用户名: 密码: 验证码:
向家坝水电站不同修复模式下根际土壤微生物化学计量特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stoichiometric Characteristics of Rhizosphere Soil in Different Restoration Models of Xiangjiaba Hydropower Station
  • 作者:罗婷 ; 许文年 ; 程虎 ; 邱辉 ; 夏露 ; 赵冰琴 ; 夏栋
  • 英文作者:LUO Ting;XU Wen-nian;CHENG Hu;QIU Hui;XIA Lu;ZHAO Bing-qin;XIA Dong;Key Laboratory of Disaster Prevention and Mitigation,China Three Gorges University;Engineering Research Center of Eco-Environment in Three Gorges Reservoir,Three Gorges University;Collaborative Innovation Center for Geo-Hazards and Eco-Environment in Three Gorges,China Three Gorges University;China Electric Construction Group East China Survey and Design Research Institute Co.,Ltd;
  • 关键词:植被恢复 ; 修复模式 ; 根际土壤 ; 微生物化学计量比
  • 英文关键词:vegetation restoration;;repair mode;;rhizosphere soil;;microbial stoichiometry
  • 中文刊名:长江流域资源与环境
  • 英文刊名:Resources and Environment in the Yangtze Basin
  • 机构:三峡大学防灾减灾湖北省重点实验室;三峡大学三峡库区生态环境教育部工程研究中心;三峡大学三峡地区地质灾害与生态环境湖北省协同创新中心;中国电建集团华东勘测设计研究院有限公司;
  • 出版日期:2019-02-15
  • 出版单位:长江流域资源与环境
  • 年:2019
  • 期:02
  • 基金:湖北省技术创新专项重大项目(2017ACA189);; 国家重点研发计划(2017YFC0504902-04);; 国家自然科学基金(51678348);; 三峡库区生态环境教育部工程研究中心开放基金(KF2016-04)
  • 语种:中文;
  • 页:213-221
  • 页数:9
  • CN:42-1320/X
  • ISSN:1004-8227
  • 分类号:S154.3
摘要
为探究水电站扰动区人工植被恢复后土壤质量及肥力的变化,以向家坝植被混凝土、厚层基材和框格梁3种典型边坡下优势物种荩草根际与非根际土壤为研究对象,对土壤的养分和微生物生态化学计量比进行研究。结果表明:(1)植被混凝土、厚层基材样地的养分平均含量均显著高于框格梁样地;植被混凝土、框格梁样地下土壤养分含量在根际存在一定的富集,以有机碳的富集作用最为明显,而厚层基材样地则表现为土壤全量养分在根际土壤中存在亏缺;(2)植被混凝土和框格梁修复模式样地的土壤微生物量为根际土壤较高,MBC/MBN、MBC/MBP表现为非根际土壤较高,3种样地下根际与非根际土壤微生物生态化学计量比差异性显著(P<0. 05);(3)相关性分析表明,土壤微生物碳、微生物氮、有机碳和全氮之间具有显著的正相关性(P<0. 01),微生物量磷与土壤有机碳和全磷具有极显著的正相关性(P<0. 01)。综合评价十数年后向家坝水电站工程扰动区人工修复土壤技术,植被混凝土和厚层基材修复措施对该区土壤全量养分含量的累积作用较好,框格梁样地的植物生长发育受到磷素营养的限制较大。
        In order to explore the changes of soil quality and fertility after artificial vegetation restoration in disturbed area of hydropower station. The rhizosphere and non-rhizosphere soil of the dominant species of Arthraxon hispidus under three typical slopes of Vegetation Concrete Base Spraying technique( CBS),Thick Layer Base Material Spraying technique( TBS) and Framed beams soil covering( FBSC) were collected in Xiangjiaba Dam. And the soil nutrient and microbial ecological stoichiometric ratio were studied. The results showed that:( 1) The average nutrient content of CBS and TBS was significantly higher than that of FBSC. The soil nutrient content of CBS and FBSC soil had a certain enrichment in the rhizosphere,and the enrichment of organic carbon was the most obvious,while the soil total nutrient of TBS was deficient in the rhizosphere soil.( 2) The soil microbial biomass of the rhizosphere soil was significantly higher than the non-rhizosphere soil in the CBS and FBSC,MBC/MBN and MBC/MBP were higher in non-rhizosphere soil. The microbial ecological stoichiometric ratio was Significant differences in three ecological restoration models( P<0. 05). The rhizosphere MBC/MBN of the TBS plot was significantly higher than that of the CBS and FBSC plots( P<0. 05),while its MBC/MBN was lowest in the non-rhizosphere soil. The ratio of soil microbial carbon to phosphorus in rhizosphere and nonrhizosphere was FBSC> TBS > CBS.( 3) The correlation analysis indicated that soil microbial biomass carbon,microbial biomass nitrogen,organic carbon and total nitrogen had significant positive correlation.( P < 0. 01).The microbial biomass phosphorus had a significant positive correlation with soil organic carbon and total phosphorus( P < 0. 01). Soil MBC/MBN only had a significant negative correlation with microbial nitrogen( P <0. 01). Comprehensive evaluation of the artificial soil restoration technology in the disturbed area of Xiangjiaba Hydropower Station after more than ten years,CBS and TBS had a better effect on the accumulation of total nutrient content of soil in this area,plant growth and development of FBSC was limited by phosphorus nutrition.
