用户名: 密码: 验证码:
同源四倍体及其原二倍体黑皮冬瓜光合光响应模型筛选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fitting Models of Photosynthetic and Light-response for Autotetraploid and Diploid of Benincasa hispida (Thunb.) Cogn.
  • 作者:万正林 ; 周艳霞 ; 武鹏 ; 邓俭英 ; 李立志 ; 龙明华
  • 英文作者:WAN Zhenglin;ZHOU Yanxia;WU Peng;DENG Jianying;LI Lizhi;LONG Minghua;Vegetable Research Institute,Guangxi Academy of Agricultural Sciences;Biotechnology Research Institute,Guangxi Academy of Agricultural Sciences;College of Agriculture,Guangxi University;
  • 关键词:黑皮冬瓜 ; 同源四倍体 ; 二倍体 ; 光响应模型
  • 英文关键词:Benincasa hispida(Thunb.) Cogn.;;autotetraploid;;diploid;;photosynthetic and light response model
  • 中文刊名:热带作物学报
  • 英文刊名:Chinese Journal of Tropical Crops
  • 机构:广西农业科学院蔬菜研究所;广西农业科学院生物研究所;广西大学农学院;
  • 出版日期:2019-08-29 11:17
  • 出版单位:热带作物学报
  • 年:2019
  • 期:10
  • 基金:广西科技基地和人才专项项目(桂科AD17129042);; 国家现代农业产业技术体系广西大宗蔬菜创新团队专项资金项目(No.nycytxgxcxtd-10-03);; 广西科学研究与技术开发计划项目(桂科攻1222009-3D)
  • 语种:中文;
  • 页:217-224
  • 页数:8
  • CN:46-1019/S
  • ISSN:1000-2561
  • 分类号:S642.3
摘要
为了筛选出最适合黑皮冬瓜Benincasa hispida (Thunb.) Cogn.的光合光响应模型,为其育种提供理论依据,以同源四倍体及其原二倍体黑皮冬瓜为试验材料,对8种经典的光合光响应模型适用性进行了比较分析。结果表明:二次多项式能够表现出光抑制情况,但在拟合过程中出现暗呼吸速率为正值、光补偿点为负值及无法解释当光强达到饱和后光合速率快速下降的问题;直角双曲线、非直角双曲线及指数函数Ⅰ、指数函数Ⅱ无法直接求取光饱和点、光补偿点,结合常用的光饱和点的计算方法得到的光饱和点与实测值均存在较大的偏差,且指数函数Ⅱ在计算光饱和点时表现出明显的人为性,也无法拟合光抑制情况,但4种模型拟合得到的光补偿点均与实测值相差不大;指数修正模型因系数β为负值,无法求取四倍体黑皮冬瓜材料的光饱和点和最大净光合速率,且拟合得到的四倍体黑皮冬瓜的光补偿点明显低于实测值;直角双曲线修正模型计算得到的暗呼吸速率及二倍体黑皮冬瓜的光饱和点明显低于实测值,但获得的四倍体及其二倍体的最大净光合速率与实测值最接近,说明其在拟合最大净光合速率上有优势;整体上分段函数计算得到的黑皮冬瓜的各光合参数与实测值最为接近,与实测值的平均相对误差最小,也能很好的拟合发生光抑制部分的光响应曲线。分段函数拟合同源四倍体及其原二倍体黑皮冬瓜光合光响应曲线效果较其他模型效果好,分段函数模型为黑皮冬瓜最适合的光合光响应模型。
        The purpose of the experiment was to choose fitting models of photosynthetic and light response for autotetraploid and diploid Benincasa hispida(Thunb.) Cogn., and to provide a theoretical basis for its breeding. Eight extensively applied models of photosynthetic and light response were compared to choose the most suitable light response curve model for autotetraploid and diploid B. hispida. The binomial regression model could deal with the photoinhibiton phenomenon, but it existed some problems during fitting, such as the respiration rate(Rday) value was above zero, the light compensation point(LCP) value was below zero, and impossible to explain the rapid decline of photosynthetic rate when light intensity reached saturation. The model of rectangular hyperbola, nonrectangular hyperbola, exponential functionⅠand exponential functionⅡcould not calculate LSP and LCP value directly, while the value calculated by combining other methods existed large deviation compared with the measured value, the exponential function Ⅱ showed obvious artificiality when calculating LSP value, and could not explain photoinhibition phenomenon. However, the values of LCP calculated by the four models were no large deviation with the measured values. Because of the coefficient β of the modified exponential function model was negative, the LSP and Pnmax value of the autotetraploid B. hispida cannot be calculated, and the LCP value of autotetraploid B. hispida was also obviously lower than the measured value. The Rday and LSP value of diploid B. hispida fitted by the modified rectangular hyperbola model were obviously lower than measured values, but the Pnmax value of autotetraploid and diploid B. hispida was the closest to the measured value, and it had advantage in fitting the Pnmax by the modified rectangular hyperbola model. The average relative error(RE) of all photosynthetic parameters and measured values was lowest fitted by the subsection function, and was also the closest to the measured value, and could deal with the photoinhibiton phenomenon well. Subsection function had better a fitting effect than other models, and the most suitable photosynthetic model of B. hispida was subsection function.
引文
[1] Pinheiro H M, Reis M T, Novais J M. A study of the performance of a high-rate photosynthetic pond system[J]. Water Science and Technology, 1987, 19(12):237-241.
    [2]叶子飘.光合作用对光和CO2响应模型的研究进展[J].植物生态学报, 2010, 34(6):727-740.
