plasma-sprayed hydroxyapatite coatings on porous titanium substrates, Journal of Materials Science-Materials in Medicine, 2005,16(7):635-640
    [84] Hong Z.D., Luan L., Paik S.B., et al, Crystalline hydroxyapatite thin films produced at room temperature - An opposing radio frequency magnetron sputtering approach, Thin Solid Films, 2007,515(17):6773-6780
    [85]赵玉涛,施秋萍,戴起勋,等, HA /YSZ/Ti6Al4V生物复合材料的制备与界面特性,江苏大学学报(自然科学版) 2006,27(3):237-240
    [86]寇生中,程艳玲,郭燕,磁控溅射法在生物材料表面制备羟基磷灰石涂层的研究现状,材料导报, 2006,20(6):107-110
    [87]张光磊,钟涛兴,张国珍,等,激光熔覆化学处理钛合金表面改性的研究,材料科学与工艺, 2003,11(1):11-13
    [88] Fernandez-Pradas J.M., Sardin G., Cleries L., et al, Deposition of hydroxyapatite thin films by excimer laser ablation, Thin Solid Films, 1998,317(1-2):393-396
    [89]刘羽,钟康年,胡文云,溶胶——凝胶法合成条件与羟基磷灰石特征的关系,材料科学与工程, 1997,15(1):63-66
    [90]杨建华,郭灵虹,李晖,溶胶-凝胶法制备纳米羟基磷灰石超薄薄膜及其表征,生物医学工程学杂志, 2006,23 (5):1075-1079
    [91] Zhang Y.Y., Tao J., Pang Y.C., et al, Electrochemical deposition of hydroxyapatite coatings on titanium, Transactions of Nonferrous Metals Society of China, 2006,16(3):633-637
    [92] Peng P., Kumar S., Voelcker N.H., et al, Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid, Journal of Biomedical Materials Research Part A, 2006,76A(2):347-355
    [93] Bernache-Assollant D., Ababou A., Champion E., et al, Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 - I. Calcination and particle growth, Journal of the European Ceramic Society, 2003,23(2):229-241
    [94] De Aza A.H., Velasquez P., Alemany M.I., et al, In situ bone-like apatite formation from a Bioeutectic((R)) ceramic in SBF dynamic flow, Journal of the American Ceramic Society, 2007,90(4):1200-1207
    [95] Jalota S., Bhaduri S.B., Tas A.C., Effect of carbonate content and buffer type on calcium phosphate formation in SBF solutions, Journal of Materials Science-Materials in Medicine, 2006,17(8):697-707
    [96] Bharati S., Sinha M.K., Basu D., Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF, Bulletin of Materials Science, 2005,28(6):617-621
    [97] Yang Y.Z., Kim K.H., Ong J.L., Review on calcium phosphate coatings produced using a sputtering process - an alternative to plasma spraying, Biomaterials, 2005,26(3):327-337
    [98] Poon R.W.Y., Yeung K.W.K., Liu X.Y., et al, Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys, Biomaterials, 2005,26(15):2265-2272
    [99] Gupta R., Srivastava M.P., Carbon ion implantation on titanium for TiC formation using a dense plasma focus device, Plasma Sources Science & Technology, 2004,13(3):371-374
    [100] Poon R.W.Y., Ho J.P.Y., Liu X.Y., et al, Formation of titanium nitride barrier layer in nickel-titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance, Thin Solid Films, 2005,488(1-2):20-25
    [101] Fukumoto S., Tsubakino H., Inoue S., et al, Surface modification of titanium by nitrogen ion implantation, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999,263(2):205-209
    [102]黄立业,憨勇,徐可为,电化学沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究,硅酸盐学报, 1998,26(1):87-91
    [103] Shirkhanzadeh M., Bioactive Calcium-Phosphate Coatings Prepared by Electrodeposition, Journal of Materials Science Letters, 1991,10(23):1415-1417
    [104] Zhitomirsky I., GalOr L., Electrophoretic deposition of hydroxyapatite, Journal of Materials Science-Materials in Medicine, 1997,8(4):213-219
    [105] Gyorgy E., Grigorescu S., Socoi G., et al, Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition, Applied Surface Science, 2007,253(19):7981-7986
    [106] Kim H.M., Himeno T., Kokubo T., et al, Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid, Biomaterials, 2005,26(21):4366-4373
    [107] Chen M.F., Yang X.J., Hu R.X., et al, Bioactive NiTi shape memory alloy used as bone bonding implants, Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2004,24(4):497-502
    [108]杨贤金,朱胜利,崔振铎,等, NiTi合金表面化学沉积羟基磷灰石生物活性层机理的研究,功能材料, 2001,32(2):154-155
    [109]张勇,黄平,徐可为,溶液钙浓度和水热合成条件对微狐氧化TiO_2 /羟基磷灰石复合膜层形貌和组成的影响,稀有金属材料与工程, 2003,32(12):1007-1010
    [110] Svetina M., Ciacchi L.C., Sbaizero O., et al, Deposition of calcium ions on rutile (110): A first-principles investigation, Acta Materialia, 2001,49(12):2169-2177
