用户名: 密码: 验证码:
济南地区逆温层特征及其对颗粒物质量浓度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Temperature Inversion in Jinan and Its Effect on Particulate Matter Mass Concentration
  • 作者:尹承美 ; 焦洋 ; 何建军 ; 冯俊杰
  • 英文作者:YIN Chengmei;JIAO Yang;HE Jianjun;FENG Junjie;Jinan Meteorological Bureau of Shandong Province;Chinese Academy of Meteorological Sciences,State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA;
  • 关键词:逆温层 ; L波段雷达 ; 逆温强度 ; 温度廓线仪 ; 颗粒物
  • 英文关键词:inversion layer;;L-band radar;;micro-pulse radar;;temperature profiler;;particulate matter
  • 中文刊名:干旱气象
  • 英文刊名:Journal of Arid Meteorology
  • 机构:山东省济南市气象局;中国气象科学研究院灾害天气国家重点实验室中国气象局大气化学重点开放实验室;
  • 出版日期:2019-08-30
  • 出版单位:干旱气象
  • 年:2019
  • 期:04
  • 基金:济南市科技局社会民生重大专项(201704137);; 山东省气象局重点课题(2016sdqxz05);; 国家自然科学基金(41705080)共同资助
  • 语种:中文;
  • 页:109-117
  • 页数:9
  • CN:62-1175/P
  • ISSN:1006-7639
  • 分类号:X513
摘要
利用L波段探空雷达数据、温度廓线仪数据、微脉冲激光雷达边界层数据、PM_(2. 5)质量浓度数据,结合常规地面气象观测资料,分析济南2008—2017年逆温层参数特征以及逆温对PM_(2. 5)质量浓度的影响。结果表明,2008—2017年济南逆温发生频率为47. 2%,且呈逐年下降趋势,气候倾向率为0. 44%·a~(-1)。逆温频率、逆温强度和逆温层厚度在冬季较高,夏季较低,但不同类型逆温季节变化不同。济南地区贴地逆温平均厚度为134 m,逆温强度为2. 46℃·(100 m)~(-1);脱地逆温平均厚度为212 m,逆温强度为1. 34℃·(100 m)~(-1)。逆温是影响空气质量的重要因子之一,逆温的存在导致济南近地面PM_(2. 5)质量浓度升高24. 8%。PM_(2. 5)质量浓度与逆温层厚度呈显著正相关,而与逆温强度的相关性未通过显著性检验。
        The paper analyzed the characteristics of temperature inversion and the impact of temperature inversion on PM_(2. 5) mass concentration in Jinan from 2008 to 2017 based on L-band radar data,temperature profiler data,micro-pulse laser radar data,PM_(2. 5) mass concentration data and conventional meteorological observation data. The frequency of temperature inversion was 47. 2%,and it showed a decreasing trend year by year,with an annual decline rate of 0. 44%. In general,the frequency of temperature inversion,temperature inversion intensity and thickness were higher in winter and lower in summer,but seasonal variations of different inversion types were different. The mean thickness of ground inversion was 134 m,and the intensity of ground inversion was 2. 46℃· (100 m)~(-1).The thickness of suspension inversion was 212 m,and the intensity of that was 1. 34℃· (100 m)~(-1). Temperature inversion was one of the important factor affecting air quality. The occurrence of temperature inversion led to a 24. 8% increase in PM_(2. 5) mass concentration in Jinan. PM_(2. 5) mass concentration was significantly and positively correlated with the thickness of temperature inversion,while the correlation between PM_(2. 5) mass concentration and the intensity of temperature inversion did not pass the significance test.
引文
[1]赵建华,张强,王胜,等.西北干旱区夏季大气边界层逆温强度和高度的频率密度研究[J].高原气象,2013,32(2):378-385.
    [2]唐家萍,谭桂容,谭畅.基于L波段雷达探空资料的重庆市区低空逆温特征分析[J].气象科技,2012,40(5):789-793.
    [3]赵海江,周彦丽,刘建勇,等.张家口市低空逆温特征分析[J].干旱区资源与环境,2014,28(5):172-175.
    [4]黄景,徐伟萍,金小城.台州低空逆温层特征分析[J].气象与环境科学,2016,39(2):113-118.
    [5]郑庆锋,史军.上海地区大气贴地逆温的气候特征[J].干旱气象,2011,29(2):195-204.
    [6]NING G C,WANG S G,YIM S H L,et al.Impact of low-pressure systems on winter heavy air pollution in the northwest Sichuan Basin,China[J].Atmos Chem Phy,2018,18:13601-13615.
    [7]李培荣,向卫国.四川盆地逆温层特征对空气污染的影响[J].成都信息工程大学学报,2018,33(2):220-226.
    [8]马艳,郭丽娜,黄容.青岛一次沙尘污染事件的气象条件特征[J].干旱气象,2014,32(5):773-780.
    [9]夏敏洁,周文君,裴海瑛,等.基于L波段雷达探空资料的南京低空逆温特征[J].大气科学学报,2017,40(4):562-569.
    [10]XU T T,SONG Y,LIU M X,et al.Temperature inversions in severe polluted days derived from radiosonde data in North China from 2011 to 2016[J].Science of The Total Environment,2019,647(10):1011-1020.
    [11]SILVA J,ROJAS J,NORBUENA M,et al.Ozone and volatile organic compounds in the metropolitan area of Lima-Callao,Peru[J].Air Quality,Atmosphere&Health,2018,11(8):993-1008.
    [12]WANG M R,KAI K,SUGIMOTO N,et al.Meteorological factors affecting winter particulate air pollution in Ulaanbaatar from 2008to 2016[J].Asian Journal of Atmospheric Environment,2018,12(3):244-254.
    [13]MBULULO Y,QIN J,HONG J,et al.Characteristics of atmospheric boundary layer structure during PM2.5and ozone pollution events in Wuhan,China[J].Atmosphere,2018,9(9):359.
    [14]WEI W,ZHANG H S,WU B G,et al.Intermittent turbulence contributes to vertical dispersion of PM2.5in the North China Plain:cases from Tianjin[J].Atmos Chem Phys,2018,18:12953-12967.
    [15]刘焕彬,冯俊杰,王恒明.济南低空逆温层特征分析[J].山东气象,2005,25(1):27-28.
    [16]邱粲,王静,王栋成,等.济南章丘大气边界层风温场特征研究[J].气象与环境科学,2015,38(2):36-41.
    [17]张佃国,王洪,崔雅琴,等.山东济南地区2015年大气边界层逆温特征[J].干旱气象,2017,35(1):43-50.
    [18]张佃国,王俊,李晓印,等.济南及周边地区大气气溶胶空间分布特征[J].高原气象,2011,30(5):1346-1355.
    [19]于丽娟,尹承美,何建军,等.济南雾和霾特征及影响因素分析[J].干旱气象,2017,35(4):581-589.
    [20]杜荣光,齐冰,郭惠惠,等.杭州市大气逆温特征及对空气污染物浓度的影响[J].气象与环境学报,2011,27(4):49-53.
    [21]安兴琴,胡隐樵,吕世华,等.山峰加热效应的数值试验研究[J].高原气象,2008,27(2):286-292.
    [22]苟玉清,许东蓓.成都市2017年12月下旬重污染过程及气象条件特征[J].干旱气象,2018,36(6):1012-1019.
    [23]龙时磊,曾建荣,刘可,等.逆温层在上海市空气颗粒物积聚过程中的作用[J].环境科学与技术,2013,36(6L):104-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700