用户名: 密码: 验证码:
拉尼娜事件对长江中下游旱涝的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of La Niňa events on drought and flood in middle and lower reaches of Yangtze River
  • 作者:荣艳淑 ; 石丹丹 ; 吕星玥 ; 吴福婷
  • 英文作者:RONG Yanshu;SHI Dandan;LYU Xingyue;WU Futing;College of Hydrology and Water Resources, Hohai University;
  • 关键词:拉尼娜事件 ; 旱涝事件 ; 标准化降水蒸散指数 ; 旋转经验正交函数 ; 合成分析 ; 长江中下游
  • 英文关键词:La Niňa event;;drought and flood events;;standardized precipitation evapotranspiration index;;rotated empirical orthogonal function;;composite analysis;;middle and lower reaches of Yangtze River
  • 中文刊名:水资源保护
  • 英文刊名:Water Resources Protection
  • 机构:河海大学水文水资源学院;
  • 出版日期:2019-05-20
  • 出版单位:水资源保护
  • 年:2019
  • 期:03
  • 基金:国家重点研发计划(2016YFA0601504);; 国家自然科学基金(51420105014);国家自然科学基金青年科学基金(41605043);; 中央高校基本科研业务费专项(2017B00114)
  • 语种:中文;
  • 页:18-28
  • 页数:11
  • CN:32-1356/TV
  • ISSN:1004-6933
  • 分类号:P426.616;P732
摘要
为研究不同强度拉尼娜事件下长江中下游旱涝差异,利用旋转经验正交函数方法,将长江中下游划分为4个区(西北部、中部、南部和东部);基于MEI指数,提取了1961—2014年的拉尼娜事件,并采用标准化降水蒸散指数来评估旱涝等级。结果表明:不同强度的拉尼娜事件可对各分区的旱涝频率、强度和时空分布产生不同的影响。在强事件持续期,一区易发严重干旱,二到四区易发生严重洪涝;在强事件结束后,一区可出现轻度洪涝,二到四区可出现中等以上干旱。在中等事件持续期,一区洪涝的频率和强度略大,二区到四区干旱的频率和强度略大;在中等事件结束后,一区洪涝的频率和强度非常大,二区到四区干旱的频率和强度非常大。弱事件对旱涝影响较小,且在南部和北部有反向变化特征,南旱北涝。旱涝频率、强度和分布差异与不同等级的拉尼娜事件影响水汽输送和垂直运动的强度有关。
        In order to study the difference of drought and flood in the middle and lower reaches of the Yangtze River under different intensities of La Niňa events, the research area were divided into four regions(northwest, central, south and east) by using the method of rotating empirical orthogonal function(REOF). Based on multivariate ENSO index(MEI), the La Niňa events from 1961 to 2014 were extracted, and the standard precipitation evapotranspiration index(SPEI) was used to evaluate the drought and flood grades. The results show that different intensities of La Niňa events have different influences on the frequency, intensity and spatial and temporal distribution of drought and flood in different regions. During the duration of strong events, severe drought is prone to occur in northwest region, and severe floods are prone to occur in other regions. After strong events, mild floods may occur in northwest region and moderate or more droughts may occur in other regions. During the duration of moderate events, the frequency and intensity of flood in northwest region are slightly higher than that of drought in other regions. After moderate events, the frequency and intensity of flood in northwest region are very large, and the frequency and intensity of drought in other regions are very large. Weak events have little influence on drought and flood, and have reverse change characteristics in south and north parts, while southern drought and northern flood. The reasons for the difference in frequency, intensity and distribution of drought and flood are related to the intensity of water vapor transport and vertical movement which are affected by different levels of La Niňa events.
引文
[1] 胡玉恒,荣艳淑,魏佳,等.华南前汛期降水与前期印度洋海温的关系[J].水资源保护,2017,33(5):106-116.( HU Yuheng,RONG Yanshu,WEI Jia,et al.Relationship between pre-flood season precipitation in South China and Indian Ocean SST at earlier stages[J].Water Resources Protection,2017,33(5):106-116.(in Chinese))
    [2] RASMUSSON E M,WALLACE J M.Meteorological aspects of El Niňo/Southern Oscillation[J].Science,1983,222:1195-1202.