    [3]李义博,宋贺,周莉,等. C4植物玉米的光合-光响应曲线模拟研究[J].植物生态学报, 2017, 41(12):1289-1300.
    [4]索荣臻,王明玖,刘雪骄,等. 3个野生大豆与栽培大豆杂交后代品系的光合光响应曲线及模型拟合[J].大豆科学,2017, 36(4):561-568.
    [5]刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报, 2005,21(8):76-79.
    [6]刘剑锋,程云清,刘春明,等.不同倍性高山红景天种质叶片光合特征的比较研究[J].中国中药杂志, 2011, 36(12):1547-1552.
    [7]王帅,韩晓日,战秀梅,等.不同氮肥水平下玉米光响应曲线模型的比较[J].植物营养与肥料学报, 2014, 20(6):1403-1412.
    [8] Parioul J L, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation:A critical analysis of the methods used[J].Annals Botany, 1977, 41(4):789-800.
    [9]段爱国,张建国.光合作用光响应曲线模型选择及低光强属性界定[J].林业科学研究, 2009, 22(6):765-771.
    [10]段爱国,张建国,何彩云,等.干热河谷主要植被恢复树种干季光合光响应生理参数[J].林业科学, 2010, 46(3):68-73.
    [11] Baly E C C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1935, 117(804):218-239.
    [12] Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4):637-640.
    [13] Ye Z P, Suggett D J, Robakowski P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystemⅡin C3and C4 species[J]. New Phytologist, 2013, 199(1):110-120.
    [14] Bassman J H, Zwier J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoids and Populus trichocarpa×P. deltoids clones[J]. Tree Physiology, 1991, 8(2):145-159.
    [15] Prado C H B A, De Moraes J A P V. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions[J]. Photosynthetica, 1997,33(1):103-112.
    [16] Chen Z Y, Peng Z S, Yang J, et al. A mathematical model for describing light-response curves in Nicotiana tabacum L.[J]. Photosynthetica, 2011, 49(3):467-471.
    [17]陈卫英,陈真勇,罗辅燕,等.光响应曲线的指数改进模型与常用模型比较[J].植物生态学报, 2012, 36(12):1277-1285.
    [18]贺燕燕,王朝英,袁中勋,等.三峡库区消落带不同水淹强度下池杉与落羽杉的光合生理特性[J].生态学报, 2018,38(8):2722-2731.
    [19]叶子飘,于强.光合作用光响应模型的比较[J].植物生态学报, 2008, 32(6):1356-1361.
    [20]蒋冬月,钱永强,费英杰,等.柳属植物光合-光响应曲线模型拟合[J].核农学报, 2015, 29(1):169-177.
    [21]白云岗,刘洪波,张江辉,等.葡萄光合作用光响应曲线拟合模型比较研究[J].节水灌溉, 2016(9):8-11.
    [22]骆畅,刘济明,王军才,等.不同磷营养条件下米槁光响应曲线模型比较分析[J].东北农业大学学报, 2016,47(10):17-24.
    [23]梁文斌,聂东伶,吴思政,等.短梗大参光合作用光响应曲线及模型拟合[J].经济林研究, 2014, 32(4):38-44.
    [24]万正林,龙明华,邓俭英,等.黑皮冬瓜同源四倍体与起源二倍体农艺性状比较[J].南方农业学报, 2014, 45(9):1621-1625.
    [25]万正林,王秀明,周艳霞,等.同源四倍体及其原二倍体黑皮冬瓜光合参数比较[J].黑龙江农业科学, 2018(4):18-22.
    [26]钱莲文,张新时,杨智杰,等.几种光合作用光响应典型模型的比较研究[J].武汉植物学研究, 2009, 27(2):197-203.
    [27]王秀伟,毛子军. 7个光响应曲线模型对不同植物种的实用性[J].植物研究, 2009, 29(1):43-48.
    [28]叶子飘,于强.一个光合作用光响应新模型与传统模型的比较[J].沈阳农业大学学报, 2007, 38(6):771-775.
    [29]钱一凡,廖咏梅,权秋梅,等. 4种光响应曲线模型对3种十大功劳属植物的实用性[J].植物研究, 2014, 34(5):716-720.
    [30]邓云鹏,雷静品,潘磊,等.不同种源栓皮栎光响应曲线的模型拟合及参数比较[J].生态学杂志, 2016, 35(2):387-394.
    [31]王智明,张峰举,许兴,等. 3种油葵光合光响应曲线模型拟合及其光合参数与产量的关系[J].江苏农业学报,2014, 30(3):491-496.
    [32]张方秋,杨会肖,徐斌,等.杜鹃红山茶的光响应特性及其最适模型筛选[J].生态环境学报, 2015, 24(10):1599-1603.
    [33]闫小红,尹建华,段世华,等.四种水稻品种的光合光响应曲线及其模型拟合[J].生态学杂志, 2013, 32(3),604-610.
    [34] Friedlingstein P, Meinshausen M, Arora V K, et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks[J]. Journal of Climate, 2014, 27(2):511-526.
    [35]陈根云,俞冠路,陈悦,等.光合作用对光和二氧化碳响应的观测方法探讨[J].植物生理与分子生物学学报,2006, 32(6):691-696.
    [36]刘林,刘洪对,贺雍乾,等.黄菇娘光响应与CO2响应曲线模型的比较[J].北方园艺, 2016(8):21-23.
    [37]段萌,杨伟才,毛晓敏.覆膜和水分亏缺对春小麦光合特性影响及模型比较[J].农业机械学报, 2018, 49(1):219-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700