引文
[1] LI X B,LI R H,LI G Q,et al. Human-induced vegetation degradation and response of soil nitrogen storage in typical steppes in Inner Mongolia,China[J]. Journal of Arid Environments,2016,124(1):80-90.
    [2] HELMSTEDT K J,POTTS M D. Valuable habitat and low deforestation can reduce biodiversity gains from development rights markets[J]. Journal of Applied Ecology, 2018, 55(4):1692-1700.
    [3] HUSS M. Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe[J].Water Resources Research,2017,47(7):W07511.
    [4] GUITTONNY-LARCHEVQUE M, BUSSIRE B, PEDNAULT C. Tree-Substrate water relations and root development in tree plantations used for mine tailings reclamation[J]. Journal of Environmental Quality,2016,45(3):1036.
    [5] ALAM M K,MIRZA M R,MAUGHAN O E. Constraints and opportunities in planning for the wise use of natural resources in developing countries:Example of a hydropower project[J]. Environmental Conservation,1995,22(4):352-358.
    [6]许文年,叶建军,周明涛,等.植被混凝土护坡绿化技术若干问题探讨[J].水利水电技术,2004,35(10):50-52.XU W N,YE J J,ZHOU M T,et al. Several problems of vegetation techndogy for protecting slopes using vegetation-growing concrete[J]. Water Resources and Hydropower Engineering,2004,35(10):50-52.
    [7]田青怀,廖绫,张洋宁,等.厚层基材(TBS)工艺在功果桥电站边坡生物防护中的应用[J].草业科学,2016,33(10):2144-2152.TIAN Q H,LIAO L,ZHANG Y N,et al. Application of TBS in biological protection of side slop at Gongguoqiao hydropower station[J]. Pratacultural Science,2016,33(10):2144-2152.
    [8]夏栋,许文年,赵娟,等.植被混凝土护坡基材pH、有机质及其与速效养分的相关性分析[J].水土保持研究,2010,17(6):224-227.XIA D,XU W N,ZHAO J,et al. Analysis of pH,soil organic matter and the correlation to available nutrients in substrate of vegetation-growing concrete Gunning[J]. Research of Soil and Water Conservation,2010,17(6):224-227.
    [9] ANDERSON T H,DOMSCH K H. The metabolic quotient for CO2,(q CO2)as a specific activity parameter to assess the effects of environmental conditions,such as pH,on the microbial biomass of forest soils[J]. Soil Biology&Biochemistry,1993,25(3):393-395.
    [10] ANDRA D C L,CHAER G M,FBIO B D R J,et al. Interpretation of microbial soil indicators as a function of crop yield and organic carbon[J]. Soil Science Society of America Journal,2013,77(2):461-472.
    [11] LI J,COOPER J M,LIN Z,et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Applied Soil Ecology,2015(96):75-87.
    [12] ARUNACHALAM A,PANDEY H N. Ecosystem restoration of jhum fallows in northeast India:Microbial C and N along altitudinal and successional gradients[J]. Restoration Ecology,2003,11(2):168-173.
    [13]夏振尧.向家坝水电站扰动边坡人工植被群落初期演替过程与稳定性研究[D].武汉大学,2010.XIA Z Y. Earlier succession and stability of artificial vegetation community on disturbed slope in Xiangjiaba Hydropower station[D]. Wuhan University,2010.
    [14]夏栋.向家坝水电站工程扰动区不同恢复方法土壤pH值、养分及酶活性分析[D].三峡大学,2011.XIA D. Soil pH,soil nutrient and soil enzyme activity at various restoration measures slopes in disturbed area of Xiangjiaba Hydropower Construction[D]. China Three Gorges University,2011.
