用户名: 密码: 验证码:
羧基改性阴极对微生物电合成系统产乙酸性能的影响机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact Mechanisms of Carboxyl Group Modified Cathode on Acetate Production in Microbial Electrosynthesis Systems
  • 作者:祁家欣 ; 曾翠平 ; 骆海萍 ; 刘广立 ; 张仁铎 ; 卢耀斌
  • 英文作者:QI Jia-xin;ZENG Cui-ping;LUO Hai-ping;LIU Guang-li;ZHANG Ren-duo;LU Yao-bin;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,School of Environmental Science and Engineering,Sun Yat-sen University;
  • 关键词:微生物电合成系统(MESs) ; 阴极 ; 羧基改性 ; 生物膜 ; 产乙酸
  • 英文关键词:microbial electrosynthesis systems(MESs);;cathode;;carboxyl group modified;;biofilm;;acetate production
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:中山大学环境科学与工程学院广东省环境污染控制与修复技术重点实验室;
  • 出版日期:2018-12-20 07:04
  • 出版单位:环境科学
  • 年:2019
  • 期:05
  • 基金:广州市科技计划项目“珠江新星”人才专项(201710010031);; 广东省自然科学基金项目(2015A030313169,2015A030313102);; 国家自然科学基金项目(51308557,41471181,51278500)
  • 语种:中文;
  • 页:306-313
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X701
摘要
微生物电合成系统(microbial electrosynthesis systems,MESs)可利用微生物将二氧化碳转化为有价化合物,有望实现温室气体的资源化利用,然而,其合成效率仍需进一步提高.本研究通过电化学还原重氮盐反应将特定的官能团—COOH接枝到碳布电极表面,探究改性阴极对于MESs性能的影响.结果发现,经—COOH改性的阴极材料亲水性显著提高,而循环伏安扫描电流变弱. MESs在启动阶段性能差异最大,运行48 h,改性组CA-H、CA-M、CA-L的产氢速率是CK的21. 45、28. 60和22. 75倍;运行120 h,CA-H、CA-M和CA-L的乙酸累积浓度是CK的2. 01、2. 43和1. 44倍. MESs运行324 h后,各阴极的电化学活性无明显差异,生物膜蛋白量无明显差异(~0. 47 mg·cm~(-2)).阴极生物膜的群落结构分析发现,属水平上由Acetobacterium、norank_p_Saccharibacteria和Thioclava占据主导,总相对丰度占到59. 6%到82. 1%;各阴极之间产乙酸功能菌Acetobacterium的相对丰度差别不大(31. 3%~40. 1%),而消耗乙酸的norank_p_Saccharibacteria属在CA-H、CA-M、CA-L和CK的相对丰度分别为:16. 1%、24. 6%、31. 1%和37. 5%.羧基改性阴极对MESs的启动阶段影响较大,可为MESs的快速启动提供新的思路.
        Microbial electrosynthesis systems( MESs) can convert carbon dioxide into added value compounds using microorganisms as catalyst,which is expected to help achieve conversion of greenhouse gases into resources. However,the synthetic efficiency of MESs is far behind the industry requirements. In this study,carbon cloth surfaces were bonded with carboxyl groups by electrochemical reduction of aryl diazonium salts and then used as a cathode in MESs reactors. The results showed that the hydrophilicity of the carbon cloth surfaces improved after the carboxyl groups were modified. However,weaker current of cyclic voltammetry was obtained in the modified cathode. Significant differences were observed between modified( CA-H,CA-M,CA-L) and non-modified cathode( CK)during the start-up period. After 48 h,the hydrogen production rate of CA-H,CA-M,CA-L was 21. 45,28. 60,and 22. 75 times higher than CK. After 120 h,the acetate accumulation concentration of CA-H,CA-M,CA-L was 2. 01,2. 43,and 1. 44 times higher than CK. After 324 h,there was little difference in the electrochemical activity of cathodic biofilm and protein content( about 0. 47 mg·cm~(-2)) in all groups. The analysis of the community structure of cathodic biofilm showed that,in the genus level,Acetobacterium,Norank_p_Saccharibacteria,and Thioclava were the dominant species,accounting for 59. 6% to 82. 1%. There was little difference in the relative abundance of Acetobacterium in all groups( 31. 3% to 40. 1%). However,the relative abundance of norank _ p _Saccharibacteria in CA-H,CA-M,CA-L,and CK were 16. 1%,24. 6%,31. 1%,and 37. 5%,respectively. The carboxyl modified cathode had a great influence on the start-up stage of MESs,which could be a new idea for the rapid start-up of MESs.