    [3] CHANG C P,ZHANG Y S,LI T.Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs.part I:roles of the subtropical ridge[J].Journal of Climate,2000,13:4310-4325.
    [4] TEDESCHI R G,GRIMM A M,CAVALCANTI I F A.Influence of central and east ENSO on precipitation and its extreme events in South America during austral autumn and winter[J].International Journal of Climatology,2016,36:1-11.
    [5] ZHANG Ronghua,GAO Chuan.Processes involved in the second-year warming of the 2015 El Niňo event as derived from an intermediate ocean model[J].Chinese Science Bulletin,2017,60(9):1601-1613.
    [6] ZHAI Panmao,YU Rong,GUO Yanjun,et a1.The strong El Niňo of 2015/16 and its dominant impacts on global and China’s climate[J].Meteorology Research,2016,30(3):283-297.
    [7] OVERPECK J T.Climate science:the challenge of hot drought[J].Nature,2013,503:350-351.
    [8] ZHANG Zengxin,XU Chongyu,YONG Bin,et a1.Understanding the changing characteristics of droughts in Sudan and the corresponding components of the hydrologic cycle[J].Journal of Hydrometeorology,2012,13:1520-1535.
    [9] 刘丽,杨若文,邢冬,等.ENSO发展和衰减阶段对云南夏季降水的影响研究[J].热带气象学报,2011,27(2):278-282.(LIU Li,YANG Ruowen,XING Dong,et al.The influence of developing and decaying stages of ENSO on summer precipitation in Yunnan [J].Journal of Tropical Meteorology,2011,27(2):278-282.(in Chinese))
    [10] CHEN Yongli,ZHAO Yongping,FENG Junqiao,et al.ENSO cycle and climate anomaly in China[J].Chinese Journal of Oceanology and Limnology,2012,30(6):985-1000.
    [11] WANG Yi,Yan Zhongwei.Changes of frequency of summer precipitation extremes over the Yangtze River association with large scale oceanic-atmospheric conditions[J].Advance Atmosphere Science,2011,28(5):1118-1128.
    [12] 吴萍,丁一汇,柳艳菊.厄尔尼诺事件对中国夏季水汽输送和降水分布影响的新研究[J].气象学报,2017,75(1):371-383.(WU Ping,DING Yihui,LIU Yanju.A new study of El Niňo impacts on summertime water vapor transport and rainfall in China[J].Acta Meteorologica Sinica,2017,75(1):371-383.(in Chinese))
    [13] 赵强,严华生,程路.ENSO发展和衰减阶段的陕西夏季降水异常特征[J].应用气象学报,2013,24(4):495-503.(ZHAO Qiang,YAN Huasheng,CHENG Lu.Characteristics of Shaanxi summer precipitation anomalies in ENSO developing and decaying stages[J].Journal of Applied Meteorological Science,2013,24(4):495-503.(in Chinese))
    [14] 袁嫒,李崇银,杨菘.与厄尔尼诺和拉尼娜相联系的中国南方冬季降水的年代际异常特征[J].气象学报,2014,72(2):237-255.(YUAN Yuan,LI Chongyin,YANG Song.Decadal anomalies of winter precipitation over Southern China in association with El Niňo and La Nina [J].Journal of Meteorological Research,2014,72(2):237-255.(in Chinese))
    [15] 闪丽洁,张利平,张艳军,等.长江中下游流域旱涝急转事件特征分析及其与ENSO的关系[J].地理学报,2018,73(1):24-40.(SHAN Lijie,ZHANG Liping,ZHANG Yanjun,et al.Characteristics of dry-wet abrupt alternation events in the middle and lower reaches of the Yangtze River Basin and their relationship with ENSO[J].Journal of Geographical Sciences,2018,73(1):24-40.(in Chinese))
    [16] WANG Xin,WANG Dongxiao,ZHOU Wen,et al.Interdecadal modulation of the influence of La Niňa events on Meiyu rainfall over the Yangtze River valley[J].Advances in Atmospheric Sciences,2012,29(1):157-168.
