用户名: 密码: 验证码:
茶园土壤与茶叶中镍含量及健康风险评价研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nickel in Soil and Safety of Tea-drinking
  • 作者:王峰 ; 陈玉真 ; 单睿阳 ; 陈常颂 ; 尤志明 ; 林栋良 ; 臧春荣 ; 余文权
  • 英文作者:WANG Feng;CHEN Yu-zhen;SHANG Ri-yang;CHEN Chang-song;YOU Zhi-ming;LIN Dong-lian;ZANG Chun-rong;YU Wen-quan;Tea Research Institute, Fujian Academy of Agricultural Sciences;Fujian Academy of Agricultural Sciences;
  • 关键词:茶园土壤 ; 茶树 ; ; 分布规律 ; 富集系数 ; 健康风险评价
  • 英文关键词:tea plantation soil;;tea plant;;nickel;;distribution characteristics;;enrichment coefficient;;health risk assessment
  • 中文刊名:茶叶学报
  • 英文刊名:Acta Tea Sinica
  • 机构:福建省农业科学院茶叶研究所;福建省农业科学院;
  • 出版日期:2019-03-15
  • 出版单位:茶叶学报
  • 年:2019
  • 期:01
  • 基金:国家茶叶产业技术体系(CARS-19);; 福建农业科学院茶叶创新团队(STIT2017-1-3);; 福建省科技重大专项(2017NZ0002);; 福建省财政厅省直教育科研单位专项(20151297)
  • 语种:中文;
  • 页:18-24
  • 页数:7
  • CN:35-1330/S
  • ISSN:2096-0220
  • 分类号:S571.1;X53;X820.4
摘要
以闽中地区8个代表性茶园为研究对象,采集茶园土壤和茶树各器官样品,分析镍在茶园土壤-茶树中积累和分布规律,并探讨其受土壤理化性质的影响;同时测定茶汤中镍含量和溶出率,利用目标危害系数法(THQ)来评估通过饮用茶叶这一途径的镍健康风险,推算茶叶中镍的限量值。结果表明,研究区茶园土壤全镍均值为18.58 mg·kg~(-1),茶园土壤有效镍含量均值0.90 mg·kg~(-1),镍的活化率均值5.30%,存在一定程度的镍富集现象,但均低于农用地土壤污染风险管控标准中镍的限量标准(GB 15618-2018)。茶树侧茎除外,其它器官镍含量与土壤全镍和有效镍之间呈显著或极显著正相关,茶树主根和侧根镍含量与土壤全镍、有效镍、pH值和有机质之间呈极显著正相关,侧茎和主茎镍含量与土壤速效磷之间呈显著负相关。不同样点的茶树各器官镍含量和富集系数差异较大,总体表现为侧根>主根≈主茎>老叶>侧茎≈新叶,茶树根部对镍的吸收累积作用较强,通过茶树枝条运输至新叶的镍累积较少,有利于茶叶卫生质量安全。茶汤中镍含量均值为116.41μg·L~(-1),茶叶镍溶出率均值为41.75%,低于《生活饮用水卫生标准》中镍含量;茶叶和茶汤中镍的个人健康年风险比目标危害系数低2个数量级,该区域合理饮茶导致的健康风险较小;当茶叶中镍含量达到191.35 mg·kg~(-1)或人体每日饮茶达到542.86 g时,此时通过饮茶摄入的镍才有可能导致健康风险。
        Extensive sampling on the soils and the tea plants grown on them were conducted at 8 plantations in central Fujian for analyses to assess the nickel(Ni) contamination in soil and the Ni transportation, accumulation and distribution from the soil to various parts of a tea plant, as well as how they were affected by the soil physiochemical properties. Safety of the tea brewed from the tea samples was gauged by the target hazard quotient(THQ), and the maximum Ni in tea leaves and soil determined accordingly. The average total and available Ni in the soils were found to be 18.58 and 0.90 mg·kg~(-1), respectively. They were both below the safety thresholds specified by GB 15618-2018. Other than branches, the sampled plant tissues showed a significant correlation on the total and available Ni with the soil. Ni in the lateral and main roots significantly correlated with the total Ni, available Ni, pH and organic matters in soil but inversely to the available phosphorus in soil. The amounts and enrichment coefficients of Ni in different plant parts differed. They ranked in the order of lateral roots>main root or main stem>old leaves>branches or young shoots. The significantly higher Ni enrichment coefficients of the roots and the stems indicated that these parts accumulated more of the Ni transported to a plant than did the leaves. The rate of Ni leaching from tea leaves to steep water was 41.75%. As a result, on average the Ni content in brewed tea was merely 116.41 μg·L~(-1), which was significantly lower than the limit for drinking water(GB5749-2006). With the THQ of the brewed tea being less than 1, it was concluded that normal tea-drinking was deemed safe, unless the Ni concentration is greater than 191.35 mg·kg~(-1) or a daily usage beyond 542.86 g.
