用户名: 密码: 验证码:
渤海泥质海岸典型防护林土壤微生物量季节动态变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seasonal dynamics of soil microbial biomass in typical shelterbelts on the Bohai muddy coast
  • 作者:刘平 ; 邱月 ; 王玉涛 ; 魏忠平 ; 范俊岗 ; 曹宝慧
  • 英文作者:LIU Ping;QIU Yue;WANG Yutao;WEI Zhongping;FAN Jungang;CAO Baohui;College of Forestry,Shenyang Agricultural University;Liaoning Academy of Forestry Science;
  • 关键词:泥质海岸 ; 防护林 ; 土壤微生物生物量 ; 土壤养分 ; 季节变化
  • 英文关键词:muddy coast;;shelterbelt;;soil microbial biomass;;soil nutrients;;seasonal dynamics
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:沈阳农业大学林学院;辽宁省林业科学研究院;
  • 出版日期:2018-09-26 14:13
  • 出版单位:生态学报
  • 年:2019
  • 期:01
  • 基金:辽宁省自然科学基金项目(201602663);; 辽宁教育厅基金项目(L2014480);; 辽宁省农业攻关及产业化资助项目(2015103002);; 中央财政林业科技推广项目(辽[2015]TG14号)
  • 语种:中文;
  • 页:367-374
  • 页数:8
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:S714.3
摘要
土壤微生物生物量碳、氮是研究土壤肥力、土壤养分转化、循环以及环境变化的重要指标。研究渤海泥质海岸白榆、刺槐、白蜡、群众杨、辽宁杨纯林和辽宁杨刺槐混交林及当地自然生灌草地土壤微生物生物量碳、氮的季节动态及与土壤养分含量变化的关系,以期为沿海防护林树种的选择及林地管理提供科学依据。结果表明:造林能显著增加土壤微生物生物量含量,其中白榆(25 a)土壤微生物生物量碳、氮最高,是对照的2.50倍和2.09倍。0—10 cm土壤层微生物生物量碳、氮大于10—30 cm土层,季节动态变化差异显著。在0—10 cm土层内,渤海泥质海岸典型防护林土壤微生物生物量碳、氮季节动态多表现为春秋两季较高,夏季较低的"V"字型变化;在10—30 cm土层内,防护林土壤微生物生物量碳季节变化规律与0—10 cm土层一致,表现为夏季较低春秋较高的"V"字型,微生物生物量氮主要表现有"V"字型、倒"V"字型与直线型3种变化形式。在0—30 cm土层内,白榆(25 a)、刺槐、白蜡、群众杨、辽宁杨刺槐混交林、白榆(10 a)、辽宁杨及灌草地微生物生物量碳对土壤有机碳的平均贡献率分别为1.59%、1.68%、1.42%、1.54%、2.29%、1.80%、2.02%和1.12%,土壤微生物生物量氮对土壤全氮的平均贡献率分别为1.85%、1.30%、1.08%、1.35%、2.49%、1.57%、2.08%和2.32%。不同类型防护林地土壤微生物量碳、氮之间显著正相关,它们与土壤全氮、有机碳显著正相关,与土壤电导率显著负相关,另外,土壤微生物量碳还与土壤速效磷含量显著正相关。从不同土层微生物量碳、氮季节动态来看,造林可以增加泥质海岸土壤微生物生物量,但是夏季地下水位升高,盐碱上扬,加之树木生长大量利用养分,土壤微生物生物量夏季较低。综合分析土壤微生物生物量和土壤营养库的贡献率,白榆纯林和辽宁杨刺槐混交林更有利于泥质海岸土壤微生物群落功能恢复和营养固定。
        Soil microbial biomass carbon and nitrogen are the important indicators to study soil fertility,soil nutrient transformation and circulation,and environmental changes. During this research,the seasonal dynamics of soil microbial biomass C and N contents and their relation with the changes of soil nutrients content in Ulmus pumila forest [25 years old( UPM),10 years old( UP) ],Robinia pseudoacacia forest( RP),Fraxinus chinensis forest( FC),Populus popularis forest( PP),P. × liaoningensis forest( PL),mixed forest of P. × liaoningensis and R. pseudoacacia( PR) and CK( naturally occurring shrub-grassland) were investigated. The purpose of this study is to provide a scientific basis forselection of coastal shelterbelt tree species and forest management in this area. The results showed that soil microbial biomass increased significantly by afforestation. Among all the forest types,UPM has the highest soil microbial biomass C and N contents,which are 2.50 and 2.09 times than CK. The microbial biomass C and N contents in soil layer of 0—10 cm were larger than those in 10—30 cm soil layer,and the seasonal dynamic change of soil microbial biomass in two soil layers varied significant differently. In the 0—10 cm soil layer,the seasonal dynamics of soil microbial biomass C and N contents in the typical shelterbelts on Bohai muddy coast were higher in spring and autumn,and lower in summer,with a"V"shape trend. The change trend of soil microbial biomass C in the typical shelterbelt under 10—30 cm soil layer was consistent with that of 0—10 cm soil layer,which showed a lower in summer,and a higher in spring and autumn,also with a "V"shape trend. There are mainly