用户名: 密码: 验证码:
餐厨垃圾制备的外源有机碳对土壤团聚体的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Exogenous Organic Carbon Prepared from Food Waste on Soil Aggregates
  • 作者:王越 ; 刘东明 ; 侯佳奇 ; 郝艳 ; 孟繁华 ; 李鸣晓 ; 樊华
  • 英文作者:WANG Yue;LIU Dongming;HOU Jiaqi;HAO Yan;MENG Fanhua;LI Mingxiao;FAN Hua;School of Resources Environment and Chemical Engineering,Nanchang University;Chinese Research Academy of Environmental Sciences;
  • 关键词:外源有机碳 ; 小分子有机碳 ; 大分子有机碳 ; 土壤活性有机碳组分 ; 团聚体
  • 英文关键词:exogenous organic carbon;;small-molecule organic carbon;;macromolecule organic carbon;;labile organic carbon components;;aggregates
  • 中文刊名:环境科学研究
  • 英文刊名:Research of Environmental Sciences
  • 机构:南昌大学资源环境与化工学院;中国环境科学研究院;
  • 出版日期:2018-04-27 13:26
  • 出版单位:环境科学研究
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金项目(No.51408572);; 国家青年科学基金项目(No.51708530)~~
  • 语种:中文;
  • 页:172-179
  • 页数:8
  • CN:11-1827/X
  • ISSN:1001-6929
  • 分类号:S153;X799
摘要
为了阐明外源有机碳对土壤碳库的作用机制,以餐厨垃圾为原料,制备了4种不同分子量级的外源有机碳,通过室内试验,研究了外源有机碳对土壤有机碳组分及土壤团聚体的影响.结果表明:(1)以分子量≤1 ku为主的小分子有机碳处理组土壤中w(DOC)(DOC为水溶性有机碳)比CK组增加了0. 383 g/kg,CO2累积释放量达到(6. 595±0. 259)mg/kg(以C计);微生物活性增强,>5 mm水稳大团聚体质量分数相对于CK组提升了25. 06%,表明小分子有机碳增强了土壤微生物活性,微生物通过菌根网络缠绕作用促进大团聚体形成,增强土壤团聚体稳定性.(2)以分子量≥5 ku的大分子有机碳为主的大分子有机碳处理组w(POC)(POC为颗粒态有机碳)为CK组的5. 65倍,0. 5~1 mm水稳大团聚体质量分数增加了10. 84%,有机碳贡献率提升了14. 79%,表明大分子有机碳通过增加土壤中w(POC),促进0. 5~1 mm水稳大团聚体形成,提高团聚体有机碳贡献率.研究显示,不同分子量级外源有机碳通过不同的方式改善土壤团聚体结构进而促进土壤有机碳固定,餐厨垃圾生物强化有机肥中各量级有机碳比例合理,能够明显提升土壤有机碳水平,增加土壤团聚体稳定性.
        In order to elucidate the effects of exogenous organic carbon on soil carbon,4 kinds of exogenous organic carbon with different molecular weights were prepared from kitchen waste. The effects of the exogenous organic carbon on soil organic carbon components and soil aggregates were studied through laboratory experiments. The main results are as follows:(1) Compared to the control,the dissolved organic carbon in the soil treated with organic carbon( molecular weight ≤1 ku) was increased by 0. 383 g/kg. The cumulative release of CO2(( 6. 595 ± 0. 259) mg/kg),enhanced microbial activities,and increased water-stabilized macroaggregates( by 25. 06%) were observed comparing with those of the control samples,indicating that small molecular organic carbon might enhance the stability of soil aggregates by increasing the formation of the mycorrhizal network which was resulted from the promoted microbial activity.(2) Compared to the control samples,the organic carbon in the soil treated with macromolecular organic carbon( molecular weight ≥5 ku) was increased by 5. 65 times. Meanwhile,there was about 10. 84% increase in water-stabilized large aggregates( 0. 5-1 mm) and 14. 79% increase in the contribution rate of organic carbon,which indicated that the macromolecular organic carbon could increase the organic carbon content of soil,promote the formation of 0. 5-1 mm large water-stabilized aggregates,and increase the organic carbon contribution rate of aggregates. These results have shown that exogenous organic carbon with different molecular weights improves soil aggregate structure and promotes soil organic carbon fixation in different ways. The treatment of soil with the bio-organic fertilizer with an appropriate organic carbon proportion could significantly improve the soil organic carbon level and the stability of soil aggregates.
引文
[1]王义祥,王峰,叶菁,等.不同菌渣施用量对柑橘园土壤有机碳及其组分的影响[J].热带作物学报,2015,36(4):650-655.WANG Yixiang,WANG Feng,YE Jing,et al. Effect to organic carbon pool and fractions in citrus orchard soils by adding different edible fungus residues[J]. Chinese Journal of Tropical Crops,2015,36(4):650-655.