    [17] ZHANG Wenjun,JIN Feifei,STUECKER M F,et al.Unraveling El Niňo’s impact on the East Asian Monsoon and Yangtze River summer flooding[J].Geophysical Research Letters,2016,43(21):11375-11382.
    [18] CAO Qiang,HAO Zhenchun,YUAN Feifei,et al.ENSO Influence on rainy season precipitation over the Yangtze River Basin[J].Water,2017,9(7):469.
    [19] 王淼,曹润东,姚瑶,等.东部型、中部型ENSO影响长江流域降水的调查与分析[J].资源节约与环保,2017(4):65-67.(WANG Miao,CAO Rundong,YAO Yao,et al.The influence of developing and decaying stages of Enso on summer precipitation in Yunnan [J].Resources Economization & Environmental Protection,2017(4):65-67.(in Chinese))
    [20] ZHANG Qiang,XU Chongyu,JIANG Tong,et al.Possible influence of ENSO on annual maximum streamflow of the Yangtze River,China[J].Journal of Hydrology,2007,333(2/3/4):265-274.
    [21] 王绍武,龚道溢.近百年来的ENSO事件及其强度[J].气象,1999,25(1) :9-14.(WANG Shaowu,GONG Daoyi.ENSO events and their intensity during the past century[J].Meteorological Monthly,1999,25(1) :9-14.(in Chinese))
    [22] 魏佳,荣艳淑,张亮.极强ENSO事件对长江流域降水和径流的影响分析[C]//第十四届中国水论坛论文集.郑州:水论坛组委会,2017.
    [23] WOLTER K,TIMLIN M S.Monitoring ENSO in COADS with a seasonally adjusted principal component index [C]∥Proceeding of the NOAA Climate Diagnostics Workshop.Washington D C:NOAA,1993.
    [24] WOLTER K,TIMLIN M S.Measuring the strength of ENSO events:how does 1997/98 rank?[J].Weather,1998,53(9):315-324.
    [25] 李芬,张玮,乔云红.近56年山西季节旱涝对ENSO事件的响应[J].灾害学,2015(4):85-90.(LI Fen,ZHANG Yi,QIAO Yunhong.Response of Shanxi’s seasonal droughts and floods to ENSO events in latest 56 years[J].Journal of Catastrophology,2015(4):85-90.(in Chinese))
    [26] 欧延升,赵景波.广西北部湾地区1951-2010年间气候变化与ENSO事件影响[J].灾害学,2017,32(1):228-234.(OU Yansheng,ZHAO Jingbo.Effects of ENSO events on climate in Beibu Gulf Area of Guangxi during 1951-2010[J].Journal of Catastrophology,2017,32(1):228-234.(in Chinese))
    [27] VICENTESERRANO S M,BEGUERíA S,LóPEZMORENO J I.A multiscale drought index sensitive to global warming:the standardized precipitation evapotranspiration index[J].Journal of Climate,2010,23(7):1696-1718.
    [28] 吴珊珊,黄彩婷.基于REOF方法的江西省6月降水趋势分区预测[J].气象与减灾研究,2015,38(1):8-15.(WU Shanshan,HUANG Caiting.Prediction of partition precipitation trends of Jiangxi in June based on REOF [J].Meteorology and Disaster Reduction Research,2015,38(1):8-15.(in Chinese))
    [29] 方国华,丁紫玉,闻昕,等.厄尔尼诺事件及其对我国夏季降水量时空分布的影响[J].河海大学学报(自然科学版),2017,45(6):481-488.(FANG Guohua,DING Ziyu,WEN Xin,et al.El Nino event and its impact on the spatial and temporal distribution of summer precipitation in China[J].Journal of Hohai University (Natural Sciences),2017,45(6):481-488.(in Chinese))
    [30] 吴洪宝,吴蕾.气候变率诊断和预测方法[M].2版.北京:气象出版社,2005:37-48.
    [31] 魏凤英.现代气候统计诊断与预测技术[M].2版.北京:气象出版社,1999:117-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700