three forms of microbial biomass N variation: "V",inverted "V",and straight line. In the 0—30cm soil layer,the average contribution rates of soil microbial biomass C to soil organic carbon in UPM,RP,FC,PP,PR,UP,PL,and naturally occurring shrub-grassland were 1.59%,1.68%,1.42%,1.54%,2.29%,1.80%,2.02%,and1.12%,respectively,and in the 0—30 cm soil layer,the contribution rates of soil microbial biomass N to soil total nitrogen were 1.85%,1.30%,1.08%,1.35%,2.49%,1.57%,2.08%,and 2.32%,respectively. The correlation of soil microbial biomass C and N in all forest types were significantly positive,and soil microbial biomass C and N had significantly positive correlation with soil total nitrogen and organic matter,and had significantly negative correlation with soil conductivity. In addition,soil microbial biomass C had significantly positive correlation with soil available P. From the results of seasonal dynamics of microbial biomass C and N in different soil layers,it could be drew the conclusion that microbial biomass increased by afforestation in muddy coastal soil,but ground water was rose in summer,accompanied by the increment of salt and alkali content,moreover,trees utilize large quantities of nutrients to maintain growth,thus,the soil microbial biomass was lower. Based on the comparison of soil microbial biomass C and N content and their contributions to soil N pools among all forest types,the conclusion can be made that UPM and PR are the most conducive tree species to the recovery of soil microbial function and nutrient fixation on the Bohai muddy coast.
引文
[1] Shao X X,Yang W Y,Wu M. Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou bay tidal flat wetland. PLoS One,2015,10(11):e0142677.
    [2]邱甜甜,刘国彬,王国梁,孙利鹏,姚旭.黄土高原不同生长阶段油松人工林土壤微生物生物量碳的变化及其影响因素.应用生态学报,2016,27(3):681-687.
    [3] Lungmuana,Singh S B,Vanthawmliana,Saha S,Dutta S K,Rambuatsaiha,Singh A R,Boopathi T. Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region,India. Catena,2017,156:10-17.
    [4] Cao D,Shi F,Ruan W,Lu Z,Chai M. Seasonal changes in and relationship between soil microbial and microfaunal communities in a Tamarix chinensis community in the Yellow River Delta. African Journal of Biotechnology,2011,10(80):18425-18432.
    [5] Rutigliano F A,D'Ascoli R,De Santo A V. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology and Biochemistry,2004,36(11):1719-1729.
    [6]罗达,史作民,唐敬超,刘世荣,卢立华.南亚热带乡土树种人工纯林及混交林土壤微生物群落结构.应用生态学报,2014,25(9):2543-2550.
    [7]肖好燕,刘宝,余再鹏,万晓华,桑昌鹏,周富伟,黄志群.亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态.应用生态学报,2017,28(3):730-738.
    [8]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究.北京林业大学学报,2000,22(1):51-55.
    [9]于洋,王海燕,丁国栋,任丽娜,孙嘉,范敏锐.华北落叶松人工林土壤微生物数量特征及其与土壤性质的关系.东北林业大学学报,2011,39(3):76-80.
    [10] Fang X M,Yu D P,Zhou W M,Zhou L,Dai L M. The effects of forest type on soil microbial activity in Changbai Mountain,Northeast China.Annals of Forest Science,2016,73(2):473-482.
    [11]王薪琪,韩轶,王传宽.帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态.植物生态学报,2017,41(6):597-609.
    [12]杨凯,朱教君,张金鑫,闫巧玲.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化.生态学报,2009,29(10):5500-5507.
    [13] Kaiser C,Fuchslueger L,Koranda M,Gorfer M,Stange C F,Kitzler B,Rasche F,Strauss J,Sessitsch A,Zechmeister-Boltenstern S,Richter A.Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation. Ecology,2011,92(5):1036-1051.
