用户名: 密码: 验证码:
地球化学模型在土壤重金属形态研究中的应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of geochemical models in heavy metals speciation in soils: A review
  • 作者:赵晓鹏 ; 顾雪元
  • 英文作者:ZHAO Xiaopeng;GU Xueyuan;School of the Environment,State Key Laboratory of Pollution Control and Resource Reuse,Nanjing University;
  • 关键词:地球化学形态模型 ; 重金属 ; 多表面模型 ; 形态 ; 土壤
  • 英文关键词:geochemical speciation model;;heavy metal;;multi-surface model;;speciation;;soil
  • 中文刊名:环境化学
  • 英文刊名:Environmental Chemistry
  • 机构:南京大学环境学院污染控制与资源化国家重点实验室;
  • 出版日期:2018-12-13 09:46
  • 出版单位:环境化学
  • 年:2019
  • 期:01
  • 基金:国家重点研发计划(2018YFC1800602);; 国家自然科学基金(21577062,21876080);; 江苏省六大人才高峰项目资助~~
  • 语种:中文;
  • 页:63-74
  • 页数:12
  • CN:11-1844/X
  • ISSN:0254-6108
  • 分类号:X53;X142
摘要
重金属在土壤中的固-液分配行为和形态分布对于其环境迁移过程和生物有效性有重要意义.基于热力学机制的地球化学平衡模型是重金属形态研究中一项重要手段.本文从形态模型的发展历史出发,对土壤环境中一些常见的地球化学形态模型进行了梳理;对形态模型的使用过程中模型输入值,包括吸附组分和活性态金属含量的确定方法进行了说明;对地球化学形态模型在各方面的应用进行了总结;最后对模型今后的发展方向和应用前景进行了展望.
        The fate and bioavailability of heavy metals are primarily determined by their solid/liquid partitioning and distribution. Mechanism-based geochemical equilibrium models have been developed as an important method in the study of heavy metals speciation. In the present review,starting with the development history of speciation modeling,some geochemical speciation models that had been used widely in the soil environment were described. The quantitative methods of reactive components and geochemically reactive element contents were introduced. And the applications of geochemical speciation model were summarized. Finally the future development and application of the model were prospected.
引文
[1] JANSSEN C R,HEIJERICK D G,DE SCHAMPHELAERE K A,et al. Environmental risk assessment of metals:tools for incorporating bioavailability[J]. Environment International,2003,28:793-800.
    [2] DEGRYSE F,SMOLDERS E,PARKER D R. Partitioning of metals(Cd,Co,Cu,Ni,Pb,Zn)in soils:Concepts,methodologies,prediction and applications-A review[J]. European Journal of Soil Science,2009,60:590-612.
    [3] SEMENZIN E,TEMMINGHOFF E J,MARCOMINI A. Improving ecological risk assessment by including bioavailability into species sensitivity distributions:An example for plants exposed to nickel in soil[J]. Environmental Pollution,2007,148:642-647.
    [4] STRANDESEN M,BIRKVED M,HOLM P E,et al. Fate and distribution modelling of metals in life cycle impact assessment[J].Ecological Modelling,2007,203:327-338.
    [5] VANSTRAALEN N M,BERGEMA W F. Ecological risks of increased bioavailability of metals under soil acidification[J]. Pedobiologia,1995,39:1-9.
    [6] VINK J P,MEEUSSEN J C. Biochem-orchestra:A tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems[J]. Environmental Pollution,2007,148:833-841.
    [7] ADAMO P,AGRELLI D,ZAMPELLA M. Chemical speciation to assess bioavailability,bioaccessibility and geochemical forms of potentially toxic metals(PTMs)in polluted soils[M]. The Netherlands,Elsevier,2018.
    [8] NORDSTROM D K. Trace metal speciation in natural waters:Computational vs analytical[J]. Water Air and Soil Pollution,1996,90:257-267.
    [9] IUPAC. Stability constants database and mini-SCDatabase[Z]. London,IUPAC,2005.
    [10] SMITH R M,MARTELL A E. Critically selected stability constants of metal complexes[Z]. Gaithersburg,MD,National Institude of Standards and Technology,2004.
    [11] MAY P M,MURRAY K. Database of chemical reactions designed to achieve thermodynamic consistency automatically[J]. Journal of Chemical and Engineering Data,2001,46:1035-1040.