    [2] CHEN Haixin.Assessment of climate change impacts on soil organic carbon and crop yield based on long-term fertilization applications in Loess Plateau,China[J]. Plant&Soil,2015,390(1/2):401-417.
    [3] CHOUDHARY O P,GILL J K,BIJAY S.Water-extractable carbon pools and microbial biomass carbon in sodic water-irrigated soils amended with gypsum and organic manures[J].Pedosphere,2013,23(1):88-97.
    [4] ANSARI A,MAHMOOD I.Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea[J]. Scientia Horticulturae,2017,226:1-9.
    [5] WEISS M S,ABELE U,WECKESSER J,et al. Molecular architecture and electrostatic properties of a bacterial porin[J].Science,1991,254(5038):1627-1630.
    [6] WEI Zimin,ZHANG Xu,WEI Yuquan,et al. Fractions and biodegradability of dissolved organic matter derived from different composts[J].Bioresource Technology,2014,161(6):179-185.
    [7] LI Sen,ZHANG Shirong,PU Yulin,et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil&Tillage Research,2015,155:289-297.
    [8] QI Ruimin,LI Juan,LIN Zhian,et al. Temperature effects on soil organic carbon,soil labile organic carbon fractions,and soil enzyme activities under long-term fertilization regimes[J]. Applied Soil Ecology,2016,102:36-45.
    [9] MANDAL N,DWIVEDI B S,MEENA M C,et al.Effect of induced defoliation in pigeonpea,farmyard manure and sulphitation pressmud on soil organic carbon fractions,mineral nitrogen and crop yields in a pigeonpea-wheat cropping system[J]. Field Crops Research,2013,154(6):178-187.
    [10] PINHEIROF M P,CAMPOS D V B,BALIEIRO F D C,et al.Tillage systems effects on soil carbon stock and physical fractions of soil organic matter[J].Agricultural Systems,2015,132:35-39.
    [11] DENEF K,ZOTARELLI L,BODDEY R M,et al. Microaggregateassociated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols[J]. Soil Biology and Biochemistry,2007,39(5):1165-1172.
    [12] WANG Shengqiang,LI Tingxuan,ZHENG Zicheng. Distribution of microbial biomass and activity within soil aggregates as affected by tea plantation age[J].Catena,2017,153:1-8.
    [13] VERCHOT L V,DUTAUR L,SHEPHERD K D,et al. Organic matter stabilization in soil aggregates:understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils[J].Geoderma,2011,161:182-193.
    [14]任雅阁,成杭新,徐殿斗,等.典型农耕区棕壤水稳性团聚体及其有机碳特征[J].水土保持学报,2013,27(2):234-237.REN Yage,CHENG Hangxin,XU Diandou,et al. Characterization of water stable aggregates and organic carbon in typical brown arable soil[J]. Journal of Soil and Water Conservation,2013,27(2):234-237.
    [15]刘希玉,王忠强,张心昱,等.施肥对红壤水稻土团聚体分布及其碳氮含量的影响[J].生态学报,2013,33(16):4949-4955.LIU Xiyu,WANG Zhongqiang,ZHANG Xinyu,et al.Effects of longterm fertilization on aggregate dynamics and organic carbon and total nitrogen contents in a reddish paddy soil[J]. Acta Ecologica Sinica,2013,33(16):4949-4955.
    [16]李娜,韩晓增,尤孟阳,等.土壤团聚体与微生物相互作用研究[J].生态环境学报,2013,22(9):1625-1632.LI Na,HAN Xiaozeng,YOU Mengyang,et al. Research review on soil aggregates and microbes[J]. Ecology and Environmental Sciences,2013,22(9):1625-1632.
    [17]王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J].土壤通报,2005,36(3):415-421.WANG Qingkui,WANG Silong. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science,2005,36(3):415-421.
    [18]郭素春,郁红艳,朱雪竹,等.长期施肥对潮土团聚体有机碳分子结构的影响[J].土壤学报,2013,50(5):922-930.GUO Suchun,YU Hongyan,ZHU Xuzhu,et al. Effect of longterm fertilization on molecular structure of organic carbon in soil aggregates in fluvo-aquic soil[J].Acta Pedologica Sinica,2013,50(5):922-930.
    [19] ARAI M,MIURA T,TSUZURA H,et al. Two-year responses of earthworm abundance,soil aggregates,and soil carbon to no-tillage and fertilization[J]. Geoderma, 2017. doi:org/10. 1016/j.geoderma. 2017. 10. 021.
    [20] SIX J,ELLIOTT E T,PAUSTIAN K.Soil structure and soil organic matter:II.a normalized stability index and the effect of mineralogy[J].Soil Science Society of America Journal,2000,64(3):1042-1049.
    [21]刘哲,韩霁昌,孙增慧,等.外源新碳对红壤团聚体及有机碳分布和稳定性的影响[J].环境科学学报,2017,37(6):2351-2359.LIU Zhe,HAN Jichang,SUN Zenghui,et al.Effects of fresh carbon on distribution and stability of aggregates and organic carbon in red soil[J].Acta Scientiae Circumstantiae,2017,37(6):2351-2359.
