用户名: 密码: 验证码:
浮选中颗粒-气泡间相对运动研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of relative motion between particles and bubbles in froth flotation
  • 作者:卓启明 ; 刘文礼 ; 徐宏祥 ; 孙小朋 ; 张贺 ; 郑翔 ; 魏宏宇
  • 英文作者:ZHUO Qiming;LIU Wenli;XU Hongxiang;SUN Xiaopeng;ZHANG He;ZHENG Xiang;WEI Hongyu;School of Chemical & Environment Engineering,China University of Mining & Technology (Beijing);
  • 关键词:浮选 ; 颗粒 ; 气泡 ; 相对运动
  • 英文关键词:flotation;;particles;;bubbles;;relative motion
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)化学与环境工程学院;
  • 出版日期:2019-09-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:09
  • 基金:国家自然科学基金资助项目(51604280);; 中央高校基本科研业务费专项基金资助项目(2010YH11)
  • 语种:中文;
  • 页:261-271
  • 页数:11
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD923
摘要
颗粒-气泡间相对运动的研究对浮选机理的认知至关重要,对新型浮选机的开发和提高浮选效率均具有指导意义,本文系统综述了颗粒-气泡间相对运动的研究进展。早期研究过程中,研究者忽略了颗粒和气泡性质的影响,将颗粒视为随流线运动的点,气泡视为刚性球体,利用流线方程对颗粒-气泡间的相对运动展开研究;随着认知过程的不断深入,颗粒和气泡物理化学性质的影响逐步得到了关注,研究者分别从颗粒惯性力、重力、形状和粗糙度以及气泡表面流动性等方面并展开了大量研究;颗粒-气泡间相对运动的试验研究多通过颗粒沉降法进行,研究对象由单个玻璃微珠发展为大量矿物颗粒,且出现了关于运动玻璃球与上升气泡之间相对运动的研究。研究表明,当颗粒粒度较细、密度较小时,利用流线方程对颗粒-气泡间相对运动的研究具有一定的适用性;当颗粒粒度较粗、密度较大时,需考虑正负惯性力、重力等因素对颗粒-气泡间相对运动的影响。此外,颗粒形状的不规则性会影响颗粒周围液体对颗粒的作用力,导致临界碰撞半径减小,且颗粒表面不规则的凸起会促进颗粒-气泡间水化膜的破裂,减少诱导时间,增大颗粒表面粗糙度有助于增强颗粒-气泡间的黏附强度。气泡表面的流动性可采用"滞留帽"模型进行分析,具有较好的适用性。对于颗粒-气泡间相对运动的试验研究主要采用颗粒沉降法,亲水玻璃微珠只能在气泡上半球滑行,到达气泡赤道位置附近后便离开气泡,疏水玻璃微珠会刺破颗粒-气泡间的水化膜,越过气泡赤道后会继续沿气泡表面滑行并最终黏附在气泡底部,煤颗粒与气泡的黏附效率随碰撞角和密度的增大而减小。然而目前的试验研究多集中于静水领域,对于浮选流场中颗粒-气泡间相对运动的试验研究尚需进一步探索。
        The study of the relative motion between particles and bubbles is critical to the understanding of froth flotation mechanism,and has a guiding significance for the development of new flotation machines and the im-provement of flotation efficiency.In this paper,the research progress of relative motion between particles and bubbles was reviewed.In the early research,some researchers ignored the effects of particle and bubble property.Particles were regarded as points moving along the streamline and bubbles were regarded as rigid spheres.Streamline equations were used to study the relative motion.With the continuous research,the effects of physical and chemical properties of particles and bubbles have gradually received extensive attention.Researchers have done a lot of researches on particle inertial force,gravity,shape and roughness,and the mobility of bubbles surface.Particle sedimentation method was used to study the relative motion between particles and bubbles.The research object was developed from a single glass bead to a large number of mineral particles,and the relative motion between the moving glass bead and the rising bubble has been studied.Research shows that the streamline equation is applicable to the study of the relative motion between particles and bubbles when the particle size is fine and the density is small,and the influence of inertial force and gravity on the relative motion should be considered when the particle size is coarse and the density is large.In addition,the irregularity of particle shape will affect the force of the liquid around the particle,resulting in the decrease of the critical collision radius,and the irregular surface protrusion will accelerate the rupture of the liquid film between particles and bubbles.Increasing the surface roughness of particles can help to enhance the adhesion strength between particles and bubbles.The "stagnant-cap" model can be used to analyze the bubble surface mobile.Particle sedimentation method is mainly used to study the relative motion between particles and bubbles.The hydrophilic glass beads can only slide in the upper hemisphere of the bubble,and then leave the bubble near the equator of the bubble.The hydrophobic glass beads will pierce the thin liquid film between particle and bubble.After crossing the bubble equator,it will continue to slide along the bubble surface and attach to the bottom of the bubble.The adhesion efficiency of coal particles decreases with the increase of collision angle and coal density.However,the current research focuses on the field of still water.The relative motion between particles and bubbles in the flotation flow field needs a further investigation.