    [12] MAY P M. A simple,general and robust function for equilibria in aqueous electrolyte solutions to high ionic strength and temperature[J].Chemical Communications,2000,1265-1266.
    [13] DI BONITO M,LOFTS S,GROENENBERG J E. Models of geochemical speciation:Structure and applications[M]. The Netherlands,Elsevier,2018.
    [14] MANTOURA R F C,DICKSON A,RILEY J P. Complexation of metals with humic materials in natural waters[J]. Estuarine and Coastal Marine Science,1978,6:387-408.
    [15] WILSON D E. An equilibrium model describing the influence of humic materials on the speciation of Cu2+,Zn2+,and Mn2+in freshwaters[J]. Limnology and Oceanography,1978,23:499-507.
    [16] WILSON D E,KINNEY P. Effects of polymeric charge variations on proton-metal ion equilibria of humic materials[J]. Limnology and Oceanography,1977,22:281-289.
    [17] TIPPING E. WHAM-A chemical equilibrium model and computer code for waters,sediments,and soils incorporating a discrete site electrostatic model of ion-binding by humic substances[J]. Computers&Geosciences,1994,20:973-1023.
    [18] TIPPING E. Humic ion-binding modelⅥ:An improved description of the interactions of protons and metal ions with humic substances[J].Aquatic Geochemistry,1998,4:3-48.
    [19] TIPPING E,LOFTS S,SONKE J E. Humic ion-binding modelⅦ:A revised parameterisation of cation-binding by humic substances[J].Environmental Chemistry,2011,8:225-235.
    [20] GUSTAFSSON J P. Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model[J].Journal of Colloid and Interface Science,2001,244:102-112.
    [21] KINNIBURGH D G,VAN RIEMSDIJK W H,KOOPAL L K,et al. Ion binding to natural organic matter:Competition,heterogeneity,stoichiometry and thermodynamic consistency[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,151:147-166.
    [22] CHRISTENSEN J B,TIPPING E,KINNIBURGH D G,et al. Proton binding by groundwater fulvic acids of different age,origins,and structure modeled with the model V and NICA-Donnan model[J]. Environmental Science&Technology,1998,32:3346-3355.
    [23] STUMM W,HOHL H,DALANG F. Interaction of metal-ions with hydrous oxide surfaces[J]. Croatica Chemica Acta,1976,48:491-504.
    [24] GROENENBERG J E,LOFTS S. The use of assemblage models to describe trace element partitioning,speciation,and fate:A review[J].Environmental Toxicology and Chemistry,2014,33:2181-2196.
    [25] ATKINSON R J,POSNER A M,QUIRK J P. Adsorption of potential-determining ions at ferric oxide-aqueous electrolyte interface[J].Journal of Physical Chemistry,1967,71:550-558.
    [26] SIGG L,STUMM W. The interaction of anions and weak acids with the hydrous goethite(alpha-Feooh)surface[J]. Colloids and Surfaces,1981,2:101-117.
    [27] HUANG C,STUMM W. Specific adsorption of cations on hydrous gamma-Al2O3[J]. Journal of Colloid and Interface Science,1972,43:409-420.
    [28] DZOMBAK D A,MOREL F M M. Surface complexation modeling hydrous ferric oxide[M]. New York,John Wiley&Sons,1990.
    [29] DAVIS J A,JAMES R O,LECKIE J O. Surface ionization and complexation at oxide-water interface 1. Computation of electrical doubleLayer properties in simple electrolytes[J]. Journal of Colloid and Interface Science,1978,63:480-499.
    [30] YATES D E,LEVINE S,HEALY T W. Site-binding model of electrical double-layer at oxide-water interface[J]. Journal of the Chemical Society-Faraday TransactionsⅠ,1974,70:1807-1818.
    [31] KARAMALIDIS A K,DZOMBAK D A. Surface complexation modeling gibbsite[M]. Hoboken,New Jersey,John Wiley&Sons,2010.
    [32] TONKIN J W,BALISTRIERI L S,MURRAY J W. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model[J]. Applied Geochemistry,2004,19:29-53.
    [33] HIEMSTRA T,VANRIEMSDIJK W H. A surface structural approach to ion adsorption:The charge distribution(CD)model[J]. Journal of Colloid and Interface Science,1996,179:488-508.
    [34] HIEMSTRA T,VENEMA P,RIEMSDIJK W H V. Intrinsic proton affinity of reactive surface groups of metal(hydr)oxides:The bondvalence principle[J]. Journal of Colloid and Interface Science,1996,184:680-692.
