用户名: 密码: 验证码:
TiO_2气溶胶快速去除空气中的芥子气模拟剂
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quick removal of mustard gas simulant from air by TiO_2 aerosol
  • 作者:李俊杰 ; 丁灯 ; 季东 ; 昝菱
  • 英文作者:LI Junjie;DING Deng;JI Dong;ZAN Ling;College of Chemistry and Molecular Sciences,Wuhan University;Troops 61699 of People's Liberation Army;
  • 关键词:TiO_2气溶胶 ; 降解 ; 二乙基硫醚 ; 化学毒剂 ; 芥子气模拟剂
  • 英文关键词:TiO_2 aerosol;;degradation;;diethyl sulfide;;chemical warfare agent;;mustard gas simulant
  • 中文刊名:化工环保
  • 英文刊名:Environmental Protection of Chemical Industry
  • 机构:武汉大学化学与分子科学学院;中国人民解放军61699部队;
  • 出版日期:2019-06-21 10:12
  • 出版单位:化工环保
  • 年:2019
  • 期:04
  • 基金:江苏省自然科学基金项目(BK20151248)
  • 语种:中文;
  • 页:51-58
  • 页数:8
  • CN:11-2215/X
  • ISSN:1006-1878
  • 分类号:X51
摘要
在自制反应器内,通过喷射法将纳米TiO_2分散成气溶胶形式,用以降解空气中的芥子气模拟剂二乙基硫醚(DES)。利用自行设计的一套气溶胶沉降行为评价装置,对TiO_2气溶胶的释放条件进行了优化。系统研究了相对湿度、反应温度、光强、催化剂加入量、反应物浓度等因素对DES降解速率和彻底矿化速率的影响。结果表明:TiO_2气溶胶对2.80 mg/L(近似芥子气快速致死浓度)DES降解的半衰期由涂覆型TiO_2的34.5 min缩短至8.5 min;TiO_2气溶胶光催化降解DES的最佳相对湿度为35%,此时CO_2最快生成速率可达34.64μg/(L·min),150 min内彻底矿化比例达66.1%;对于1.5 L反应器,催化剂加入量为30 mg时降解DES的量效比达到最佳状态;TiO_2气溶胶光催化适用于含低浓度DES空气的快速净化。
        In a self-made reactor,the nano TiO_2 aerosol was formed by spraying to degrade diethyl sulfide(DES)in air. A new device was designed to evaluate the deposition behavior of TiO_2 aerosol and the release conditions of TiO_2 aerosols were optimized. The factors affecting the degradation rate and complete mineralization rate of DES were systematically investigated,such as:relative humidity,reaction temperature,light intensity,catalyst amount and reactant concentration. The results showed that:The half-life of 2.80 mg/L(approximate to the rapid lethal concentration of mustard gas) DES in degradation was decreased from 34.5 min by coated type TiO_2 to 8.5 min by TiO_2 aerosol;The best relative humidity for DES degradation by TiO_2 aerosol was 35%,while the fastest CO_2 generation rate reached 34.64 μg/(L·min) and the complete mineralization ratio reached 66.1% after 150 min;The best dose-effect ratio for DES degradation could be achieved with 30 mg TiO_2 aerosol in 1.5 L reactor;The TiO_2 aerosol photocatalysis process was suitable for rapid decontamination of air with low concentration DES.
引文
[1]GIANNAKOUDAKIS D A,FLORENT M,WALLACER,et al.Zinc peroxide nanoparticles:surface,chemical and optical properties and the effect of thermal treatment on the detoxification of mustard gas[J].Appl Catal,B,2018,226:429-440.
    [2]PETREA N,PETRE R,EPURE G,et al.The combined action of methanolysis and heterogeneous photocatalysis in the decomposition of chemical warfare agents[J].Chem Commun,2016,52(88):12956-12959.
    [3]CHRISTOFORIDIS K C,SENGELE A,KELLERV,et al.Single-step synthesis of SnS2 nanosheet-decorated TiO2 anatase nanofibers as efficient photocatalysts for the degradation of gas-phase diethylsulfide[J].ACSAppl Mater Interfaces,2015,7(34):19324-19334.
    [4]SUN B,VORONTSOV A V,SMIRNIOTIS P G.Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2[J].J Hazard Mater,2011,186(2/3):1147-1153.
    [5]KOLINKO P A,KOZLOV D V.Photocatalytic oxidation of tabun simulant-diethyl cyanophosphate:FTIR in situ investigation[J].Environ Sci Technol,2008,42(12):4350-4355.
    [6]ATILGAN A,ISLAMOGLU T,HOWARTH A J,et al.Detoxification of a sulfur mustard simulant using a BODIPY functionalized zirconium-based metal-organic framework[J].ACS Appl Mater Interface,2017,9(29):24555-24560.
    [7]NASERI M T,SARABADANI M,ASHRAFI D,et al.Photoassisted and photocatalytic degradation of sulfur mustard using TiO2 nanoparticles and polyoxometalates[J].Environ Sci Pollut Res,2013,20(2):907-916.
    [8]VORONTSOV A V,CHEN Y C,SMIRNIOTIS P G.Photocatalytic oxidation of VX simulant 2-(butylamino)ethanethiol[J].J Hazard Mater,2004,113(1/3):89-95.