引文
[1] 谢广元.选矿学[M].徐州:中国矿业大学出版社,2016.
    [2] FUERSTENAU M C,JAMESON G,YOON R H.Froth flotation:A century of innovation[M].American:Society for Mining Metallurgy & Exploration,2007.
    [3] NGUYEN A V,SCHULZE H J.Colloidal science of flotation[M].London:CRC Press,2004.
    [4] JAMESON G J.A new concept in flotation column design[M].Arizona:SME,Phoenix,AZ,1988.
    [5] 曾克文,余永富.浮选矿浆紊流强度对矿物浮选的影响[J].金属矿山,2000(9):17-20.ZENG Kewen,YU Yongfu.Effect of the turbulent strength of the flotation pulp on mineral flotation[J].Metal Mine,2000(9):17-20.
    [6] WANG L,Wang Y,Yan X,et al.A numerical study on efficient recovery of fine-grained minerals with vortex generators in pipe flow unit of a cyclonic-static micro bubble flotation column[J].Chemical Engineering Science,2017,158:304-313.
    [7] SUTHERLAND K L.Physical chemistry of flotation.XI.kinetics of the flotation process[J].Journal of Physical & Colloid Chemistry,1948,52(2):394.
    [8] DAI Z,FORNASIERO D,RALSTON J.Particle-bubble collision models-a review[J].Advances in Colloid and Interface Science,2000,80:231-256.
    [9] GAUDIN A M.Flotation[M].New York:MCGRAW-HILL,1957.
    [10] REAY D,RATCLIFF G A.Removal of fine particles from water by dispersed air flotation:Effects of bubble size and particle size on collection efficiency[J].Canadian Journal of Chemical Engineering,1973,51(2):178-185.
    [11] ANFRUNS J F,KITCHENER J A.Rate of capture of small particles in solution[J].Transactions of the Institution of Mining and Metallurgy,Section C:Mineral Processing and Extractive Metallurgy,1977,86:9-15.
    [12] FLINT L R,HOWARTH W J.The collision efficiency of small particles with spherical air bubbles[J].Chemical Engineering Science,1971,26(8):1155-1168.
    [13] WEBER M E,PADDOCK D.Interceptional and gravitational collision efficiencies for single collectors at intermediate Reynolds numbers[J].Journal of Colloid & Interface Science,1983,94(2):328-335.
    [14] YOON R H,LUTTRELL G H.The effect of bubble size on fine particle flotation[J].Mineral Processing & Extractive Metallurgy Review,1989,5(1-4):101-122.
    [15] VERRELLI D I,KOH P T L,NGUYEN A V.Particle-bubble interaction and attachment in flotation[J].Chemical Engineering Science,2011,66(23):5910-5921.
    [16] XING Y,GUI X,CAO Y.The hydrophobic force for bubble-particle attachment in flotation-a brief review[J].Physical Chemistry Chemical Physics,2017,19(36):24421-24435.