引文
[1]Rabaey K,Rozendal R A.Microbial electrosynthesis-revisiting the electrical route for microbial production[J].Nature Reviews Microbiology,2010,8(10):706-716.
    [2]Shin H J,Jung K A,Nam C W,et al.A genetic approach for microbial electrosynthesis system as biocommodities production platform[J].Bioresource Technology,2017,245:1421-1429.
    [3]Saratale R G,Saratale G D,Pugazhendhi A,et al.Microbiome involved in microbial electrochemical systems(MESs):A review[J].Chemosphere,2017,177:176-188.
    [4]Nevin K P,Woodard T L,Franks A E,et al.Microbial electrosynthesis:feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J].m Bio,2010,1(2):e00103-10.
    [5]Aryal N,Tremblay P L,Lizak D M,et al.Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide[J].Bioresource Technology,2017,233:184-190.
    [6]Bajracharya S,Ter Heijne A,Benetton X D,et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode[J].Bioresource Technology,2015,195:14-24.
    [7]Jourdin L,Grieger T,Monetti J,et al.High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide[J].Environmental Science&Technology,2015,49(22):13566-13574.
    [8]Marshall C W,Ross D E,Fichot E B,et al.Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes[J].Environmental Science&Technology,2013,47(11):6023-6029.
    [9]Ammam F,Tremblay P L,Lizak D M,et al.Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata[J].Biotechnology for Biofuels,2016,9:163.
    [10]Giddings C G S,Nevin K P,Woodward T,et al.Simplifying microbial electrosynthesis reactor design[J].Frontiers in Microbiology,2015,6:468.
    [11]Jourdin L,Freguia S,Flexer V,et al.Bringing high-Rate,CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions[J].Environmental Science&Technology,2016,50(4):1982-1989.
    [12]Patil S A,Arends J B A,Vanwonterghem I,et al.Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2[J].Environmental Science&Technology,2015,49(14):8833-8843.
    [13]Aryal N,Ammam F,Patil S A,et al.An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide[J].Green Chemistry,2017,19(24):5748-5760.
    [14]Zhang T,Nie H R,Bain T S,et al.Improved cathode materials for microbial electrosynthesis[J].Energy&Environmental Science,2013,6:217-224.
    [15]Song T S,Zhang H K,Liu H X,et al.High efficiency microbial electrosynthesis of acetate from carbon dioxide by a selfassembled electroactive biofilm[J].Bioresource Technology,2017,243:573-582.
    [16]Chen L F,Tremblay P L,Mohanty S,et al.Electrosynthesis of acetate from CO2by a highly structured biofilm assembled with reduced graphene oxide-tetraethylene pentamine[J].Journal of Materials Chemistry A,2016,4(21):8395-8401.
    [17]Jourdin L,Freguia S,Donose B C,et al.A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis[J].Journal of Materials Chemistry A,2014,2(32):13093-13102.
    [18]Aryal N,Halder A,Tremblay P L,et al.Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis[J].Electrochimica Acta,2016,217:117-122.
    [19]Nie H R,Zhang T,Cui M M,et al.Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells[J].Physical Chemistry Chemical Physics,2013,15(34):14290-14294.
    [20]Hindatu Y,Annuar M S M,Gumel A M.Mini-review:Anode modification for improved performance of microbial fuel cell[J].Renewable and Sustainable Energy Reviews,2017,73:236-248.
