用户名: 密码: 验证码:
土壤-蔬菜系统中镉的生物富集效应及土壤阈值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Bioaccumulation of Cadmium in Soil-vegetable System and Pollution Threshold in Soil
  • 作者:冯艳红 ; 王国庆 ; 张亚 ; 郑丽萍 ; 杜俊洋 ; 林玉锁
  • 英文作者:FENG Yanhong;WANG Guoqing;ZHANG Ya;ZHENG Liping;DU Junyang;LIN Yusuo;Nanjing Institute of Environmental Sciences,Ministry of Ecology and Environment of China;State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control;
  • 关键词:土壤 ; 蔬菜 ; ; 富集 ; 阈值
  • 英文关键词:soil;;vegetable;;Cadmium;;accumulation;;threshold
  • 中文刊名:地球与环境
  • 英文刊名:Earth and Environment
  • 机构:生态环境部南京环境科学研究所;国家环境保护土壤环境管理与污染控制重点实验室;
  • 出版日期:2019-07-30 08:44
  • 出版单位:地球与环境
  • 年:2019
  • 期:05
  • 基金:国家重点研发计划(2016YFD0800400);国家重点研发计划(2018YFF0212402);; 环保公益性行业科研专项(201409041、201409042)
  • 语种:中文;
  • 页:82-90
  • 页数:9
  • CN:52-1139/P
  • ISSN:1672-9250
  • 分类号:X53;X56
摘要
为保障蔬菜质量安全,避免重金属Cd污染,通过野外调查采集土壤-蔬菜样品224对,分析土壤和蔬菜中的Cd含量,研究不同种类蔬菜对Cd富集的差异及影响因素,并探讨了不同种类蔬菜的土壤Cd阈值。结果表明:蔬菜对Cd的富集受土壤Cd含量影响,与其呈显著性正相关关系,同时与土壤pH和有机质呈负相关关系。各蔬菜可食用部分中Cd的富集系数为0. 001~4. 901,平均值为0. 16。不同种类蔬菜对Cd的富集不同,其富集大小顺序为叶菜类>茎菜类>根菜类>果菜类。利用log-logistic模型对研究数据进行拟合,并结合《食品中污染物限量》(GB2762-2017)中规定的蔬菜中污染物标准限值得到叶菜类、根菜类、茎菜类和果菜类蔬菜对应的土壤阈值分别为0. 25、0. 31、0. 33和0. 50 mg/kg。
        In order to ensure quality and safety of vegetable and avoid heavy metal pollution of Cd,this study collected 224 pairs of soil-vegetable samples through field investigations and analyzed contents of Cd in these samples. The different enrichments of Cd in different types of vegetable and the thresholds of Cd in soil for different types of vegetable were studied,and potential influencing factors were discussed. The results showed that: the enrichment of Cd by vegetable was affected by the content of Cd in soil,the enrichment of Cd in vegetable had a significant positive correlation with the content of Cd in soil,and had negative correlations with soil p H and organic matter content. The enrichment coefficient of Cd in edible parts of vegetable ranged from 0. 001 to 4. 901,with an average value of 0. 16. Different types of vegetable had different enrichment effects of Cd,following an order of leaf vegetable > stem vegetable > root vegetable > fruit vegetable. According to the national standards for maximum levels of heavy metal contaminants in food( GB2762-2017) and the analytical result of the Log-logistic model,the Cd thresholds in soil for leaf vegetable,root vegetable,stem vegetable and fruit vegetable were 0. 25,0. 31,0. 33 and 0. 50 mg/kg,respectively.
引文
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014(5):10-11.
    [2] Wang X L,Sato T,Xing B S,et al. Health risks of heavy metals to the general public in tianjin,China via consumption of vegetables and fish[J].The Science of the Total Environment,2005,350(1-3):28-37.
    [3] Kumar S R,Agrawal M,Marshall A F. Heavy metal contamination of soil and vegetables in suburban area of varanasi,India[J].Ecotoxicology and Environmental Safety,2007,66(2):258-266.
    [4] Tomohito A,Satoru I,Masaharu M,et al. Heavy metal contamination of agricultural soil and countermeasures in Japan[J]. Paddy and Water Environment,2010,8(3):247-257.
    [5]候胜男,汤琳,郑娜,等.典型锌冶金区蔬菜重金属的生物可给性及健康风险评价[J].环境科学学报,2018,38(1):343-349.
    [6]刘苹,赵海军,刘兆辉,等.山东省露地蔬菜产地土壤重金属含量的环境质量分析与评价[J].农业环境科学学报,2010,29(6):1130-1136.
