用户名: 密码: 验证码:
基于环境地球化学基线的农用地重金属累积特征及其潜在生态危害风险研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sources and Risk Assessment of Heavy Metal in Agricultural Soils Based on the Environmental Geochemical Baselines
  • 作者:卢新哲 ; 谷安庆 ; 张言午 ; 康占军 ; 褚先尧 ; 胡雪峰
  • 英文作者:LU Xinzhe;GU Anqing;ZHANG Yanwu;KANG Zhanjun;CHU Xianyao;HU Xuefeng;School of Environmental and Chemical Engineering,Shanghai University;Zhejiang Institute of Geological Survey;
  • 关键词:重金属 ; 土壤 ; 环境地球化学基线值 ; 富集因子 ; 潜在生态危害风险
  • 英文关键词:Heavy mentals;;Soils;;Environmental geochemical baselines;;Enrichment factors (EF);;Potential ecological risk(PER)
  • 中文刊名:土壤学报
  • 英文刊名:Acta Pedologica Sinica
  • 机构:上海大学环境与化学工程学院;浙江省地质调查院;
  • 出版日期:2018-10-13 11:57
  • 出版单位:土壤学报
  • 年:2019
  • 期:02
  • 基金:浙江省财政基金项目(2016009);; 国家自然科学基金项目(41877005)资助~~
  • 语种:中文;
  • 页:160-171
  • 页数:12
  • CN:32-1119/P
  • ISSN:0564-3929
  • 分类号:X53;X826
摘要
为探明浙江东部某市周边农用地土壤重金属累积特征及潜在生态危害风险,系统采集研究区表土样品,测定重金属元素(As、Cd、Cr、Cu、Hg、Ni、Pb、Zn)和惰性元素(Li、Eu、Sc、Sm)含量。通过元素相关性分析,筛选出合适的标准因子,按标准化方法建立了研究区土壤重金属As、Cd、Cr、Cu、Hg、Ni、Pb和Zn环境地球化学基线,获得基线值分别为11.13、0.38、57.48、43.86、0.30、21.55、51.91和132.7mg·kg~(-1)。在应用单因子方法评价土壤重金属污染程度基础上,以环境地球化学基线值作为标准因子,采用富集因子方法判别因受人类活动影响的重金属污染点位,并对土壤重金属累积潜在的生态环境风险进行了评价。结果表明,研究区表层土壤普遍存在不同程度的重金属污染,以轻微至轻度污染级别为主,其中Cd和As存在少量重度污染点位,比例分别为3.00%和0.19%。研究区重金属富集主要受工矿企业活动影响,浓集中心集中在金属矿山和印染企业周边,具有沿水系向低地势平原区迁移趋势。研究区范围Cd和Hg具有潜在的较高生态风险。利用GIS系统,将各样点重金属土壤污染程度、富集因子(EF)和潜在生态危害评价结果,在研究区农用地土地利用现状图斑上进行空间叠加,可实现从地理空间上的土壤重金属污染范围界定、重金属人为成因污染判别和潜在生态危害风险空间预警。
        【Objective】To study the characteristics and risk of heavy metal contents in the agricultural soils highly disturbed by anthropogenic activities in the suburbs of a City, Zhejiang Province, Southeast China, and to establish Environmental Geochemical Baseline models of heavy metal elements, a total of 534 topsoil samples were collected in the study areas.【Methods】 The contents of heavy metals, As, Cr, Cd, Cu,Hg, Ni, Pb, Zn, and inert elements, Li, Eu, Sc and Sm in the soils were analyzed. As and Hg were measured with the atomic fluorescence spectrometry; Pb and Zn, with the X-ray fluorescent spectroscopy(XRF); Cd,Cu, Ni, Li, Eu, Sc and Sm, with the inductively coupled plasma mass spectrometry(ICP-MS). Using Li, Eu,Sc and Sm as standard factors, the Environment Geochemical Baseline models of the heavy metal elements were established. According to the Risk Control Standard for Soil Contamination of Agricultural Land(GB15618-2018),the method of Single Factor Pollution Index were applied to assess the degree of heavy metal pollution in the study areas. While the enrichment factor(EF)and the potential ecological risk(PER) by individual metal and combined effect of metals were determined, by using the Environment Geochemical Baseline Values as standard factors.【Results】 The contents of heavy metal elements, As, Cd, Cr, Cu, Hg,Ni, Pb and Zn in the soils were in the ranges of 2.28~106.0 mg·kg-1, 0.04~4.91 mg·kg-1, 16.00~221.0 mg·kg-1, 12.90~216.0 mg·kg-1, 0.03~2.31 mg·kg-1, 6.76~102.0 mg·kg-1, 12.40~245.0 mg·kg-1 and 51.70~864.0 mg·kg-1, respectively. Choose the inert elements with the best correlations to heavy metals as the standard factors to obtain the Environment Geochemical baselines of As 11.13 mg·kg-1, Cd 0.38 mg·kg-1, Cr57.49 mg·kg-1, Cu 43.86 mg·kg-1, Hg 0.30 mg·kg-1, Ni 21.55 mg·kg-1, Pb 51.91 mg·kg-1 and Zn 132.7 mg·kg-1.A polluted rate of the monitoring points of the different heavy metals was in the decreasing order of Cd59.55%> Cu 24.34%>Hg 17.42%>Pb 13.11%>Zn 12.36%> As2.81%>Cr 0.37%=Ni0.37%.The concentration of Cd, Cr, Cu, Hg, Ni, and Pb were higher than the Environment Geochemical Baseline Values in more than40% of samples; those heavy metal elements were anthropogenically loaded into the agricultural soils of the study areas. Although large area of he study areas experienced moderate to serious level of pollution, most of the heavy metals showed low risk to the environment. Only Cd and Hg showed moderate to high risk to the environment.【Conclusions】Spatial analyses of EF and PER of the heavy metal elements by applying the GIS information system can effectively determine the source and scope of heavy metal pollution,and assess the potential ecological risks of heavy metal pollution for early warning in the study areas. Over 68.91% of the agricultural soils in the study areas were polluted by heavy metals to different extents, and 3.18% were severely polluted due to intensive anthropogenic activities. The polluted areas were mainly distributed nearby metal mines and printing and dyeing companies.