    [15]牛鹏辉,夏振尧,梁永哲,等.向家坝生态恢复边坡土壤有机磷形态和磷酸酶活性研究[J].湖北农业科学,2015,54(20):4963-4968.NIU P H,XIA Z Y,LIANG Y Z,et al. Fractions and distribution of phosphorus at various types of slopes in disturbed area of Xiangjiaba Hydropower Construction[J]. Hubei Agricultural Sciences,2015,54(20):4963-4968.
    [16]杜祥运,许文年,夏振尧.向家坝工程扰动边坡微生物群落功能多样性分析[J].人民长江,2016,47(21):20-24.DU X Y,XU W N,XIA Z Y,et al. Functional diversity of microbial community at various types of slopes in disturbed area of Xiangjiaba Hydropower Station[J]. Yangtze River,2016,47(21):20-24.
    [17]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,2000.LU R K. Soil agricultural chemical analysis method[M]. China Agricultural Science and Technology Press,2000.
    [18]李占斌,周波,马田田,等.黄土丘陵区生态治理对土壤碳氮磷及其化学计量特征的影响[J].水土保持学报,2017,31(6):312-318.LI Z B,ZHOU B,MA T T,et al. Effects of ecological management on characteristics of soil carbon, nitrogen, phosphorus and their stoichiometry in loess hilly region,China[J]. Journal of Soil&Water Conservation,2017,31(6):312-318.
    [19] BELL C,CARRILLO Y,BOOT C M,et al. Rhizosphere stoichiometry:are C:N:P ratios of plants,soils,and enzymes conserved at the plant species-level?[J]. New Phytologist,2014,201(2):505-517.
    [20]毛晓洁,王新民,赵英,等.多功能固N菌筛选及其在土壤生态修复中的应用[J].生物技术通报,2017,33(10):148-155.MAO X J,WANG X M,ZHAO Y,et al. Screening of multifunctional nitrogen fixing bacteria and their application in soil ecological restoration[J]. Biotechnology Bulletin,2017,33(10):148-155.
    [21]陈海滨,马秀丽,陈志彪,等.南方稀土矿区水土保持植物根际土壤碳氮及pH特征[J].土壤学报,2016,53(5):1334-1341.CHEN H B,MA X L,CHEN Z B,et al. Carbon,nitrogen and pH in rhizosphere of soil-water conserving plants in rare earth mining area in south China[J]. Acta Pedologica Sinica,2016,53(5):1334-1341.
    [22]叶功富,侯杰,张立华,等.不同年龄木麻黄林地根际土壤养分含量和酶活性动态[J].水土保持学报,2006,20(4):86-89.YE G F,HOU J,ZHANG L H,et al. Rhizosphere soil nutrient and enzyme activity in different stand age of casurina equisetifolia protection forest[J]. Journal of Soil&Water Conservation,2006,20(4):86-89.
    [23] MASSACCESI L,BENUCCI G M N,GIGLIOTTI G,et al.Rhizosphere effect of three plant species of environment under periglacial conditions(Majella Massif,central Italy)[J]. Soil Biology&Biochemistry,2015,89:184-195.
    [24]秦嗣军,吕德国,李作轩,等.樱桃根际土壤酶活性与土壤养分动态变化及其关系研究[J].土壤通报,2006,37(6):1175-1178.QIN S J,LV D G,LI Z X,et al. Dynamic changes of soil enzyme activities and nutrients in cherry rhizosphere[J]. Chinese Journal of Soil Science,2006,37(6):1175-1178.
    [25]杨阳,刘秉儒.荒漠草原不同植物根际与非根际土壤养分及微生物量分布特征[J].生态学报,2015,35(22):7562-7570.YANG Y,LIU B R. Distribution of soil nutrient and microbial biomass in rhizosphere versus nonrhizosphere area of different plant species in desertified steppe[J]. Acta Ecologica Sinica,2015,35(22):7562-7570.
    [26] CORYC C,DANIEL L. C:N:P stoichiometry in soil:is there a“Redfield ratio”for the microbial biomass[J]. Biogeochemistry,2007,85(3):235-252.
    [27]黄昌勇.土壤学[M].中国农业出版社,2000.HUANG C Y. Soil science[M]. China Agriculture Press,2000.
    [28]王传杰,王齐齐,徐虎,等.长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征[J].生态学报,2018,38(11).WANG C J,WANG Q Q,XU H,et al. Carbon, nitrogen,and phosphorus stoichiometry characteristics of bulk soil, organic matter,and soil microbial biomass under long-term fertilization in cropland[J]. Acta Ecologica Sinica,2018,38(11).
