用户名: 密码: 验证码:
次重力波对宽刈幅高度计海表面高度观测的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of infragravity waves on sea surface elevation observed by wide-swath altimeter
  • 作者:张蕾 ; 刘国强 ; 何宜军 ; William ; Perrie
  • 英文作者:Zhang Lei;Liu Guoqiang;He Yijun;William Perrie;School of Marine Science, Nanjing University of Information Science and Technology;Department of Oceanography, Dalhousie University;Department of Engineering Mathematics and Internetworking, Dalhousie University;Fisheries and Oceans Canada, Bedford Institute of Oceanography;
  • 关键词:次重力波 ; 宽刈幅干涉卫星高度计 ; 次中尺度大洋环流
  • 英文关键词:infragravity waves;;wide-swath altimeter;;submeso-scale ocean circulation
  • 中文刊名:海洋学报
  • 机构:南京信息工程大学海洋科学学院;达尔豪斯大学海洋学院;达尔豪斯大学工程数学与网络工程学院;贝德福海洋研究所加拿大渔业海洋部;
  • 出版日期:2019-06-11
  • 出版单位:海洋学报
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金项目(41506028);; 江苏省青年科学基金(BK20150913);; 国家重点基础研究发展计划项目(2016YFC1401407);; 全球变化与海气相互作用专项项目(GASI-IPOVAI-04);; 南京信息工程大学人才启动基金
  • 语种:中文;
  • 页:107-117
  • 页数:11
  • CN:11-2055/P
  • ISSN:0253-4193
  • 分类号:P716
摘要
次重力波(Infragravity Wave,IGW)是一种频率较低(0.05~0.005 Hz),波长较长(约10 km)的表面重力波。由IGW引起的海表面高度变化会被宽刈幅干涉高度计SWOT(Surface Water and Ocean Topography,SWOT)卫星观测到,因此在使用SWOT观测的海表面高度来反演中尺度、次中尺度大洋环流时,IGW是一种重要的误差来源。根据数值模型模拟的全球IGW时空分布特征,本文以IGW最为活跃的东北太平洋和欧洲西北陆架附近大西洋为研究海域,估算了上述海域由IGW所引起的海表面高度变化,并将计算结果与SWOT Simulator模拟的轨道噪声(±5 cm)比较,首次定量地估算了IGW在SWOT观测海表面高度时的干扰程度。研究表明,IGW所引起的厘米量级的海表面高度变化在SWOT卫星观测海表面流场时是一种重要的,不可忽略的误差来源。在大西洋欧洲西北陆架海域,冬季IGW对海表面高度的贡献可达到SWOT卫星噪声要求水平的25%;然而,对于大陆架狭窄的美国西岸太平洋而言,由岸线产生的IGW将迅速传入深海海域,在广阔的范围内产生显著的"噪声"影响,在SWOT反演海表面流场时由IGW引起的误差将达到SWOT卫星噪声要求水平的15%。
        Infragravity waves(IGWs) are surface gravity waves with low frequency(0.005-0.05 Hz) and long wavelength(about 10 km). The sea surface elevation caused by IGWs can be captured by the future wide-swath altimeter Surface Water and Ocean Topography(SWOT). Thus, IGWs will be an important source of error, when using the observed sea surface elevation from SWOT to retrieve meso-and submeso-scale ocean circulation. Based on the spatial and temporal distribution of the global IGWs, the sea surface elevation caused by IGWs is estimated in the northeastern Pacific and northwestern Europe shelf with high IGW energy. Compared with the orbit noise simulated by SWOT Simulator(±5 cm), the IGW "noise" is quantitatively analyzed for the first time. We find that the sea surface elevation of the order of 1 cm contributed by IGWs is an important source of error that can not be ignored in the surface elevation measurements of SWOT. On the northwestern Europe continental shelf, the contribution of winter IGWs to sea surface elevation has reached 25% of the noise level requirement of SWOT. While, for the US west coast where the continental shelf is narrow, IGWs are generated along shorelines and quickly spread into the deep ocean, causing significant noise effects on a broader area, about 15% of the noise level requirement of SWOT.
引文
[1] Reniers A J H M,Roelvink J A,Thornton E B.Morphodynamic modeling of an embayed beach under wave group forcing[J].Journal of Geophysical Research:Oceans,2004,109(C1):C01030.
    [2] Aagaard T,Greenwood B.Infragravity wave contribution to surf zone sediment transport—The role of advection[J].Marine Geology,2008,251(1/2):1-14.