引文
[1]Covelli S,Fontolan G. Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 1997,30(1/2):34-45
    [2]Salminen R,Gregorauskien V. Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Applied Geochemistry, 2000,15(5):647-653
    [3]汪庆华,董岩翔,周国华,等.浙江省土壤地球化学基准值与环境背景值.生态与农村环境学报,2007,23(2):81-88Wang Q H, Dong Y X, Zhou G H, et al. Soil geochemical baseline and environmental background values of agricultural regions in Zhejiang Province(In Chinese). Journal of Ecology and Rural Environment, 2007, 23(2):81-88
    [4]Chukwuma C. Evaluating baseline data for traceelements, pH, organic mattercontent, and bulkdensity in agricultural soils in Nigeria. Water Air&Soil Pollution,1996,86(1/4):13-34
    [5]滕彦国,倪师军,张成江,等.环境地球化学基线研究简介.物探化探计算技术,2001,23(2):135-139Teng Y G,Ni S J, Zhang C J, et al. Introduction to the study of environmental geochemical baseline(In Chinese). Computing Techniques for Geophysical and Geochemical Exploration, 2001,23(2):135-139
    [6]Aftabi A, Shojaei S V,Nezhad R K. Erratum to:Geochemical and environmental baseline of major and trace elements in zarand coals, southeastern Iran.Environmental Earth Sciences, 2015,73(11):7457-7476
    [7]Disspain M, Wallis L A, Gillanders B M. Developing baseline data to understand environmental change:A geochemical study of archaeological otoliths from the coorong,south Australia. Journal of Archaeological Science, 2011, 38(8):1842-1857
    [8]李湘凌,张颖慧,周涛发,等.合肥地区典型城镇土壤中As、Hg的环境地球化学基线.生态环境学报,2009, 18(1):154-159Li X L, Zhang Y H, Zhou T F, et al. Environmental geochemical baselines of soil metal elements in typical towns in Hefei area,Anhui Province(In Chinese).Ecology and Environment Sciences, 2009, 18(1):154-159
    [9]罗艳,何锦林,陈志伦,等.基于标准化方法的遵义东南部地区农业土壤重金属污染评价.中国农学通报,2012,28(2):257-260Luo Y,He J L, Chen Z L,et al. Heavy metal pollution evaluation in the agricultural soil in southeast area of Zunyi based on standardized method(In Chinese). Chinese Agricultural Science Bulletin,2012, 28(2):257-260
    [10]袁峰,张颖慧,周涛发,等.典型城镇土壤重金属元素环境地球化学基线研究——以合肥地区为例.地质论评,2010,56(1):114-123Yuan F, Zhang Y H, Zhou T F, et al. Environmental geochemical baseline of soil metallic elements in typical towns:A case of Hefei area(In Chinese).Geological Review, 2010, 56(1):114-123
    [11]刘久臣,刘晓端,徐清,等.上海崇明岛表层土壤重金属元素分布特征与环境地球化学基线值研究.岩矿测试,2010,29(3):245-249Liu J C, Liu X D, Xu Q, et al. Distribution characteristics of heavy metals and their environmental geochemical baselines in top soils from Chongming Island of Shanghai City(In Chinese). Rock andMineral Analysis, 2010, 29(3):245-249
    [12]Glennon M M, Harris P, Ottesen R T, et al. The dublin surge project:Geochemical baseline for heavy metals in topsoils and spatial correlation with historical industry in Dublin, Ireland. Environmental Geochemistry&Health, 2014, 36(2):235-254
    [13]廖启林,吴新民,翁志华,等.南京地区多目标地球化学调查基本成果及其相关问题初探.中国地质,2004, 31(1):70-77Liao Q L, Wu X M, Weng Z H, et al. Basic results of multi-target geochemical survey in the Nanjing area and its relevant problems(In Chinese). Geology in China, 2004,31(1):70-77
    [14]聂静茹,马友华,徐露露,等.我国《土壤环境质量标准》中重金属污染相关问题探讨.农业资源与环境学报,2013(6):44-49Nie J R, Ma Y H, Xu L L, et al. Discussion about heavy metal pollution in soil environmental quality standard in China(In Chinese). Journal of Agricultural Resources and Environment, 2013(6):44-49
    [15]生态环境部.土壤环境质量农用地土壤污染风险管控标准(试行):GB15618-2018.北京:中国标准/出版社,2018Ministry of Ecology and Environment of the People's Republic of China. Soil environmental quality:Risk control standard for soil contamination of agricultural land:GB 15618-2018(In Chinese). Beijing:Standards Press of China, 2018