    [35] VENEMA P,HIEMSTRA T,VAN RIEMSDIJK W H. Interaction of cadmium with phosphate on goethite[J]. Journal of Colloid and Interface Science,1997,192:94-103.
    [36] STACHOWICZ M,HIEMSTRA T,VAN RIEMSDIJK W H. Multi-competitive interaction of As(Ⅲ)and As(Ⅴ)oxyanions with Ca2+,Mg2+,PO3-4,and CO2-3ions on goethite[J]. Journal of Colloid and Interface Science,2008,320:400-414.
    [37] KERSTEN M,TUNEGA D,GEORGIEVA I,et al. Adsorption of the herbicide 4-chloro-2-methylphenoxyacetic acid(MCPA)by goethite[J]. Environmental Science&Technology,2014,48:11803-11810.
    [38] GUSTAFSSON J P,PERSSON I,OROMIEH A G,et al. Chromium(Ⅲ)complexation to natural organic matter:Mechanisms and modeling[J]. Environmental Science&Technology,2014,48:1753-1761.
    [39] MILNE C J,KINNIBURGH D G,VAN RIEMSDIJK W H,et al. Generic NICA-Donnan model parameters for metal-ion binding by humic substances[J]. Environmental Science&Technology,2003,37:958-971.
    [40] HIEMSTRA T,ANTELO J,RAHNEMAIE R,et al. Nanoparticles in natural systems I:The effective reactive surface area of the natural oxide fraction in field samples[J]. Geochimica Et Cosmochimica Acta,2010,74:41-58.
    [41] WENG L,TEMMINGHOFF E J,VAN RIEMSDIJK W H. Contribution of individual sorbents to the control of heavy metal activity in sandy soil[J]. Environmental Science&Technology,2001,35:4436-4443.
    [42] GU X Y,EVANS L J. Modelling the adsorption of Cd(Ⅱ),Cu(Ⅱ),Ni(Ⅱ),Pb(Ⅱ),and Zn(Ⅱ)onto Fithian illite[J]. Journal of Colloid and Interface Science,2007,307:317-325.
    [43] GU X Y,EVANS L J,BARABASH S J. Modeling the adsorption of Cd(Ⅱ),Cu(Ⅱ),Ni(Ⅱ),Pb(Ⅱ)and Zn(Ⅱ)onto montmorillonite[J]. Geochimica Et Cosmochimica Acta,2010,74:5718-5728.
    [44] GU X Y,EVANS L J. Surface complexation modelling of Cd(Ⅱ),Cu(Ⅱ),Ni(Ⅱ),Pb(Ⅱ)and Zn(Ⅱ)adsorption onto kaolinite[J].Geochimica Et Cosmochimica Acta,2008,72:267-276.
    [45] GU X,SUN J,EVANS L J. The development of a multi-surface soil speciation model for Cd(Ⅱ)and Pb(Ⅱ):Comparison of two approaches for metal adsorption to clay fractions[J]. Applied Geochemistry,2014,47:99-108.
    [46] GUSTAFSSON J P,PECHOVA P,BERGGREN D. Modeling metal binding to soils:The role of natural organic matter[J]. Environmental Science&Technology,2003,37:2767-2774.
    [47] KHAI N M,OBORN I,HILLIER S,et al. Modeling of metal binding in tropical Fluvisols and Acrisols treated with biosolids and wastewater[J]. Chemosphere,2008,70:1338-1346.
    [48] SCHRODER T J,HIEMSTRA T,VINK J P,et al. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse[J]. Environmental Science&Technology,2005,39:7176-7184.
    [49] SCHRODER T J,VAN RIEMSDIJK W H,VAN DER ZEE S E A T M,et al. Monitoring and modelling of the solid-solution partitioning of metals and As in a river floodplain redox sequence[J]. Applied Geochemistry,2008,23:2350-2363.
    [50] SHI Z Q,ALLEN H E,DI TORO D M,et al. Predicting Pb-Ⅱadsorption on soils:the roles of soil organic matter,cation competition and iron(hydr)oxides[J]. Environmental Chemistry,2013,10:465-474.
    [51] VOEGELIN A,VULAVA V M,KRETZSCHMAR R. Reaction-based model describing competitive sorption and transport of Cd,Zn,and Ni in an acidic soil[J]. Environmental Science&Technology,2001,35:1651-1657.