    [3] Sheremet A,Staples T,Ardhuin F,et al.Observations of large infragravity wave runup at Banneg Island,France[J].Geophysical Research Letters,2014,41(3):976-982.
    [4] Bromirski P D,Sergienko O V,MacAyeal D R.Transoceanic infragravity waves impacting Antarctic ice shelves[J].Geophysical Research Letters,2010,37(2):L02502.
    [5] Webb S C,Crawford W C.Shallow-water broadband OBS seismology[J].Bulletin of the Seismological Society of America,2010,100(4):1770-1778.
    [6] Livneh D J,Seker I,Djuth F T,et al.Continuous quasiperiodic thermospheric waves over Arecibo[J].Journal of Geophysical Research:Space Physics,2007,112(A7):A07313.
    [7] Luther D S,Chave A D,Filloux J H,et al.Evidence for local and nonlocal barotropic responses to atmospheric forcing during BEMPEX[J].Geophysical Research Letters,1990,17(7):949-952.
    [8] Godin O A,Zabotin N A,Bullett T W.Acoustic-gravity waves in the atmosphere generated by infragravity waves in the ocean[J].Earth,Planets and Space,2015,67:47.
    [9] Longuet-Higgins M S,Stewart R W.Radiation stress and mass transport in gravity waves,with application to ‘surf beats’[J].Journal of Fluid Mechanics,1962,13(4):481-504.
    [10] Herbers T H C,Elgar S,Guza R T.Infragravity-frequency (0.005-0.05 Hz) motions on the shelf.Part Ⅰ:Forced waves[J].Journal of Physical Oceanography,1994,24(5):917-927.
    [11] Herbers T H C,Elgar S,Guza R T,et al.Infragravity-frequency (0.005-0.05 Hz) motions on the shelf.Part Ⅱ:Free waves[J].Journal of Physical Oceanography,1995,25(6):1063-1079.
    [12] Symonds G,Huntley D A,Bowen A J.Two-dimensional surf beat:Long wave generation by a time-varying breakpoint[J].Journal of Geophysical Research:Oceans,1982,87(C1):492-498.
    [13] Munk W,Snodgrass F,Gilbert F.Long waves on the continental shelf:an experiment to separate trapped and leaky modes[J].Journal of Fluid Mechanics,1964,20(4):529-554.
    [14] Huntley D A,Guza R T,Thornton E B.Field observations of surf beat:1.Progressive edge waves[J].Journal of Geophysical Research:Oceans,1981,86(C7):6451-6466.
    [15] Qiu Bo,Chen Shuiming,Klein P,et al.Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements[J].Journal of Physical Oceanography,2016,46(3):947-963.
    [16] Webb S C,Zhang Xin,Crawford W.Infragravity waves in the deep ocean[J].Journal of Geophysical Research:Oceans,1991,96(C2):2723-2736.
    [17] Harmon N,Henstock T,Srokosz M,et al.Infragravity wave source regions determined from ambient noise correlation[J].Geophysical Research Letters,2012,39(4):L04604.
    [18] Godin O A,Zabotin N A,Sheehan A F,et al.Interferometry of infragravity waves off New Zealand[J].Journal of Geophysical Research:Oceans,2014,119(2):1103-1122.
    [19] Neale J,Harmon N,Srokosz M.Source regions and reflection of infragravity waves offshore of the U.S.s Pacific Northwest[J].Journal of Geophysical Research:Oceans,2015,120(9):6474-6491.
    [20] Guza R T,Thornton E B.Swash oscillations on a natural beach[J].Journal of Geophysical Research:Oceans,1982,87(C1):483-491.
    [21] Sheremet A,Guza R T,Elgar S,et al.Observations of nearshore infragravity waves:Seaward and shoreward propagating components[J].Journal of Geophysical Research:Oceans,2002,107(C8):3095.
    [22] Rawat A,Ardhuin F,Ballu V,et al.Infragravity waves across the oceans[J].Geophysical Research Letters,2014,41(22):7957-7963.
    [23] Aucan J,Ardhuin F.Infragravity waves in the deep ocean:An upward revision[J].Geophysical Research Letters,2013,40(13):3435-3439.
    [24] Ardhuin F,Rawat A,Aucan J.A numerical model for free infragravity waves:Definition and validation at regional and global scales[J].Ocean Modelling,2014,77:20-32.
    [25] Holthuijsen L H.Waves in Oceanic and Coastal Waters[M].New York:Cambridge University Press,2007:48-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700