用户名: 密码: 验证码:
新型摩擦“塑性铰”构造的抗震性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seismic Performance of a Novel Friction “Plastic Hinge” Structure
  • 作者:李晓东 ; 王起台 ; 孟强 ; 马广田
  • 英文作者:LI Xiaodong;WANG Qitai;MENG Qiang;MA Guangtian;Lanzhou University of Technology;
  • 关键词:摩擦“塑性铰” ; 静力弹塑性分析 ; 延性 ; 抗震性能
  • 英文关键词:friction "plastic hinge";;static elastic-plastic analysis;;ductility;;seismic performance
  • 中文刊名:地震工程学报
  • 英文刊名:China Earthquake Engineering Journal
  • 机构:兰州理工大学;
  • 出版日期:2019-06-15
  • 出版单位:地震工程学报
  • 年:2019
  • 期:03
  • 基金:甘肃省教育厅成果转化项目(2017D-03);; 甘肃省建设厅科技攻关项目(JK2017-21)
  • 语种:中文;
  • 页:7-18+38
  • 页数:13
  • CN:62-1208/P
  • ISSN:1000-0844
  • 分类号:TU391;TU352.11
摘要
提出了一种安全性高、成本低的新型摩擦"塑性铰"构造的概念和几何设计,以实现精准耗能和大震可修的延性设计抗震目标。以钢结构梁柱延性节点的设计理论为基础,推导了该构造的力学性能理论和工作机制,并应用于钢框架结构进行了静力弹塑性分析。通过ABAQUS有限元软件建立了5个工况的数值分析模型,进行了有限元模型的循环往复位移荷载分析,探究了新型摩擦"塑性铰"构造的抗震性能。结果表明:该构造模型仅发生了抗剪螺栓的剪切破坏,可实现其精准耗能和结构的快速修复;具有较好的转动性能,满足层间位移角要求;摩擦耗能随着旋转加载螺栓预应力和摩擦系数的增大而增大,其滞回曲线较饱满,延性系数较大,具有较好的抗震性能;理论分析和有限元分析的承载力基本吻合,分别为15.92 kN、15.84 kN;抗剪螺栓的剪切和纯摩擦耗能两阶段的等效粘滞阻尼系数分别为0.318、0.671,纯摩擦耗能阶段的耗能能力较好。在钢框架中摩擦"塑性铰"的形成与发展符合抗震性能要求,Pushover分析可作为结构抗震性能评估的有效方式。
        The concept and geometric design of a novel friction "plastic hinge" structure with high safety and low cost were proposed to achieve the seismic objective of accurate energy dissipation and repairable damage under large earthquakes. Based on the design theory of the beam-column ductility steel joint structure, the mechanical property theory and working mechanism of the structure were deduced, and the static elastoplastic analysis of the steel frame structure was conducted. Through the finite element software ABAQUS, the numerical analysis model of five working conditions were established, and the cyclic reciprocating displacement load analysis of the finite element model was conducted to explore the seismic performance of the new friction "plastic hinge" structure. The results showed that only the shear failure of shear bolt occurred in the model, indicating that it can realize the accurate energy dissipation and rapid repair of the structure. The model had good rotational performance, which can meet the requirement of story drift angle. The friction energy dissipation increased with increasing prestress and friction coefficient of the rotary load bolt. The bearing capacity of the theoretical analysis and that of the finite element analysis were 15.92 kN and 15.84 kN, respectively, basically agreeing with each other. The equivalent viscous damping coefficient of shear bolts in shear stage and friction stage were 0.318 and 0.671, respectively. The formation and development of the friction "plastic hinge" in a steel frame can meet seismic performance requirements, and the pushover analysis can be used as an effective way to evaluate the seismic performance of the structure.
引文
[1]CHEN S J,TSAO Y C,CHAO Y C.Enhancement of Ductility of Existing Seismic Steel Moment Connections[J].Journal of Structural Engineering,2001,127(5):538-545.
    [2]TSAVDARIDIS K D,PAPADOPOULOS T.A FE Parametric Study of Rws Beam-to-column Bolted Connections with Cellular Beams[J].Journal of Constructional Steel Research,2016,116:92-113.
    [3]韩明岚,牟政,王帅,等.延性节点钢框架结构的力学性能分析[J].钢结构,2018,33(3):11-15,62.HAN Minglan,MOU Zheng,WANG Shuai,et al.Research on Mechanical Properties of Steel Frame Structure with Ductile Connection[J].Steel Construction,2018,33(3):11-15,62.
    [4]LI Fengxiang,Iori Kanao,LI Jun,et al.Local Buckling of RBSBeams Subjected to Cyclic Loading[J].Journal of Structural Engineering,ASCE,2009,135(12):1491-1498.
    [5]JEON S W,LEE C H,UANG C M,et al.Effects of Panel Zone Strength and Beam Web Connection Method on Seismic Performance of Reduced Beam Section Steel Moment Connections[J].Journal of Structural Engineering,2005,131(12):1854-1865.
    [6]谢光杰,王万祯,赵银海,等.梁翼缘圆弧扩大头和圆孔削弱型内隔板式箱形柱-H型钢梁节点低周往复循环加载试验[J].建筑结构,2013,43(21):14-17,46.XIE Guangjie,WANG Wanzhen,ZHAO Yinhai,et al.Low-cycle Reversed Loading Tests on Inner Diaphragm Joints of H-style Steel Beam-square Steel Tubular Column with Circular Enlarged Juncture Near Butt Weld and Opening Holes at Beam Flanges[J].Building Structure,2013,43(21):14-17,46.
