用户名: 密码: 验证码:
连续式超临界水热合成金属纳米微粒的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in preparation of metal nanoparticles via continuous supercritical hydrothermal synthesis method
  • 作者:张家乐 ; 朱斌 ; 张后雷 ; 李莎
  • 英文作者:ZHANG Jia-le;ZHU Bin;ZHANG Hou-lei;LI Sha;School of Energy and Power Engineering,Nanjing University of Science and Technology;
  • 关键词:超临界水 ; 水热合成 ; 纳米微粒 ; 金属氧化物
  • 英文关键词:supercritical water;;hydrothermal synthesis;;nanoparticle;;metal oxide
  • 中文刊名:现代化工
  • 英文刊名:Modern Chemical Industry
  • 机构:南京理工大学能源与动力工程学院;
  • 出版日期:2019-03-20 09:53
  • 出版单位:现代化工
  • 年:2019
  • 期:05
  • 基金:中国博士后科学基金面上项目(2017M611817);; 中央高校基本科研业务费专项资金项目(30917011326)
  • 语种:中文;
  • 页:67-71
  • 页数:5
  • CN:11-2172/TQ
  • ISSN:0253-4320
  • 分类号:TB383.1;TQ13
摘要
介绍了连续式超临界水热合成的基本原理及工艺,着重总结分析了影响纳米微粒性能的关键合成因素及作用规律,包括混合器结构、合成温度、反应停留时间、微粒母体溶液浓度、助剂等,探讨了研究中存在的问题并提出了建议。
        In this paper,a brief introduction of basic principle,process and equipment for continuous supercritical hydrothermal synthesis(CSHS) is presented.The effects of key operation variables of CSHS process,including the mixer structure,temperature,reaction residence time,precursor concentration and promoters,on the properties of the synthesized particles are overviewed. Discussions on shortages of the existing research together with some suggestions are also provided.
引文
[1]Adschiri T,Kanazawa K,Arai K. Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water[J].J Am Chem Soc,1992,75(4):1019-1022.
    [2]Darr J A,Zhang J Y,Makwana N M,et al.Continuous hydrothermal synthesis of inorganic nanoparticles:Applications and future directions[J].Chemical Reviews,2017,117(17):11125-11238.
    [3]王晓娟,刘学武,夏远景,等.超临界水热合成制备纳米微粒材料[J].化学工业与工程技术,2007,28(2):18-20.
    [4]Brunner G. Chapter 2-properties of pure water,in:Brunner G(Ed.),Hydrothermal and supercritical water process[M].Blacksburg:Elsevier,2014:9-93.
    [5]Lester E,Blood P J,Denyer J P,et al.Impact of reactor geometry on continuous hydrothermal synthesis mixing[J]. Mater Res Innov,2010,14(1):19-26.
    [6]Aizawa T,Masuda Y,Minami K,et al. Direct observation of channel-tee mixing of high-temperature and high-pressure water[J].J Supercrit Fluids,2007,43(2):222-227.
    [7]Takami S,Sugioka K,Ozawa K,et al.In-situ neutron tomography on mixing behavior of supercritical water and room temperature water in a tubular flow reactor[J].Physcs Proc,2015,69:564-569.
    [8]Sugioka K,Ozawa K,Tsukada T,et al.Neutron radiography and numerical simulation of mixing behavior in a reactor for supercritical hydrothermal synthesis[J].Aiche J,2014,60(3):1168-1175.
    [9]Toft L L,Aarup D F,Bremholm M,et al.Comparison of T-piece and concentric mixing systems for continuous flow synthesis of anatase nanoparticles in supercritical isopropanol/water[J].Journal of Solid State Chemistry,2009,182(3):491-495.
    [10]Tighe C J,Gruar R I,Ma C Y,et al.Investigation of counter-current mixing in a continuous hydrothermal flow reactor[J]. J Supercrit Fluids,2012,62:165-172.
    [11]Ma C Y,Liu J J,Zhang Y,et al. Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials[J].J Supercrit Fluids,2015,98:211-221.