    [111] Kokubo T., Kim H.M., Kawashita M., Novel bioactive materials with different mechanical properties, Biomaterials, 2003,24(13):2161-2175
    [112] Manso M., Langlet M., Fernandez M., et al, Surface and interface analysis of hydroxyapatite/TiO_2 biocompatible structures, Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2003,23(3):451-454
    [113]潘海华,陶锦辉,吴韬,等,羟基磷灰石界面水行为的分子模拟,无机化学学报,, 2006,22(8):1392-1400
    [114] Maksymovych P., Mezhenny S., Yates J.T., STM study of water adsorption on the TiO_2(110)-(1 x 2) surface, Chemical Physics Letters, 2003,382(3-4):270-276
    [115] Piscanec S., Ciacchi L.C., Vesselli E., et al, Bioactivity of TiN-coated titanium implants, Acta Materialia, 2004,52(5):1237-1245
    [116]卢锦德,燕光谱,涂勇,材料进展,五金材料, 2004,14:28-32
    [117]齐共金,张长瑞,曹英斌,等,逾渗模型在计算材料学中的研究进展,材料科学与工程学报, 2004,22(1):123-126
    [118] Segall M.D., Lindan P.J.D., Probert M.J., et al, First-principles simulation: ideas, illustrations and the CASTEP code, Journal of Physics-Condensed Matter, 2002,14(11):2717-2744
    [119] Wang J.C., Guo C.L., Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses, Journal of Applied Physics, 2006,100(2): 023511
    [120] Keilmann F., Bai Y.H., Periodic Surface-Structures Frozen into CO_2 Laser-Melted Quartz, Applied Physics a-Materials Science & Processing, 1982,29(1):9-18
    [121] Yang J., Zhao Y., Zhu X., Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses, Applied Physics Letters, 2006,88: 094101
    [122] Zhao Q.Z., Malzer S., Wang L.J., Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses, Optics Letters, 2007,32(13):1932-1934
    [123] Vorobyev A.Y., Makin V.S., Guo C.L., Periodic ordering of random surfacenanostructures induced by femtosecond laser pulses on metals, Journal of Applied Physics, 2007,101(3): 034903
    [124] Rajeev P.P., Gertsvolf M., Simova E., et al, Memory in nonlinear ionization of transparent solids, Physical Review Letters, 2006,97(25):253001
    [125] Bhardwaj V.R., Simova E., Rajeev P.P., et al, Optically produced arrays of planar nanostructures inside fused silica, Physical Review Letters, 2006,96(5):057404
    [126] Zhao Y., Zhang N., Yang J., et al, Laser-induced air ionization microscopy, Applied Physics Letters, 2006,88(24): 241102
    [127] Aeschlimann M., Schmuttenmaer C.A., Elsayedali H.E., et al, Observation of Surface-Enhanced Multiphoton Photoemission from Metal-Surfaces in the Short-Pulse Limit, Journal of Chemical Physics, 1995,102(21):8606-8613
    [128] Rajeev P.P., Gertsvolf M., Hnatovsky C., et al, Transient nanoplasmonics inside dielectrics, Journal of Physics B-Atomic Molecular and Optical Physics, 2007,40:S273-S282
    [129] Shen Y.T., Zhu J., Zhang H.B., et al, In vitro osteogenetic activity of pearl, Biomaterials, 2006,27(2):281-287
    [130] Busscher H.J., Vanpelt A.W.J., Deboer P., et al, The Effect of Surface Roughening of Polymers on Measured Contact Angles of Liquids, Colloids and Surfaces, 1984,9(4):319-331
    [131] Erbil Y.H., Surface tension of polymers, Boca Raton: CRC Press, 1997.292
    [132]杨玉生,孙俊英,朱伟,松质骨源性人成骨细胞的分离培养和细胞密度效应,中国组织工程研究与临床康复,2007,11(3):431-434
    [133] Wang X.X., Hayakawa S., Tsuru K., et al, Improvement of bioactivity of H_2O_2/TaCl5-treated titanium after subsequent heat treatments, Journal of Biomedical Materials Research, 2000,52(1):171-176
    [134] Kim M.J., Kim C.W., Lim Y.J., et al, Microrough titanium surface affects biologic response in MG63 osteoblast-like cells, Journal of Biomedical Materials Research Part A, 2006,79A(4):1023-1032
    [135] Zhao G., Schwartz Z., Wieland M., et al, High surface energy enhances cell response to titanium substrate microstructure, Journal of Biomedical Materials Research Part A, 2005,74A(1):49-58
    [136] Giordano C., Sandrini E., Busini V., et al, A new chemical etching process to improve endosseous implant osseointegration: In vitro evaluation on humanosteoblast-like cells, International Journal of Artificial Organs, 2006,29(8):772-780
    [137] Li L.H., Kong Y.M., Kim H.W., et al, Improved biological performance of Ti implants due to surface modification by micro-arc oxidation, Biomaterials, 2004,25(14):2867-2875
    [138] Xavier S.P., Carvalho P.S.P., Beloti M.M., et al, Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments, Journal of Dentistry, 2003,31(3):173-180