    [7]郑宏,孟春辉,石丹.翼缘削弱型节点空间钢框架在低周反复荷载作用下的抗震性能[J].建筑科学与工程学报,2016,33(4):120-126.ZHENG Hong,MENG Chunhui,SHI Dan.Seismic Performance of Reduced Beam Section Connection Steel Frames under Low-cyclic Loading[J].Journal of Architecture and Civil Engineering,2016,33(4):120-126.
    [8]陶长发,孙国华,何若全,等.盖板加强型节点钢框架子结构抗震性能试验研究[J].建筑结构学报,2015,36(6):19-28.TAO Changfa,SUN Guohua,HE Ruoquan,et al.Experimental Study on Seismic Behavior of Steel Frame Substructure with Cover-plate Reinforced Connections[J].Journal of Building Structures,2015,36(6):19-28.
    [9]马江萍,徐莹璐,张驰.钢框架侧板加强型梁柱节点滞回性能研究[J].防灾减灾工程学报,2018,38(2):336-344.MA Jiangping,XU Yinglu,ZHANG chi.Study on the Hysteretic Behavior of Side Plate Reinforced Beam-to Column Connections in Steel Frame[J].Journal of Disaster Prevention and Mitigation Engineering,2018,38(2):336-344.
    [10]李晓东,王起台,马乃寅,等.一种使结构无损的摩擦塑性铰[P].甘肃:CN108204040A,2018-06-26.LI Xiaodong,WANG Qitai,MA Naiyin,et al.A Frictional Plastic Hinge that Makes a Structure Nondestructive[P].Gansu,China:CN108204040A,2018-06-26.
    [11]李晓东,王起台,赵健.基于摩擦材料的摩擦摆隔震耗能试验探究[J].四川建筑科学研究,2017,43(5):90-93.LI Xiaodong,WANG Qitai,ZHAO Jian.Study on Energy Dissipation Test of Friction Pendulum Isolation Bearing Based on Friction Material[J].Sichuan Building Science,2017,43(5):90-93.
    [12]洪桂香.汽车制动系统的陶瓷摩擦材料[J].汽车与配件,2015(2):62-64.HONG Guixiang.Ceramic Friction Material for Automotive Brake Systems[J].Automobile and Parts,2015(2):62-64.
    [13]周绪红,周期石.水平荷载作用下交错桁架结构的内力和侧移计算[J].建筑结构学报,2004,25(4):66-71.ZHOU Xuhong,ZHOU Qishi.Calculation of Internal Forces and Drift of Staggered Truss Structure under Lateral Loads[J].Journal of Building Structures,2004,25(4):66-71.
    [14]王燕.钢结构新型延性节点的抗震设计理论及其引用[M].北京:科学出版社,2012.WANG Yan.Seismic Design Theory of New Ductile Joints of Steel Structures and Its References[M].Beijing:Science Press,2011.
    [15]张思敏,李军,李文明.翼缘加强型狗骨式节点的性能分析及改进[J].钢结构,2010,25(5):3-7.ZHANG Simin,LI Jun,LI Wenming.Performance Analysis and Improvement of Flange Reinforced Dog-bone Connection in Steel Frame[J].Steel Construction,2010,25(5):3-7.
    [16]FEMA-350.Recommended Seismic Design Criteria for New Steel Moment-frame Buildings[S].Washington D C,2000.
    [17]郁有升,王燕.钢框架梁翼缘削弱型节点力学性能的试验研究[J].工程力学,2009,26(2):168-175.YU Yousheng,WANG Yan.Experimental Study on the Mechanical Property of Reduced Beam Section Connections of Steel Frames[J].Engineering Mechanics,2009,26(2):168-175.
    [18]王燕,李庆刚,董建莉,等.梁端翼缘削弱型节点空间钢框架抗震性能试验研究[J].建筑结构学报,2016,37(增刊1):192-200.WANG Yan,LI Qinggang,DONG Jianli,et al.Seismic Performance of Reduced Beam Section Connection Steel Frames Under Low-cyclic Loading[J].Journal of Architecture and Civil Engineering,2016,37(Supp1):192-200.
    [19]汪金祥,肖亚明,刘顺,等.基于Pushover原理的钢框架静力弹塑性分析[J].合肥工业大学学报(自然科学版),2014,37(10):1249-1253.WANG Jinxiang,XIAO Yaming,LIU Shun,et al.Static Elastoplastic Analysis of Steel Frame Based on Pushover Principle[J].Journal of Hefei University of Technology(Natural Science),2014,37(10):1249-1253.
    [20]建筑抗震规范:GB 50011-2010[S].北京:中国建筑工业出版社,2016.Code for Seismic Design of Buildings:GB 50011-2010[S].Beijing:China Architecture and Building Press,2016.
    [21]中国建筑标准设计研究院.SAP2000中文版使用指南[M].北京:人民交通出版社,2012.China Institute of Building Standard Design&Research Co.,Ltd.Guide of the Chinese Version of SAP2000[M].Beijing:China Communications Press,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700