    [14]梁珍海,刘德辉,卢义山,仇才楼,徐春,杨国富,康立新.泥质海岸防护林对滩涂土壤盐分的影响及机制.南京大学学报:自然科学版,1998,34(2):139-143.
    [15] Hu Y,Wang L,Fu X H,Yan J F,Wu J H,Tsang Y F,Le Y Q,Sun Y. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways. Science of the Total Environment,2016,565:637-648.
    [16]魏忠平,范俊岗,潘文利,陈罡,刘红民.泥质海岸盐碱地刺槐-杨树混交林改土效果研究.水土保持通报,2012,32(1):106-110,170-170.
    [17]王洪,许跃华,张金池,张瑜,杨兴春.苏北泥质海岸盐碱地杨树纯林土壤的改良效应.中国水土保持科学,2013,11(1):65-68.
    [18]邱月,刘平,魏忠平,范俊岗,邢献予,李仁平,宋岩,马成才.渤海泥质海岸四种典型防护林对土壤微生物生物量、酶活性及土壤养分的影响.土壤通报,2017,48(5):1119-1125.
    [19]李春艳,李传荣,许景伟,宋海燕,郑莉,王月海.泥质海岸防护林土壤微生物、酶与土壤养分的研究.水土保持学报,2007,21(1):156-159,200-200.
    [20] Wen L,Lei P F,Xiang W H,Yan W D,Liu S G. Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age. Forest Ecology and Management,2014,328:150-158.
    [21]吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006.
    [22]鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2008.
    [23] Devi N B,Yadava P S. Seasonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Manipur,North-east India.Applied Soil Ecology,2006,31(3):220-227.
    [24]金发会,李世清,卢红玲,李生秀.石灰性土壤微生物量碳、氮与土壤颗粒组成和氮矿化势的关系.应用生态学报,2007,18(12):2739-2746.
    [25]谭波,吴庆贵,吴福忠,杨万勤.川西亚高山-高山森林土壤养分动态及其对季节性冻融的响应.生态学报,2015,35(15):5175-5182.
    [26] Habekost M,Eisenhauer N,Scheu S,Steinbeiss S,Weigelt A,Gleixner. Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biology and Biochemistry,2008,40(10):2588-2595.
    [27]王国兵,阮宏华,唐燕飞,何蓉.森林土壤微生物生物量动态变化研究进展.安徽农业大学学报,2009,36(1):100-104.
    [28] Mubyana-John T,Masamba W R L. Soil microbial biomass carbon,nitrogen and sulphur as affected by different land uses in Seronga,Okavango Delta,Botswana. British Journal of Environment and Climate Change,2013,3(4):628-639.
    [29]王风芹,田丽青,宋安东,桑玉强,张劲松,高峻.华北刺槐林与自然恢复植被土壤微生物量碳、氮含量四季动态.林业科学,2015,51(3):16-24.
    [30]苗娟,周传艳,李世杰,闫俊华.不同林龄云南松林土壤有机碳和全氮积累特征.应用生态学报,2014,25(3):625-631.
    [31]李玥,张金池,王丽,李奕建.上海市沿海防护林土壤微生物三大类群变化特征.南京林业大学学报:自然科学版,2010,34(1):43-47.
    [32]王宁,王美菊,李世兰,王楠楠,冯富娟,韩士杰.降水变化对红松阔叶林土壤微生物生物量生长季动态的影响.应用生态学报,2015,26(5):1297-1305.
    [33]郭婧,喻林华,方晰,项文化,邓湘雯,路翔.中亚热带4种森林凋落物量、组成、动态及其周转期.生态学报,2015,35(14):4668-4677.
    [34]刘聪,项文化,田大伦,方晰,彭长辉.中亚热带森林植物多样性增加导致细根生物量"超产".植物生态学报,2011,35(5):539-550.
    [35]胡亚林,汪思龙,颜绍馗,高洪.杉木人工林取代天然次生阔叶林对土壤生物活性的影响.应用生态学报,2005,16(8):1411-1416.
    [36]毛瑢,崔强,赵琼,艾桂艳,李禄军,曾德慧.不同林龄杨树农田防护林土壤微生物生物量碳、氮和微生物活性.应用生态学报,2007,20(9):2079-2084.
    [37]高晶,韩海荣,康峰峰,立天宇,宋小帅,赵伟红,于晓文,赵金龙.冀北辽河源不同林龄油松天然次生林土壤微生物生物量及酶活性.东北林业大学学报,2015,43(9):78-83.
    [38]张秀玲,李君剑,石福臣.速生杨人工林对土壤碳氮含量及微生物生物量的影响.生态与农村环境学报,2008,24(2):32-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700