    [17] MICHAEL D H,NOREY P W.Particle collision efficiencies for a sphere[J].Journal of Fluid Mechanics,1969,37(3):565-575.
    [18] LANGMUIR I,BLODGETT K.Mathematical investigation of water droplet trajectories[J].Atmospheric Phenomena,1961:335-347.
    [19] DOBBY G S,FINCH J A.Particle size dependence in flotation derived from a fundamental model of the capture process[J].International Journal of Mineral Processing,1987,21(3):241-260.
    [20] SCHULZE H J.Probability of particle attachment on gas bubbles by sliding[J].Advances in Colloid & Interface Science,1992,40:283-305.
    [21] DAI Z,DUKHIN S,FORNASIERO D,et al.The inertial hydrodynamic interaction of particles and rising bubbles with mobile surfaces[J].Journal of Colloid & Interface Science,1998,197(2):275.
    [22] DAI Z,FORNASIERO D,RALSTON J.Particle-bubble collision models-a review[J].Advances in Colloid & Interface Science,2000,85(2):231-256.
    [23] KOUACHI S,HASSAS B V,HASSANZADEH A,et al.Effect of negative inertial forces on bubble-particle collision via implementation of schulze collision efficiency in general flotation rate constant equation[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2017,517.
    [24] NGUYEN C M,NGUYEN A V,MILLER J D.Computational validation of the generalized sutherland equation for bubble-particle encounter efficiency in flotation[J].International Journal of Mineral Processing,2006,81(3):141-148.
    [25] NGUYEN P T,NGUYEN A V.Validation of the generalized sutherland equation for bubble-particle encounter efficiency in flotation:Effect of particle density[J].Minerals Engineering,2009,22(2):176-181.
    [26] NGUYEN A V,KMET’ S.Collision efficiency for fine mineral particles with single bubble in a countercurrent flow regime[J].International Journal of Mineral Processing,1992,35(3-4):205-223.
    [27] NGUYEN A V.The Collision between fine particles and single air bubbles in flotation[J].Journal of Colloid & Interface Science,1994,162(1):123-128.
    [28] KOUACHI S,HASSAS B V,HASSANZADEH AHMAD,et al.Effect of negative inertial forces on bubble-particle collision via implementation of Schulze collision efficiency in general flotation rate constant equation[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2017,517:72-83.
    [29] KOH P T L,HAO F P,SMITH L K,et al.The effect of particle shape and hydrophobicity in flotation[J].International Journal of Mineral Processing,2009,93(2):128-134.
    [30] WEN B,XIA W.Effect of particle shape on coal flotation[J].Energy Sources Part A Recovery Utilization & Environmental Effects,2017,39(13):1390-1394.
    [31] XIA W,NIU C,ZHANG Z.Effects of attrition on coarse coal flotation in the absence of collectors[J].Powder Technology,2017,310:295-299.
    [32] DIPPENAAR A.The destabilization of froth by solids.I.the mechanism of film rupture[J].International Journal of Mineral Processing,1982,9(1):1-14.
    [33] VERRELLI D I,BRUCKARD W J,KOH P T L,et al.Particle shape effects in flotation.Part 1:Microscale experimental observations[J].Minerals Engineering,2014,58(4):80-89.
    [34] VERRELLI D I,KOH P T L,BRUCKARD W J,et al.Variations in the induction period for particle-bubble attachment[J].Minerals Engineering,2012,36-38(10):219-230.
    [35] KRASOWSKA M,MALYSA K.Wetting films in attachment of the colliding bubble[J].Advances in Colloid & Interface Science,2007,134(21):138-150.
    [36] LECRIVAIN G,PETRUCCOI G,RUDOLPH M,et al.Attachment of solid elongated particles on the surface of a stationary gas bubble[J].International Journal of Multiphase Flow,2015,71:83-93.
    [37] HASSAS B V,CALISKAN H,GUVEN O,et al.Effect of roughness and shape factor on flotation characteristics of glass beads[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2016,492:88-99.