    [9]HENYCH J,?TENGL V,MATTSSON A,et al.Chemical warfare agent simulant DMMP reactive adsorption on TiO2/graphene oxide composites prepared via titanium peroxo-complex or urea precipitation[J].JHazard Mater,2018,359:482-490.
    [10]SENGELE A,ROBERT D,KELLER N,et al.Ta-doped TiO2 as photocatalyst for UV-A activated elimination of chemical warfare agent simulant[J].JCatal,2016,334:129-141.
    [11]SATO K,HIRAKAWA T,KOMANO A,et al.Titanium dioxide photocatalysis to decompose isopropyl methylphosphonofluoridate(GB)in gas phase[J].Appl Catal,B,2011,106(3/4):316-322.
    [12]VORONTSOV A V,SAVINOV E V,DAVYDOVL,et al.Photocatalytic destruction of gaseous diethyl sulfide over TiO2[J].Appl Catal,B,2001,32(1/2):11-24.
    [13]WANG H,WAGNER G W,LU A X,et al.Photocatalytic oxidation of sulfur mustard and its simulant on BODIPY-incorporated polymer coatings and fabrics[J].ACS Appl Mater Interfaces,2018,10(22):18771-18777.
    [14]GIANNAKOUDAKIS D A,HU Y P,FLORENTM,et al.Smart textiles of MOF/gC3N4 nanospheres for the rapid detection/detoxification of chemical warfare agents[J].Nanoscale Horiz,2017,2(6):356-364.
    [15]TRUONG-PHUOC L,CHRISTOFORIDIS K C,VIGNERON F,et al.Layer-by-layer photocatalytic assembly for solar light-activated self-decontaminating textiles[J].ACS Appl Mater Interfaces,2016,8(50):34438-34445.
    [16]ABDEL FATTAH W I,GOBARA M M,EL-HOTABYW,et al.Coating stainless steel plates with Ag/TiO2for chlorpyrifos decontamination[J].Mater Res Express,2016,3(5):055009.
    [17]BURU C T,MAJEWSKI M B,HOWARTH A J,et al.Improving the efficiency of mustard gas simulant detoxification by tuning the singlet oxygen quantum yield in metal-organic frameworks and their corresponding thin films[J].ACS Appl Mater Interfaces,2018,10(28):23802-23806.
    [18]LIU Y Y,BURU C T,HOWARTH A J,et al.Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework[J].J Mater Chem A,2016,4(36):13809-13813.
    [19]ARCIBAR-OROZCO J A,GIANNAKOUDAKIS DA,BANDOSZ T J.Effect of Ag containing(nano)particles on reactive adsorption of mustard gas surrogate on iron oxyhydroxide/graphite oxide composites under visible light irradiation[J].Chem Eng J,2016,303:123-136.
    [20]殷蓉,安静,罗青枝,等.微波诱导水解法制备纳米TiO2及光催化降解盐酸四环素[J].化工环保,2018,38(4):391-396.
    [21]SHEN Z,ZHONG J Y,HAN X Y,et al.Decontamination of chemical warfare agents on sensitive equipment materials using Zr4+and Ge4+co-doped TiO2and hydrofluoroether suspension[J].Chem Eng J,2016,302:111-119.
    [22]GIANNAKOUDAKIS D A,ARCIBAR-OROZCO JA,BANDOSZ T J.Effect of GO phase in Zn(OH)2/GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate[J].App Catal,B,2016,183:37-46.
    [23]MERA N,HIRAKAWA T,SANO T,et al.Continuous elimination of gaseous dimethyl methylphosphonate by a photocatalytic flow reaction system[J].Appl Catal,B,2014,146:71-78.
    [24]VORONTSOV A V,SAVINOV E N,SMIRNIOTISP G.Vibrofluidized-and fixed-bed photocatalytic reactors:case of gaseous acetone photooxidation[J].Chem Eng Sci,2000,55(21):5089-5098.
    [25]VORONTSOV A V,BESOV A S,PARMON V N.Fast purification of air from diethyl sulfide with nanosized TiO2 aerosol[J].Appl Catal,B,2013,129:318-324.
    [26]BESOV A S,VORONTSOV A V,PARMON V N.Fast adsorptive and photocatalytic purification of air from acetone and dimethyl methylphosphonate by TiO2aerosol[J].Appl Catal,B,2009,89(3/4):602-612.
    [27]陈金周,陈海平,王玄玉,等.化学武器效应及销毁[M].北京:兵器工业出版社,2002:13.
    [28]HINDS W C.气溶胶技术[M].孙聿峰,译.哈尔滨:黑龙江科学技术出版社,1989:212-215.
    [29]HIRAKAWA T,SATO K,KOMANO A,et al.Specific properties on TiO2 photocatalysis to decompose isopropyl methylphosphonofluoridate and dimethyl methylphosphonate in gas phase[J].J Photochem Photobiol,A,2013,264:12-17.
    [30]ZUO G M,CHENG Z X,LI G W,et al.Study on photolytic and photocatalytic decontamination of air polluted by chemical warfare agents(CWAs)[J].Chem Eng J,2007,128(2/3):135-140.
    [31]KOZLOV D V,VORONTSOV A V,SMIRNIOTIS PG,et al.Gas-phase photocatalytic oxidation of diethyl sulfide over TiO2:kinetic investigations and catalyst deactivation[J].Appl Catal,B,2003,42(1):77-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700