    [52] GROENENBERG J E,DIJKSTRA J J,BONTEN L T,et al. Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils[J]. Environmental Pollution,2012,166:98-107.
    [53] KEIZER M G,VAN RIEMSDIJK W H. ECOSAT:A computer program for the calculation of speciation and transport in soil-water systems[Z]. Wageningen University,The Netherlands,2009.
    [54] PARKHURST D L,APPELO C A J. PHREEQC-A computer program for speciation,batch-reaction,one-dimensional transport,and inverse geochemical calculations[Z]. USGS,Denver,Colorado,2013.
    [55] GUSTAFSSON J P. Visual MINTEQ[Z]. Department of land and water resources engineering,KTH,Sweden,2012.
    [56] MEEUSSEN J C. ORCHESTRA:An object-oriented framework for implementing chemical equilibrium models[J]. Environmental Science&Technology,2003,37:1175-1182.
    [57] TEMMINGHOFF E J M,VAN DER ZEE S E A T M,DE HAAN F A M. Copper mobility in a copper contaminated sandy soil as affected by pH,solid and dissolved orgaic matter[J]. Environmental Science&Technology,1997,21:1109-1115.
    [58] WENG L,TEMMINGHOFF E J,LOFTS S,et al. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil[J]. Environmental Science&Technology,2002,36:4804-4810.
    [59] FEST E P,TEMMINGHOFF E J,GRIFFIOEN J,et al. Proton buffering and metal leaching in sandy soils[J]. Environmental Science&Technology,2005,39:7901-7908.
    [60] DIJKSTRA J J,MEEUSSEN J C,COMANS R N. Evaluation of a generic multisurface sorption model for inorganic soil contaminants[J].Environmental Science&Technology,2009,43:6196-6201.
    [61] LOFTS S,TIPPING E. An assemblage model for cation binding by natural particulate matter[J]. Geochimica Et Cosmochimica Acta,1998,62:2609-2625.
    [62] BONTEN L T C,GROENENBERG J E,WENG L,et al. Use of speciation and complexation models to estimate heavy metal sorption in soils[J]. Geoderma,2008,146:303-310.
    [63] LINDE M,OBORN I,GUSTAFSSON J P. Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils[J]. Water Air and Soil Pollution,2007,183:69-83.
    [64] DIJKSTRA J J,MEEUSSEN J C,COMANS R N. Leaching of heavy metals from contaminated soils:An experimental and modeling study[J]. Environmental Science&Technology,2004,38:4390-4395.
    [65] CANCES B,PONTHIEU M,CASTREC-ROUELLE M,et al. Metal ions speciation in a soil and its solution:Experimental data and model results[J]. Geoderma,2003,113:341-355.
    [66] WUANA R A,OKIEIMEN F E. Heavy metals in contaminated soils:a review of sources,chemistry,risks and best available strategies for remediation[J]. International Scholarly Research Notices:Ecology,2011,2011:1-20.
    [67] NOLAN A L,LOMBI E,MCLAUGHLIN M J. Metal bioaccumulation and toxicity in soils—Why bother with speciation?[J]. Australian Journal of Chemistry,2003,56:77-91.
    [68] KIM R Y,YOON J K,KIM T S,et al. Bioavailability of heavy metals in soils:Definitions and practical implementation-A critical review[J]. Environmental Geochemistry and Health,2015,37:1041-1061.
    [69] TIPPING E,RIEUWERTS J,PAN G,et al. The solid-solution partitioning of heavy metals(Cu,Zn,Cd,Pb)in upland soils of England and Wales[J]. Environmental Pollution,2003,125:213-225.
    [70] REN Z L,SIVRY Y,THARAUD M,et al. Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils:Stable isotope dilution,chemical extraction and model views[J]. Environmental Pollution,2017,225:654-662.
    [71] COMANS R N J. Adsorption,desorption and isotopic exchange of cadmium on illite-Evidence for complete reversibility[J]. Water Res,1987,21:1573-1576.
    [72] NOLAN A L,ZHANG H,MCLAUGHLIN M J. Prediction of zinc,cadmium,lead,and copper availability to wheat in contaminated soils using chemical speciation,diffusive gradients in thin films,extraction,and isotopic dilution techniques[J]. Journal of Environmental Quality,2005,34:496-507.