    [16]翁伯琦,刘朋虎,张伟利,等.农田重金属污染防控思路与技术对策研究.生态环境学报,2015, 24(7):1253-1258Weng B Q, Liu P H, Zhang W L, et al. Ideas and countermeasures research on heavy metal pollution prevention and control for farmland(In Chinese).Ecology and Environment Sciences, 2015,24(7):1253-1258
    [17]Xu F,Liu Z,Cao Y,et al. Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China. Catena,2017, 150:9-16
    [18]Islam M S,Ahmed M K,Raknuzzaman M,et al.Heavy metal pollution in surface water and sediment:A preliminary assessment of an urban river in a developing country. Ecological Indicators, 2015,48:282-291
    [19]毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律.地质学报,2011,85(5):636-658Mao JW, Chen MH, Yuan SD, et al. Geological characteristics of the Qinhang(or Shihang)metallogenic belt in south China and spatial-temporal distribution regularity of mineral deposits(In Chinese). Acta Geological Sinica, 2011, 85(5):636-658
    [20]国土资源部.土地质量地球化学评价规范:DZ/T0295-2016.北京:地质出版社,2016Ministry of Land and Resources. Specification of land quality geochemical assessment:DZ/T 0295-2016(In Chinese). Beijing:Geological Publishing House,2016
    [21]孙朝阳,董利明,贺颖婷,等.电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法.理化检验-化学分册,2016,52(9):1026-1030Sun C Y, Dong L M, He Y T, et al. Elimination of interferences in icp-ms determination of Sc, Ga,Ge,In, Cd and T1 in geological samples(In Chinese).Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2016, 52(9):1026-1030
    [22]邝荣禧,胡文友,何跃,等.便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究.土壤,2015, 47(3):589-595Kuang R X, Hu W Y, He Y, et al. Application of portable X-ray fluorescence(PXRF)for rapid analysis of heavy metals in agricultural soils around mining area(In Chinese). Soils,2015,47(3):589-595
    [23]赵振平,张怀成,冷家峰,等.王水消解蒸气发生-原子荧光光谱法测定土壤中的砷、锑和汞.中国环境监测,2004,20(1):44-46Zhao Z P,Zhang H C, Leng J F, et al. The method of vg-afs with clearing by aqua regia to determine As,Sb and Hg in the soil(In Chinese). Environmental Monitoring in China, 2004, 20(1):44-46
    [24]梁立娜,胡敬田,江桂斌,等.悬浮液进样流动注射在线微波消解-冷蒸气原子荧光光谱法测定生物和环境样品中的汞.分析化学,2005, 33(2):229-232Liang L N, Hu J T, Jiang G B, et al. Slurry sampling flow injection-microwave digestion with cold vapor generation-atomic fluorescence detection for the determination of mercury in biological and environmental samples(In Chinese). Chinese Journal of Analytical Chemistry, 2005, 33(2):229-232
    [25]Salminen R, Tarvainen T. The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. Journal of Geochemical Exploration, 1997, 60(1):91-98
    [26]张秀芝,鲍征宇,唐俊红,等.富集因子在环境地球化学重金属污染评价中的应用.地质科技情报,2006, 25(1):65-72Zhang X Z, Bao Z Y, Tang J H, et al. Application of the enrichment factor in evaluating of heavy metals contamination in the environmentalgeochemistry(In Chinese). Geological Science and Technology Information, 2006, 25(1):65-72
    [27]Zhao G, Ye S,Yuan H,et al. Surface sediment properties and heavy metal pollution assessment in the Pearl River estuary, China. Environmental Science&Pollution Research, 2016, 24(3):1-14
    [28]Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Research, 1980, 14(8):975-1001
    [29]Tang Z,Zhang L, Huang Q, et al. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.Ecotoxicology and Environmental Safety,2015,122:343-351
    [30]Islam S, Ahmed K, Habibullah-Al-Mamun, et al.Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of the Total Environment, 2015, 512/513:94-102
    [31]Wu S,Peng S, Zhang X,et al. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 2015, 148:71-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700