    [38] KARAKAS F,HASSAS B V.Effect of surface roughness on interaction of particles in flotation[J].Physicochemical Problems of Mineral Processing,2016,52(1):19-35.
    [39] SAM A,GOMEZ C O,FINCH J A.Axial velocity profiles of single bubbles in water/frother solutions[J].International Journal of Mineral Processing,1996,47(3-4):177-196.
    [40] LOGLIO G,PANDOLFINI P,MILLER R,et al.Novel methods to study interfacial layers[M].Amsterdam:Elsevier,2001.
    [41] DUKHIN S S,KRETZSCHMAR G,MILLER R.Dynamic of adsorption at liquid interfaces-theory,experiment,application[M].Amsterdam Elsevier,1995.
    [42] NGUYEN A V.One-step analysis of bubble-particle capture interaction in dissolved-air flotation[J].International Journal of Environment & Pollution,2007,30(2):227-249.
    [43] NGUYEN A V.Particle-bubble encounter probability with mobile bubble surfaces[J].International Journal of Mineral Processing,1998,55(2):73-86.
    [44] NGUYEN A V,EVANS G M.Exact and global rational approximate expressions for resistance coefficients for a colloidal solid sphere moving in a quiescent liquid parallel to a slip gas-liquid interface[J].Journal of Colloid & Interface Science,2004,273(1):262-270.
    [45] NGUYEN A V.Hydrodynamics of liquid flows around air bubbles in flotation:A review[J].International Journal of Mineral Processing,1999,56(1-4):165-205.
    [46] CUENOT B B.The effects of slightly soluble surfactants on the flow around a spherical bubble[J].Journal of Fluid Mechanics,1997,339:25-53.
    [47] SARROT V,GUIRAUD P,LEGENDRE D.Determination of the col-lision frequency between bubbles and particles in flotation[J].Chemical Engineering Science,2005,60(22):6107-6117.
    [48] LEGENDRE D,SARROT V,GUIRAUD P.On the particle inertia-free collision with a partially contaminated spherical bubble[J].International Journal of Multiphase Flow,2009,35(2):163-170.
    [49] HUANG Z,LEGENDRE D,GUIRAUD P.Effect of interface contamination on particle-bubble collision[J].Chemical Engineering Science,2012,68(1):1-18.
    [50] WHELAN P F,BROWN D J.Particle-bubble attachment in froth flotation[J].Transactions of the Institution of Mining and Metallurgy,1956,65:181-192
    [51] WANG W,ZHOU Z,NANDAKUMAR K,et al.Effect of surface mobility on the particle sliding along a bubble or a solid sphere[J].Journal of Colloid & Interface Science,2003,259(1):81-88.
    [52] WANG W,ZHOU Z,NANDAKUMAR K,et al.Attachment of individual particles to a stationary air bubble in model systems[J].International Journal of Mineral Processing,2003,68(1):47-69.
    [53] NGUYEN A V,EVANS G M.Movement of fine particles on an air bubble surface studied using high-speed video microscopy[J].Journal of Colloid & Interface Science,2004,273(1):271-277.
    [54] VERRELLI D I,KOH P T L,NGUYEN A V.Particle-bubble interaction and attachment in flotation[J].Chemical Engineering Science,2011,66(23):5910-5921.
    [55] HUBICKA M,BASAROVA P,VEJRAZKA J.Collision of a small rising bubble with a large falling particle[J].International Journal of Mineral Processing,2013,121:21-30.
    [56] 卓启明,刘文礼,刘伟.煤颗粒与气泡黏附行为的试验研究[J].煤炭学报,2018,43(7):2029-2035.ZHUO Qiming,LIU Wenli,LIU Wei.Experimental study on the attachment behavior of coal particles and bubbles[J].Journal of China Coal Society,2018,43(7):2029-2035.
    [57] ZHUO Q,LIU W,XU H.The effect of collision angle on the collision and adhesion behavior of coal particles and bubbles[J].Processess,2018,6(11):1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700