    [73] REN Z L,SIVRY Y,DAI J,et al. Multi-element stable isotopic dilution and multi-surface modelling to assess the speciation and reactivity of cadmium and copper in soil[J]. European Journal of Soil Science,2015,66:973-982.
    [74] MARZOUK E R,CHENERY S R,YOUNG S D. Measuring reactive metal in soil:A comparison of multi-element isotopic dilution and chemical extraction[J]. European Journal of Soil Science,2013,64:526-536.
    [75] MARZOUK E R,CHENERY S R,YOUNG S D. Predicting the solubility and lability of Zn,Cd,and Pb in soils from a minespoilcontaminated catchment by stable isotopic exchange[J]. Geochimica Et Cosmochimica Acta,2013,123:1-16.
    [76] ALMAS A R,LOFTS S,MULDER J,et al. Solubility of major cations and Cu,Zn and Cd in soil extracts of some contaminated agricultural soils near a zinc smelter in Norway:Modelling with a multisurface extension of WHAM[J]. European Journal of Soil Science,2007,58:1074-1086.
    [77] LUMSDON D G. Partitioning of organic carbon,aluminium and cadmium between solid and solution in soils:Application of a mineralhumic particle additivity model[J]. European Journal of Soil Science,2004,55:271-285.
    [78] MACDONALD J D,HENDERSHOT W H. Modelling trace metal partitioning in forest floors of northern soils near metal smelters[J].Environmental Pollution,2006,143:228-240.
    [79] GUSTAFSSON J P,TIBERG C,EDKYMISH A,et al. Modelling lead(Ⅱ)sorption to ferrihydrite and soil organic matter[J].Environmental Chemistry,2011,8:485-492.
    [80] GROENENBERG J E,ROMKENS P F,ZOMEREN A V,et al. Evaluation of the single dilute(0.43 M)nitric acid extraction to determine geochemically reactive elements in soil[J]. Environmental Science&Technology,2017,51:2246-2253.
    [81] PARKER D R,PEDLER J F,AHNSTROM Z A,et al. Reevaluating the free-ion activity model of trace metal toxicity toward higher plants:Experimental evidence with copper and zinc[J]. Environmental Toxicology and Chemistry,2001,20:899-906.
    [82] BROWN P L,MARKICH S J. Evaluation of the free ion activity model of metal-organism interaction:Extension of the conceptual model[J].Aquatic Toxicology,2000,51:177-194.
    [83] CHITO D,WENG L,GALCERAN J,et al. Determination of free Zn2+concentration in synthetic and natural samples with AGNES(Absence of Gradients and Nernstian Equilibrium Stripping)and DMT(Donnan Membrane Technique)[J]. Science of the Total Environment,2012,421-422:238-244.
    [84] TEMMINGHOFF E J M,PLETTE A C C,VAN ECK R,et al. Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Techn[J]. Analytica Chimica Acta,2000,417:149-157.
    [85] WENG L,TEMMINGHOFF E J M,VAN RIEMSDIJK W H. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique[J]. European Journal of Soil Science,2001,52:629-637.
    [86] ZHANG H,YOUNG S D. Characterizing the availability of metals in contaminated soilsⅡ. The soil solution[J]. Soil Use and Management,2005,21:459-467.
    [87] MARANG L,REILLER P,PEPE M,et al. Donnan membrane approach:from equilibrium to dynamic speciation[J]. Environmental Science&Technology,2006,40:5496-5501.
    [88] DUFFNER A,WENG L,HOFFLAND E,et al. Multi-surface modeling to predict free zinc ion concentrations in low-zinc soils[J].Environmental Science&Technology,2014,48:5700-5708.
    [89] YI L,HONG Y T,WANG D J,et al. Determination of free heavy metal ion concentrations in soils around a cadmium rich zinc deposit[J].Geochemical Journal,2007,41:235-240.
    [90]张红振,骆永明,宋静,等.基于中性盐提取的土壤重金属固液分配与自由态金属离子浓度测定[J].环境科学学报,2010,30:124-132.ZHANG H Z,LUO Y M,SONG J,et al. Solid-solution partitioning of soil heavy metals and free ion concentration measurement in neutral salt extractions[J]. Acta Scientiae Circumstantiae,2010,30:124-132(in Chinese).
