用户名: 密码: 验证码:
北京典型天气下的4种阔叶树种液流特征及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and Influencing Factors in Sap Flow of Four Broadleaved Tree Species for Typical Weather Conditions of Beijing
  • 作者:李少宁 ; 鲁绍伟 ; 赵云阁 ; 赵娜 ; 陈波
  • 英文作者:LI Shao-ning;LU Shao-wei;ZHAO Yun-ge;ZHAO Na;CHEN Bo;Beijing Academy of Forestry and Pomology Sciences;Beijing Collaborative Innovation Center for EcoEnvironmental Improvement with Forestry and Fruit Trees;Beijing Yanshan Forest Ecosystem Research Station;
  • 关键词:阔叶树 ; 树干液流 ; 环境因子 ; 典型天气
  • 英文关键词:broadleaved trees;;sap flow;;environmental factors;;typical weather conditions
  • 中文刊名:生态与农村环境学报
  • 英文刊名:Journal of Ecology and Rural Environment
  • 机构:北京市农林科学院林业果树科学研究院;北京林果业生态环境功能提升协同创新中心;北京燕山森林生态系统定位观测研究站;
  • 出版日期:2019-02-25
  • 出版单位:生态与农村环境学报
  • 年:2019
  • 期:02
  • 基金:北京市农林科学院基金(QNJJ201532);北京市农林科学院科技创新能力建设资助项目(KJCX20160301,KJCX20150205,KJCX 20170601);; 林业科技创新平台运行补助项目(2017-LYPT-DW-001);; 科技创新服务能力建设-协同创新中心-林果业生态环境功能提升协同创新中心(PXM2017_014207_000043)
  • 语种:中文;
  • 页:55-62
  • 页数:8
  • CN:32-1766/X
  • ISSN:1673-4831
  • 分类号:S715
摘要
为揭示典型天气下阔叶树种的液流变化差异及其主要影响因素,以北京平原区的4种阔叶乔木为研究对象,利用热扩散插针法对树干液流进行连续观测,同时结合Meter全自动气象站同步观测的环境因子,分析树木蒸腾特征及其影响因素,结果显示:(1)在典型天气条件下,4种阔叶树种液流日变化特征均为晴天液流日变化呈单峰型曲线,阴天呈双峰型变化,雨天则呈多峰型趋势;液流启动时间为晴天和阴天(06:00)早于雨天(06:30)。(2)各环境因子中太阳辐射日变化与液流相似,且各环境因子间相互影响,尤其太阳辐射与温度间存在滞后效应。(3)各环境因子中,太阳辐射、温度、风速及水汽压亏缺(VPD)均与液流呈极显著正相关(P<0. 01),而空气相对湿度则与液流呈极显著负相关(P<0. 01);同步观测的环境因子日变化与液流日变化存在时滞效应。(4)主成分分析结果发现,大气温度和太阳辐射作为主要影响因子贡献率为74. 37%;水汽压亏缺贡献率为14. 33%。(5)各树种7月总耗水量为毛白杨(289. 23 kg)>刺槐(235. 04 kg)>国槐(151. 53 kg)>栾树(133. 80 kg),日耗水量大小顺序与月耗水量相同,且晴天高于阴雨天。研究结果可为北京市园林树种的生态水文过程和影响因素综合评定提供一定的科学依据。
        To illustrate the differences in characteristics of sap flow of broadleaved species and their main influences in typical weather condition,sap flow rates of four broadleaved tree species were continuously monitored through the thermal dissipation probes( TDP) in plain areas of Beijing,combining simultaneous observations of environmental factors via automatic weather station,to explore the transpiration patterns of tree species and influencing environmental factors. The results show that diurnal variations in sap flow rates of 4 broadleaved species presented single-peak curves in sunny days,bimodel curves in cloudy days and multi-peaks curves in rainy days. The sap flow began at 6: 00 a. m. in sunny and cloudy days which were earlier than that in rainy days( 06: 30 a.m.). The diurnal patterns of solar radiation were consistent with that in sap flow. There exist interactions among environmental factors. Particularly,there is a lag-effect in variations between solar radiation and temperature. Considering the influencing extent of environmental factors on sap flow,solar radiation,temperature,wind speed and water vapor pressure deficit( VPD) were significantly positively related with the sap flow rates of four tree species( P<0.01),whereas there were remarkable negative correlationships between relative air humidity and sap flow rates( P<0.01). Diurnal variations of environmental factors were not in synchrony with that of sap flow rates of tree species. Based on the principal component analysis,as the main influentors,air temperature and solar radiation were responsible for 74.37% on variations of sap flow of tree species,while water vapor pressure deficit contributing 14.33%. Total monthly water consumptions of four tree species in July were ranked as Populus tomentosa( 289. 23 kg) > Robinia pseudoacacia( 235.04 kg) >Sophora japonica( 151.53 kg) > Koelreuteria paniculata( 133.80 kg). The daily water consumption of above species had the same sequence with that of monthly water consumption mentioned above. The water consumptions of tree species in sunny days were observed higher than that in rainy days. The results of the study can provide a certain scientific basis for the comprehensive evaluation on ecological hydrological processes and determination on influencing factors of garden tree species in Beijing.