    [139] Kim M.J., Choi M.U., Kim C.W., Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell, Biomaterials, 2006,27(32):5502-5511
    [140]张孝彬,孙沿林,何基保,钛合金生长羟基磷灰石的电镜分析,杭州电子工业学院学报, 2000,20(6):8-10
    [141] Silva C.C., Graca M.P.F., Valente M.A., et al, Microwave preparation, structure and electrical properties of calcium-sodium-phosphate biosystem, Journal of Non-Crystalline Solids, 2006,352(32-35):3512-3517
    [142] Onuma K., Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms, Progress in Crystal Growth and Characterization of Materials, 2006,52(3):223-245
    [143] Tsuchida H., Hashimoto J., Crawford E., et al, Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats, Journal of Orthopaedic Research, 2003,21(1):44-53
    [144] Byon E., Jeong Y., Takeuchi A., et al, Apatite-forming ability of micro-arc plasma oxidized layer of titanium in simulated body fluids, Surface & Coatings Technology, 2007,201(9-11):5651-5654
    [145] Hohenberg P., Kohn W., Inhomogeneous Electron Gas, Physical Review B, 1964,136(3B):B864-871
    [146] Kohn W., Sham L.J., Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, 1965,140(4A):1133-1138
    [147] Klein A., Dreizler R.M., Kohn-Sham formulation of density-functional theory, Physical Review A, 1998,58(2):1581-1584
    [148] Slater J.C., A Simplification of the Hartree-Fock Method, Physical Review, 1951,81(3):385-390
    [149] Jones R.O., Gunnarsson O., The Density Functional Formalism, ItsApplications and Prospects, Reviews of Modern Physics, 1989,61(3):689-746
    [150]熊志华,孙振辉,雷敏生,基于密度泛函理论的第一性原理赝势法,江西科学, 2005,23(1):1-4
    [151] Ferhat M., Bouhafs B., Zaoui A., et al, First-principles study of structural and electronic properties of BSb, Journal of Physics-Condensed Matter, 1998,10(36):7995-8006
    [152] Kuo Y.K., Lin W.W., Band-gap bowing parameter of the AlxIn1-xN derived from theoretical simulation, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002,41(9):5557-5558
    [153] Chetty N., Jacobsen K.W., Norskov J.K., Optimized and Transferable Densities from 1st-Principles Local Density Calculations, Journal of Physics-Condensed Matter, 1991,3(28):5437-5443
    [154] Vanderbilt D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Physical Review B, 1990,41(11):7892-7895
    [155]于玲,陈万春,刘道丹,等,磷蛋白对牙本质晶脱矿动力学的影响,人工晶体学报, 2002,31(4):370-375
    [156] Vogtenhuber D., Podloucky R., Redinger J., Ab initio studies of H_2O adsorption on the TiO_2(110) rutile surface, Surface Science, 1998,402(1-3):798-801
    [157] English N.J., Sorescu D.C., Johnson J.K., Effects of an external electromagnetic field on rutile TiO_2: A molecular dynamics study, Journal of Physics and Chemistry of Solids, 2006,67(7):1399-1409
    [158]邬鸿彦, HAP的结构及物理性能,四川师范大学学报, 1996,19(5):55-58
    [159] Le Guehennec L., Soueidan A., Layrolle P., et al, Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials, 2007,23(7):844-854
    [160] Lopez-Macipe A., Gomez-Morales J., Rodriguez-Clemente R., Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating, Advanced Materials, 1998,10(1):49-53
    [161] Dalton J.E., Cook S.D., In-Vivo Mechanical and Histological Characteristics of Ha-Coated Implants Vary with Coating Vendor, Journal of Biomedical Materials Research, 1995,29(2):239-245
    [162] Oonishi H., Hench L.L., Wilson J., et al, Comparative bone growth behavior ingranules of bioceramic materials of various sizes, Journal of Biomedical Materials Research, 1999,44(1):31-43
    [163] Aebli N., Krebs J., Stich H., et al, In vivo comparison of the osseointegration of vacuum plasma sprayed titanium- and hydroxyapatite-coated implants, Journal of Biomedical Materials Research Part A, 2003,66A(2):356-363
    [164] Schmidmaier G., Wildemann B., Schwabe P., et al, A new electrochemically graded hydroxyapatite coating for osteosynthetic implants promotes implant osteointegration in a rat model, Journal of Biomedical Materials Research, 2002,63(2):168-172
    [165] Kabashin A.V., Meunier M., Kingston C., et al, Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins, Journal of Physical Chemistry B, 2003,107(19):4527-4531

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700