    [91]张晓晴.土壤中水溶态铜镍的植物毒害及其预测模型[D].北京:中国矿业大学,2013.ZHANG X Q. The phytotoxicity and concentration prediction models of soil soluble Cu and Ni[D]. Beijing:China University of Mining and Technology,2013(in Chinese).
    [92] RENNERT T,RABUS W,RINKLEBE J. Modelling the concentrations of dissolved contaminants(Cd,Cu,Ni,Pb,Zn)in floodplain soils[J]. Environmental Geochemistry and Health,2017,39:331-344.
    [93] XIE J,GU X,TONG F,et al. Surface complexation modeling of Cr(Ⅵ)adsorption at the goethite-water interface[J]. Journal of Colloid and Interface Science,2015,455:55-62.
    [94] GU X,XIE J,WANG X,et al. A simple model to predict chromate partitioning in selected soils from China[J]. Journal of Hazardous Materials,2017,322:421-429.
    [95] CUI Y S,WENG L P. Interpretation of heavy metal speciation in sequential extraction using geochemical modelling[J]. Environmental Chemistry,2015,12:163-173.
    [96] WENG L,VAN RIEMSDIJK W H,KOOPAL L K,et al. Ligand and Charge Distribution(LCD)model for the description of fulvic acid adsorption to goethite[J]. Journal of Colloid and Interface Science,2006,302:442-457.
    [97] CUI Y,WENG L. Arsenate and phosphate adsorption in relation to oxides composition in soils:LCD modeling[J]. Environmental Science&Technology,2013,47:7269-7276.
    [98] WENG L,VEGA F A,VAN RIEMSDIJK W H. Competitive and synergistic effects in pH dependent phosphate adsorption in soils:LCD modeling[J]. Environmental Science&Technology,2011,45:8420-8428.
    [99] WENG L P,VAN RIEMSDIJK W H,HIEMSTRA T. Humic nanoparticles at the oxide-water interface:Interactions with phosphate ion adsorption[J]. Environmental Science&Technology,2008,42:8747-8752.
    [100] WENG L,VAN RIEMSDIIK W H,HIEMSTRA T. Effects of fulvic and humic acids on arsenate adsorption to goethite:Experiments and modeling[J]. Environmental Science&Technology,2009,43:7198-7204.
    [101]熊娟.土壤活性组分对Pb(Ⅱ)的吸附及化学形态模型模拟[D].武汉:华中农业大学,2015.XIONG J. Adsorption of Pb(Ⅱ)to soil active components:Chemical speciation modeling[D]. Wuhan:Huazhong Agricultural University,2015(in Chinese).
    [102]毛凌晨,YOUNG S D,BAILEY E H.地球化学模型在污染土壤中的初步应用研究[C].中国环境科学学会学术年会论文集,2015.MAO L C,YOUNG S D,BAILEY E H. X Q. The Preliminary application of geochemical model in contaminated soil[C]. Proceedings of the Chinese academy of environmental sciences,2015(in Chinese).
    [103] DEGRYSE F,SHAHBAZI A,VERHEYEN L,et al. Diffusion limitations in root uptake of cadmium and zinc,but not nickel,and resulting bias in the michaelis constant[J]. Plant Physiology,2012,160:1097-1109.
    [104] TIAN L,SHI Z,LU Y,et al. Kinetics of cation and oxyanion adsorption and desorption on ferrihydrite:Roles of ferrihydrite binding sites and a unified model[J]. Environmental Science&Technology,2017,51:10605-10614.
    [105] SHI Z,WANG P,PENG L,et al. Kinetics of heavy metal dissociation from natural organic matter:Roles of the carboxylic and phenolic sites[J]. Environmental Science&Technology,2016,50:10476-10484.
    [106] SHI Z,DI TORO D M,ALLEN H E,et al. A general model for kinetics of heavy metal adsorption and desorption on soils[J].Environmental Science&Technology,2013,47:3761-3767.
    [107] CAMPBEL P. Interactions between trace metals and aquatic organisms:A critique of the free-ion activity model[M]. New York,John Wiley and Sons,1995.
    [108] DI TORO D M,ALLEN H E,BERGMAN H L,et al. Biotic ligand model of the acute toxicity of metals 1. Technical basis[J].Environmental Toxicology and Chemistry,2001,20:2383-2396.
    [109] KINRAIDE T B,WANG P. The surface charge density of plant cell membranes(sigma):An attempt to resolve conflicting values for intrinsic sigma[J]. J Exp Bot,2010,61:2507-2518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700