引文
[1]胡兴波,韩磊,张冬,等.黄土半干旱区白榆和侧柏夜间液流动态分析[J].中国水土保持科学,2010,8(4):51-56.[HU Xingbo,HAN Lei,ZHANG Dong,et al.Analysis on the Dynamics of Nighttime Sap Flow of Ulmus pumila and Platycladus orientalis in Semiarid Area of Loess Plateau[J].Science of Soil and Water Conservation,2010,8(4):51-56.]
    [2]BAUMGARTEN M,WEIS W,KUHN A,et al.Forest TranspirationTargeted Through Xylem Sap Flux Assessment Versus Hydrological Modelin[J].European Journal of Forest Research,2014,133(4):677-690.
    [3]汪滢,王健.植物液流研究进展[J].安徽农学通报,2012,18(5):49-50.
    [4]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002,22(9):1387-1391.[SUN Hui-zhen,ZHOU Xiao-feng,ZHAO Hui-xun.A Research on Stem Sap Flow Dynamics of Betula platyphylla[J].Acta Ecologica Sinica,2002,22(9):1387-1391.]
    [5]徐先英,孙保平,丁国栋,等.干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应[J].生态学报,2008,28(3):895-905.[XU Xian-ying,SUN Bao-ping,DING Guo-dong,et al.Sap Flow Patterns of Three Main Sand-Fixing Shrubs and Their Responses to Environmental Factors in Desert Areas[J].Acta Ecologica Sinica,2008,28(3):895-905.]
    [6]程静,欧阳旭,黄德卫,等.鼎湖山针阔叶混交林4种优势树种树干液流特征[J].生态学报,2015,35(12):4097-4104.[CHENG Jing,OUYANG Xu,HUANG De-wei,et al.Sap Flow Characteristics of Four Dominant Tree Species in a Mixed ConiferBroadleaf Forest in Dinghushan[J].Acta Ecologica Sinica,2015,35(12):4097-4104.]
    [7]张璇,张会兰,王玉杰,等.缙云山典型树种树干液流日际变化特征及与气象因子关系[J].北京林业大学学报,2016,38(3):11-20.[ZHANG Xuan,ZHANG Hui-lan,WANG Yu-jie,et al.Characteristics of Daily Sap Flow for Typical Species in Jinyun Mountain of Chongqing in Relation to Meteorological Factors[J].Journal of Beijing Forestry University,2016,38(3):11-20.]
    [8]王华,欧阳志云,任玉芬,等.北京市绿化树种紫玉兰的蒸腾特征及其影响因素[J].生态学报,2011,31(7):1867-1876.[WANG Hua,OUYANG Zhi-yun,REN Yu-fen,et al.The Characteristics of Magnolia liliflora Transpiration and Its Impacting Factors in Beijing City[J].Acta Ecologica Sinica,2011,31(7):1867-1876.]
    [9]王文杰,孙伟,邱岭,等.不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J].林业科学,2012,48(1):77-85.[WANG Wen-jie,SUN Wei,QIU Ling,et al.Relations Between Stem Sap Flow Density of Larix gmelinii and Environmental Factors Under Different Temporal Scale[J].Scientia Silvae Sinicae,2012,48(1):77-85.]
    [10]赵春彦,司建华,冯起,等.树干液流研究进展与展望[J].西北林学院学报,2015,30(5):98-105.[ZHAO Chun-yan,SI Jianhua,FENG Qi,et al.Stem Sap Flow Research:Progress and Prospect[J].Journal of Northwest Forestry University,2015,30(5):98-105.]
    [11]王华,欧阳志云,郑华,等.北京绿化树种油松、雪松和刺槐树干液流的空间变异特征[J].植物生态学报,2010,34(8):924-937.[WANG Hua,OUYANG Zhi-yun,ZHENG Hua,et al.Characteristics of Spatial Variations in Xylem Sap Flow in Urban Greening Tree Species Pinus tabulaeformis,Cedrus deodara and Robinia pseudoacacia in Beijing,China[J].Chinese Journal of Plant Ecology,2010,34(8):924-937.]