    [7]周雅,毕春娟,周枭潇,等.上海市郊工业区附近蔬菜中重金属分布及其健康风险[J].环境科学,2017,38(12):5292-5298.
    [8]杨俊,吕府红,宋永伟,等.典型重金属污染地区蔬菜中重金属含量及健康风险[J].环境污染与防治,2017,39(9):952-956.
    [9]陆素芬,宋波,伏凤艳,等.南丹矿业活动影响区蔬菜重金属含量及健康风险[J].生态与农村环境学报,2016,32(3):478-485.
    [10]邹素敏,杜瑞英,文典,等.不同品种蔬菜重金属污染评价和富集特征研究[J].生态环境学报,2017,26(4):714-720.
    [11]顾燕青,顾优丽,白倩,等.杭州市菜地蔬菜对土壤重金属的富集特性研究[J].农业资源与环境学报,2015(4):401-410.
    [12] Wang G,Su M Y,Chen Y H,et al. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in Southeastern China[J]. Environmental Pollution,2006,144:127-135.
    [13]方凤满,汪琳琳,谢宏芳,等.芜湖市三山区蔬菜中重金属富集特征及健康风险评价[J].农业环境科学学报,2010,29(8):1471-1476.
    [14]杨阳,李艳玲,陈卫平,等.蔬菜镉(Cd)富集因子变化特征及其影响因素[J].环境科学,2017,38(1):399-404.
    [15]李富荣,文典,王富华,等.广东地区芸薹类叶菜-土壤镉污染相关性分析及土壤镉限量值研究[J].生态环境学报,2016,25(4):705-710.
    [16] GB 7857-1987,森林土壤有机质的测定及碳氮比的计算[S].
    [17]张小敏,张秀英,钟太洋,等.中国农田土壤重金属富集状况及其空间分布研究[J].环境科学,2014,35(2):692-702.
    [18]施泽明,倪师军,张成江,等.成都城郊典型蔬菜中重金属元素的富集特征[J].地球与环境,2006,34(2):52-56.
    [19]茹淑华,耿暖,张国印,等.河北省典型蔬菜产区土壤和蔬菜中重金属累积特性研究[J].生态环境学报,2016,25(8):1407-1411.
    [20]陈志良,黄玲,周存宇,等.广州市蔬菜中重金属污染特征研究与评价[J].环境科学,2017,38(1):389-398.
    [21]郑路,常江.合肥市菜园蔬菜和土壤的铅污染调查[J].环境污染与防治,1989,11(5):33-37.
    [22]李非里,刘丛强,杨元根,等.贵阳市郊菜园土-辣椒体系中重金属的迁移特征[J].生态与农村环境学报,2007,23(4):52-56.
    [23]王彦斌,杨一鸣,曾亮,等.甘肃省榆中县菜地土壤与蔬菜中重金属含量及健康风险评估[J].干旱地区农业研究,2015,33(6):234-241.
    [24] Reeves P G,Chaney R L. Bioavailability as an issue in risk assessment and management of food cadmium:a review[J]. Science of the Total Environment,2008,398(1):13-19.
    [25]谢正苗,李静,陈建军,等.中国蔬菜地土壤重金属健康风险基准的研究[J].生态毒理学报,2006,1(2):172-179.
    [26] Kooijmans A L M. Safety factor for LC50 values allowing for differences in sensitivity among species[J].Water Resources,1987,21(3):269-276.
    [27] USEPA. Guidelines for ecological risk assessment[S].EPA 630-R-95-002F.Washington DC:USEPA,1998.
    [28] Aldenberg T,Slob W. Confidence limits for hazardous concentrations based on logistically distributed toxicity data[J].Ecotoxicology and Environmental Safety,1998,25(1):48-63.
    [29] Newman M C,Ownby D R,Mezin L C A,et al. Applying species-sensitivity distributions in ecological risk assessment:assumptions of distribution Type and sufficient numbers of species[J]. Environmental Toxicology and Chemistry,2000,19(2):508-515.
    [30]王小庆,韦东普,马义兵,等.物种敏感分步法在土壤铜生态阈值建立中的应用研究[J].农业环境科学学报,2013,33(6):1787-1794.
    [31]薛强,赵元艺,张佳文,等.基于农作物食用安全的土壤重金属风险阈值[J].地质通报,2014,33(8):1132-1139.
    [32]刘香香,文典,王其枫,等.广东省不同种类蔬菜与土壤镉污染相关性及阈值研究[J].中国农学通报,2012,28(10):109-115.
    [33]吴琦,杨菲,季辉,等.土壤重金属Pb和Cd在雍菜中的累积特征及产地环境安全临界值[J].中国蔬菜,2010(10):29-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700