    [12]Gruar R I,Tighe C J,Darr J A.Scaling-up a confined jet reactor for the continuous hydrothermal manufacture of nanomaterials[J]. Ind Eng Chem Res,2013,52(15):5270-5281.
    [13]Aoki N,Sato A,Sasaki H,et al.Kinetics study to identify reactioncontrolled conditions for supercritical hydrothermal nanoparticle synthesis with flow-type reactors[J].J Supercrit Fluids,2016,110:161-166.
    [14]Xu C B,Lee J,Teja A S.Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water[J].J Supercrit Fluids,2008,44(1):92-97.
    [15]Middelkoop V,Tighe C J,Kellici S,et al. Imaging the continuous hydrothermal flow synthesis of nanoparticulate CeO2at different supercritical water temperatures using in situ angle-dispersive diffraction[J].J Supercrit Fluids,2014,87:118-128.
    [16]Sue K,Aoki M,Sato T,et al.Continuous hydrothermal synthesis of nickel ferrite nanoparticles using a central Collision-Type micromixer:Effects of temperature,residence time,metal salt molality,and Na OH addition on conversion,particle size,and crystal phase[J].Ind Eng Chem Res,2011,50(16):9625-9631.
    [17]Chen M,Ma C Y,Mahmud T,et al. Modelling and simulation of continuous hydrothermal flow synthesis process for nano-materials manufacture[J]. The Journal of Supercritical Fluids,2011,59:131-139.
    [18]Denis C J,Tighe C J,Gruar R I,et al.Nucleation and growth of cobalt oxide nanoparticles in a continuous hydrothermal reactor under laminar and turbulent flow[J]. Cryst Growth Des,2015,15(9):4256-4265.
    [19]Sierra-Pallares J,Huddle T,Garcia-Serna J,et al. Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation[J]. Nano Res,2016,9(11):3377-3387.
    [20]Cabanas A,Li J,Blood P,et al.Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water-ethanol mixtures[J]. J Supercrit Fluids,2007,40(2):284-292.
    [21]Lester E,Aksomaityte G,Li J,et al. Controlled continuous hydrothermal synthesis of cobalt oxide(Co3O4)nanoparticles[J].Prog Cryst Growth Ch,2012,58(1):3-13.
    [22]Dunne P W,Starkey C L,Munn A S,et al.Bench-and pilot-scale continuous-flow hydrothermal production of barium strontium titanate nanopowders[J].Chem Eng J,2016,289:433-441.
    [23]Kubota S,Morioka T,Takesue M,et al.Continuous supercritical hydrothermal synthesis of dispersible zero-valent copper nanoparticles for ink applications in printed electronics[J]. J Supercrit Fluids,2014,86:33-40.
    [24]Marchand P,Makwana N M,Tighe C J,et al.High-Throughput synthesis,screening,and Scale-Up of optimized conducting indium tin oxides[J].Acs Comb Sci,2016,18(2):130-137.
    [25]Luebke M,Ding N,Powell M J,et al.VO2nano-sheet negative electrodes for lithium-ion batteries[J]. Electrochemistry Communications,2016,64:56-60.
    [26]Shi L,Naik A J T,Goodall J B M,et al.Highly sensitive ZnO nanorod-and nanoprism-based NO2gas sensors:Size and shape control using a continuous hydrothermal pilot plant[J].Langmuir,2013,29(33):10603-10609.
    [27]Shin Y H,Koo S M,Kim D S,et al.Continuous hydrothermal synthesis of HT-LiCoO2in supercritical water[J]. J Supercrit Fluids,2009,50(3):250-256.
    [28]Boldrin P,Hebb A K,Chaudhry A A,et al. Direct synthesis of nanosized Ni Co2O4spinel and related compounds via continuous hydrothermal synthesis methods[J]. Ind Eng Chem Res,2007,46(14):4830-4838.
    [29]Elbasuney S.Continuous hydrothermal synthesis of Al O(OH)nanorods as a clean flame retardant agent[J]. Particuology,2015,22:66-71.
    [30]Moro F,Tang S V Y,Tuna F,et al.Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method[J].J Magn Magn Mater,2013,348:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700