    [12]李广德,贾黎明,富丰珍,等.三倍体毛白杨不同方位树干边材液流特性研究[J].西北植物学报,2010,30(6):1209-1218.[LIGuang-de,JIA Li-ming,FU Feng-zhen,et al.Stem Sap Flow in Different Measurement Positions of Triploid Populus tomentosa[J].Acta Botanica Boreal-Occidentalia Sinica,2010,30(6):1209-1218.]
    [13]李广德,王晓辉,贾黎明,等.国槐枝叶水分特征及其对树干边材液流的影响[J].中南林业科技大学学报,2010,30(1):23-28,33.[LI Guang-de,WANG Xiao-hui,JIA Li-ming,et al.Water Characteristics of Sophora japonica Twig and Leaf and Its Impact on Sap Flow[J].Journal of Central South University of Forestry&Technology,2010,30(1):23-28,33.]
    [14]樊敏,马履一,王瑞辉.刺槐春夏季树干液流变化规律[J].林业科学,2008,44(1):41-45.[FAN Min,MA Lü-yi,WANG Ruihui.Variation of Stem Sap Flow of Robinia pseudoacacia in Spring and Summer[J].Scientia Silvae Sinicae,2008,44(1):41-45.]
    [15]GRANIER A,HUC R,BARIGAH S T.Transpiration of Natural Rain Forest and Its Dependence on Climate Factors[J].Agricultural and Forest Meteorology,1996,78(1):19-29.
    [16]CAMPBELL G S,NORMAN J M.Introduction to Environmental Biophysics[M].New York,USA:Springer,1998:22-27.
    [17]李少宁,陈波,鲁绍伟,等.不同时间尺度下杨树人工林液流密度特征[J].灌溉排水学报,2012,31(6):121-125.[LI Shaoning,CHEN Bo,LU Shao-wei,et al.Characteristics of Sap Flow in Poplar Plantations at Different Time Scales[J].Journal of Irrigation and Drainage,2012,31(6):121-125.]
    [18]赵平,饶兴权,马玲,等.Granier树干液流测定系统在马占相思的水分利用研究中的应用[J].热带亚热带植物学报,2005,13(6):457-468.[ZHAO Ping,RAO Xing-quan,MA Ling,et al.Application of Granier's Sap Flow System in Water Use of Acacia mangium Forest[J].Journal of Tropical and Subtropical Botany,2005,13(6):457-468.]
    [19]吴旭,陈云明,唐亚坤.黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应[J].植物生态学报,2015,39(12):1176-1187.[WU Xu,CHEN Yun-ming,TANG Ya-kun.Sap Flow Characteristics and Its Responses to Precipitation in Robinia pseudoacacia and Platycladus orientalis Plantations[J].Chinese Journal of Plant Ecology,2015,39(12):1176-1187.]
    [20]杨芝歌,史宇,余新晓,等.北京山区典型树种树干液流特征及其对环境因子的响应研究[J].水土保持研究,2012,19(2):195-200.[YANG Zhi-ge,SHI Yu,YU Xin-xiao,et al.Characteristic of Stem Sap Flux Velocity of Individual Trees and Its Response to Environmental Factors in the Beijing Mountain Area[J].Research of Soil and Water Conservation,2012,19(2):195-200.]
    [21]刘华,佘春燕,白志强,等.不同径级的西伯利亚红松树干液流及蒸腾耗水特征的差异[J].西北植物学报,2016,36(2):390-397.[LIU Hua,SHE Chun-yan,BAI Zhi-qiang,et al.Sap Flow and Transpiring Water-Consumption of Pinus sibirica in Different Diameter Classes[J].Acta Botanica Boreali-Occidentalia Sinica,2016,36(2):390-397.]
    [22]NADEZHDINA N.Sap Flow Index as an Indicator of Plant Water Status[J].Tree Physiology,1999,19(13):885-891.
    [23]COHEN M,GOLDHAMER D A,FERERES E,et al.Assessment of Peach Tree Responses to Irrigation Water Deficits by Continuous Monitoring of Trunk Diameter Changes[J].The Journal of Horticultural Science and Biotechnology,2001,76(1):55-60.
    [24]ZHENG H,WANG Q F,ZHU X,et al.Hysteresis Responses of E-vapotranspiration to Meteorological Factors at a Diel Timescale:Patterns and Causes[J].PLoS One,2014,9(6):e98857.
    [25]BOSCH D D,MARSHALL L K,TESKEY R.Forest Transpiration From Sap Flux Density Measurements in a Southeastern Coastal Plain Riparian Buffer System[J].Agricultural and Forest Meteorology,2014,187:72-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700