    [21]Pinson J,Podvorica F.Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts[J].Chemical Society Reviews,2005,34(5):429-439.
    [22]Guo K,Freguia S,Dennis P G,et al.Effects of surface charge and hydrophobicity on anodic biofilm formation,community composition,and current generation in bioelectrochemical systems[J].Environmental Science&Technology,2013,47(13):7563-7570.
    [23]Mahouche-Chergui S,Gam-Derouich S,Mangeney C,et al.Aryl diazonium salts:a new class of coupling agents for bonding polymers,biomacromolecules and nanoparticles to surfaces[J].Chemical Society Reviews,2011,40(7):4143-4166.
    [24]Picot M,Lapinsonnière L,Rothballer M,et al.Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output[J].Biosensors and Bioelectronics,2011,28(1):181-188.
    [25]Xiang Y B,Liu G L,Zhang R D,et al.Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J].Bioresource Technology,2017,241:821-829.
    [26]Xiang Y B,Liu G L,Zhang R D,et al.High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane[J].Bioresource Technology,2017,233:227-235.
    [27]Hu J P,Zeng C P,Liu G L,et al.Magnetite nanoparticles accelerate the autotrophic sulfate reduction in biocathode microbial electrolysis cells[J].Biochemical Engineering Journal,2018,133:96-105.
    [28]Mccreery R L.Advanced carbon electrode materials for molecular electrochemistry[J].Chemical Reviews,2008,108(7):2646-2687.
    [29]Mclean J S,Wanger G,Gorby Y A,et al.Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities[J].Environmental Science&Technology,2010,44(7):2721-2727.
    [30]Chung K,Fujiki I,Okabe S.Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell[J].Bioresource Technology,2011,102(1):355-360.
    [31]Guo K,Soeriyadi A H,Patil S A,et al.Surfactant treatment of carbon felt enhances anodic microbial electrocatalysis in bioelectrochemical systems[J].Electrochemistry Communications,2014,39:1-4.
    [32]Epifanio M,Inguva S,Kitching M,et al.Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells[J].Bioelectrochemistry,2015,106:186-193.
    [33]Batlle-Vilanova P,Puig S,Gonzalez-Olmos R,et al.Continuous acetate production through microbial electrosynthesis from CO2with microbial mixed culture[J].Journal of Chemical Technology and Biotechnology,2016,91(4):921-927.
    [34]Mohanakrishna G,Seelam J S,Vanbroekhoven K,et al.An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction[J].Faraday Discussions,2015,183:445-462.
    [35]Choi O,Sang B I.Extracellular electron transfer from cathode to microbes:application for biofuel production[J].Biotechnology for Biofuels,2016,9:11.
    [36]Marshall C W,Ross D E,Fichot E B,et al.Electrosynthesis of commodity chemicals by an autotrophic microbial community[J].Applied and Environmental Microbiology,2012,78(23):8412-8420.
    [37]Saheb-Alam S,Singh A,Hermansson M,et al.Effect of start-up strategies and electrode materials on carbon dioxide reduction on biocathodes[J].Applied and Environmental Microbiology,2018,84(4):e02242-17.
    [38]May H D,Evans P J,Labelle E V.The bioelectrosynthesis of acetate[J].Current Opinion in Biotechnology,2016,42:225-233.
    [39]Kindaichi T,Yamaoka S,Uehara R,et al.Phylogenetic diversity and ecophysiology of Candidate phylum Saccharibacteria in activated sludge[J].FEMS Microbiology Ecology,2016,92(6):fiw078.
    [40]Starr E P,Shi S J,Blazewicz S J,et al.Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon[J].Microbiome,2018,6:122.
    [41]Remmas N,Melidis P,Zerva I,et al.Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate:Effects of organic load on microbial communities,hydrolytic potential and extracellular polymeric substances[J].Bioresource Technology,2017,238:48-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700