引文
[1]Ngole V M,Ekosse G I E .Copper,nickel and zinc contamination in soils within the precincts of mining and landfilling environments[J].International Journal of Environmental Science and Technology,2012,9(3):485-494.
    [2]Chen C,Huang D,Liu J.Functions and Toxicity of Nickel in Plants:Recent Advances and Future Prospects[J].CLEAN-Soil,Air,Water,2010,37(4-5):304-313.
    [3]刘文海,冯涛,何艳,等.镍对蚕豆根尖细胞的遗传毒性效应[J].农业环境科学学报,2008,27(5):1951-1955.
    [4]环境保护部,国土资源部.全国土壤污染状况调查公报[R].北京:环境保护部,国土资源部,2014.
    [5]生态环境部,国家市场监督管理总局.土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618-2018[S].北京:中国标准出版社,2018.
    [6]罗丹,刘青付,郭雅玲,等.福建铁观音茶园土壤中的镍及其向茶叶的转移[J].福建农林大学学报(自然版),2009,38(1):79-83.
    [7]谭和平,陈能武,黄苹,等.四川茶区土壤重金属元素背景值及其评价[J].西南农业学报,2005,18(6):747-751.
    [8]谢忠雷,杨佰玲,包国章,等.茶园土壤不同形态镍的含量及其影响因素[J].吉林大学学报(地球科学版),2006,36(4):599-604.
    [9]唐茜,叶善蓉,陈能武,等.茶树对镍的吸收积累[J].西南大学学报(自然科学版),2008,30(10):73-78.
    [10]中华人民共和国卫生部.GB 2762—2012食品安全国家标准[S].北京:中国标准出版社,2013.
    [11]周娜,白艳艳,王文伟,等.福建省地产茶叶中微量元素含量的分析[J].实用预防医学,2014,21(9):1025-1027.
    [12]Zhong W S,Ren T ,Zhao L J .Determination of Pb (Lead),Cd (Cadmium),Cr (Chromium),Cu (Copper),and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry[J].Journal of Food Drug Analysis,2016,24(1):46-55.
    [13]李张伟.粤东凤凰山区茶园茶叶重金属含量的调查和污染评价[J].环境科学与技术,2010,33(9):183-186.
    [14]农业部种植业管理司.2017年全国各产茶省茶园面积、产量和产值统计[J].中国茶叶,2018(6):27.
    [15]任传义,程军勇,张延平,等.竹笋地土壤重金属污染潜在生态风险及食用笋健康风险评价[J].农业环境科学学报,2017,36(5):855-862.
    [16]王峰,单睿阳,陈玉真,等.闽中某县茶园土壤-茶树-茶汤中镉含量及健康风险评价研究[J].茶叶科学,2018,38(5):537-546.
    [17]安婧,宫晓双,陈宏伟,等.沈抚灌区农田土壤重金属污染时空变化特征及生态健康风险评价[J].农业环境科学学报,2016,35(1):37-44.
    [18]Molina M,Escudey M ,Chang A C ,et al.Trace element uptake dynamics for maize (Zea mays L.) grown under field conditions[J].Plant and Soil,2013,370(1):471-483.
    [19]白玉杰,沈根祥,陈小华,等.三种蔬菜对镍累积转运规律及食用安全研究[J].农业环境科学学报,2018,37(8):1619-1625.
    [20]Huang M,Zhou S ,Sun B ,et al.Heavy metals in wheat grain:Assessment of potential health risk for inhabitants in Kunshan,China[J].Science of the Total Environment,2008,405(1-3):54-61.
    [21]陈振金,陈春秀,刘用清,等.福建省土壤环境背景值研究[J].环境科学,1992,13(4):70-75.
    [22]雷莹.宁德市茶园土壤重金属分布特征及评价[J].宁德师范学院学报(自然科学版),2012,24(2):138-141.
    [23]Ramachandran V,D’Souza S F.Adsorption of nickel by Indian soils[J].Journal of Soil Science Plant Nutrition,2013,13(1):165-173.
    [24]Zhang X,Li J,Wei D ,et al.Predicting Soluble Nickel in Soils Using Soil Properties and Total Nickel[J].PLOS ONE,2015,10(7):1-13.
    [25]中华人民共和国卫生部,中国国家标准化管理委员会.GB5749-2006 生活饮用水卫生标准[S].北京:中国标准出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700