    [29] DARINE,TRABELSI,ALAEDDINE,et al. Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities[J]. Applied Soil Ecology,2017,114.
    [30] WRIGHT,CHRISTINA J,COLEMAN,et al. The effects of disturbance events on labile phosphorus fractions and total organic phosphorus in the southern Appalachians.[J]. Soil Science,1999,164(10):391-402.
    [31]王春阳,周建斌,董燕婕,等.黄土区六种植物凋落物与不同形态氮素对土壤微生物量碳氮含量的影响[J].生态学报,2010,30(24):7092-7100.WANG C Y,ZHOU J B,DONG Y J,et al. Effects of plant residues and nitrogen forms on microbial biomass and minera nitxogen of soil in the Loess plateau[J]. Acta Ecologica Sinica,2010,30(24):7092-7100.
    [32]陈熙,刘以珍,李金前,等.稀土尾矿土壤细菌群落结构对植被修复的响应[J].生态学报,2016,36(13):3943-3950.CHEN X,LIU Y Z,LI J Q,et al. Response of a rare earth tailing soil bacterial community structure to vegetation restoration[J]. Acta Ecologica Sinica,2016,2016,36(13):3943-3950.
    [33]宋长青,吴金水,陆雅海,等.中国土壤微生物学研究10年回顾[J].地球科学进展,2013,10(10):1087-1105.SONG C,WU J,LU Y,et al. Advances of soil microbiology in the last decade in China[J]. Advances in Earth Science,2013,28(10):1087-1105.
    [34] DAVIDSON E A,GALLOWAY L F,STRAND M K. Assessing available carbon:Comparison of techniques across selected forest soils1[J]. Communications in Soil Science&Plant Analysis,1987,18(1):45-64.
    [35]张德闪,李洪波,申建波.集约化互作体系植物根系高效获取土壤养分的策略与机制[J].植物营养与肥料学报,2017,23(6):1547-1555.ZHANG D S,LI H B,SHEN J B,et al. Strategies for root's foraging and acquiring soil nutrient in high efficiency under intensive cropping systems[J]. Journal of Plant Nutrition and Fertilizers,2017,23(6):1547-1555.
    [36] ARUNACHALAM A,PANDEY H N. Ecosystem restoration of jhum fallows in northeast india:microbial C and N along altitudinal and successional gradients[J]. Restoration Ecology,2003,11(2):168-173.
    [37]贺若阳,杨万勤,杨开军,等.川西亚高山3种森林土壤碳氮磷及微生物生物量特征[J].应用与环境生物学报,2016,22(4):606-611.HE R Y,YANG W Q,YANG K J,et al. Soil C,N,P and microbial biomass properties of three dominant subalpine forests of western Sichuan,China[J]. Chinese Journal of Applied&Environmental Biology,2016,2016,22(4):606-611.
    [38]王卫霞,卢立华.南亚热带3种人工林土壤微生物生物量和微生物群落结构特征[J].应用生态学报,2013,24(7):1784-1792.WANG W X,LU L H. Characteristics of soil microbial biomass and community composition in three types of plantations in southern subtropical area of China[J]. Chinese Journal of Applied Ecology,2013,24(7):1784-1792.
    [39] SPOHN M,WIDDIG M. Turnover of carbon and phosphorus in the microbial biomass depending on phosphorus availability[J].Soil Biology&Biochemistry,2017,113:53-59.
    [40] BROOKES P C,POWLSON D S,JENKINSON D S. Phosphorus in the soil microbial biomass[J]. Soil Biology&Biochemistry,1984,16(2):169-175.
    [41] XU X,POST W M. A global analysis of soil microbial biomass carbon,nitrogen and phosphorus in terrestrial ecosystems[J].Global Ecology&Biogeography,2013,22(6):737-749.
    [42]李艳琼,黄玉清,徐广平,等.桂林会仙喀斯特湿地芦苇群落土壤养分及微生物活性[J].生态学杂志,2018,37(1):64-74.LI Y Q,HUANG Y Q,XU G P,et al. Characteristics of soil nutrients and microbial activities of reed vegetation in the Huixian karst wetland,Guilin,China[J]. Chinese Journal of Ecology,2018,37(1):64-74.
    [43] ARUNACHALAM A,PANDEY H N. Ecosystem restoration of jhum fallows in northeast India:Microbial C and N along altitudinal and successional gradients[J]. Restoration Ecology,2010,11(2):168-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700