    [22] CARVALHO MT,MAIA A D,MADARI B E,et al. Biochar increases plant available water in a sandy soil under an aerobic rice cropping system[J].Solid Earth Discussions,2014,6(1):939-952.
    [23] WEI Quanyuan,ZHANG Wanqin,GUO Jiangbin,et al.Performance and kinetic evaluation of a semi-continuously fed anaerobic digester treating food waste:effect of trace elements on the digester recovery and stability[J].Chemosphere,2014,117(1):477-485.
    [24]丁杰,郝艳,侯佳奇,等.接种抗酸化复合菌对餐厨废弃物堆肥酸化缓解及腐殖化的影响[J].环境科学研究,2016,29(12):1887-1894.DING Jie,HAO Yan,HOU Jiaqi,et al. Effects of anti-acidification microbial agents(AAMA)on reducing acidification and promoting humification during kitchen waste composting[J]. Research of Environmental Sciences,2016,29(12):1887-1894.
    [25] HOU Jiaqi,LI Mingxiao,XI Beidou,et al. Short-duration hydrothermal fermentation of food waste:preparation of soil conditioner for amending organic-matter-impoverished arable soils[J]. Environmental Science and Pollution Research,2017,24(26):21283-21297.
    [26] FRANCAVIGLIA R,RENZI G,LEDDA L,et al. Organic carbon pools and soil biological fertility are affected by land use intensity in Mediterranean ecosystems of Sardinia,Italy[J]. Science of the Total Environment,2017,599/600:789-796.
    [27] GHANI A,DEXTER M,PERROTT K W. Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilisation,grazing and cultivation[J]. Soil Biology&Biochemistry,2003,35(9):1231-1243.
    [28] Jr GARTEN C T,POSTⅢW M,HANSON P J,et al.Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry,1999,45(2):115-145.
    [29] BLAIR G J,LEFROY R,LISLE L. Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J].Australian Journal of Agricultural Research,1995,46(7):1459-1466.
    [30] KEMPER W D,ROSENAU R C. Aggregate stability and size distribution[J].Methods of Soil Analysis,1986,1:425-442.
    [31]周虎,吕贻忠,杨志臣,等.保护性耕作对华北平原土壤团聚体特征的影响[J].中国农业科学,2007,40(9):1973-1979.ZHOU Hu,LV Yizhong,YANG Zhichen,et al. Effects of conservation tillage on the soil aggregates characteristics in Huabei Plain[J].Scientia Agricultura Sinica,2007,40(9):1973-1979.
    [32] TYLER S W,WHEATCRAFT S W.Fractal scaling of soil particlesize distributions:analysis and limitations[J]. Soil Science Society of America Journal,1992,56(2):362-369.
    [33]张杰,黄金生,刘佳,等.秸秆、木质素及其生物炭对潮土CO2释放及有机碳含量的影响[J].农业环境科学学报,2015,34(2):401-408.ZHANG Jie,HUANG Jinsheng,LIU Jia,et al. Carbon dioxide emissions and organic carbon contents of fluvo-aquic soil as influenced by straw and lignin and their biochars[J]. Journal of Agro-Environment Science,2015,34(2):401-408.
    [34]侯晓娜,李慧,朱刘兵,等.生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J].中国农业科学,2015,48(4):705-712.HOU Xiaona,LI Hui,ZHU Liubing,et al. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J]. Scientia Agricultura Sinica,2015,48(4):705-712.
    [35]潘根兴,陆海飞,李恋卿,等.土壤碳固定与生物活性:面向可持续土壤管理的新前沿[J].地球科学进展,2015,30(8):940-951.PAN Genxing,LU Haifei,LI Lianqing,et al. Soil carbon sequestration with bioactivity:a new emerging frontier for sustainable soil management[J].Advances in Earth Science,2015,30(8):940-951.
    [36]钟思远,张静,褚国伟,等.沿海侵蚀台地不同恢复阶段土壤团聚体组成及其与丛枝菌根真菌的关系[J].生态环境学报,2017,26(2):219-226.ZHONG Siyuan,ZHANG Jing,CHU Guowei,et al. Soil aggregate composition and its relationship with arbuscular mycorrhizal fungi in different restoration stages on severely eroded lands[J].Ecology and Environmental Sciences,2017,26(2):219-226.
    [37]李彬彬,马军花,武兰芳.土壤溶解性有机物对CO2和N2O排放的影响[J].生态学报,2014,34(16):4690-4697.LI Binbin,MA Junhua,WU Lanfang. Effects of dissolved organic matter in soil on the emission of CO2and N2O[J].Acta Ecologica Sinica,2014,34(16):4690-4697.
    [38]尚应妮,胡斐南,赵世伟,等.不同胶结物质对黄绵土团聚体形成的影响[J].水土保持学报,2017,31(2):204-208.SHANG Yingni,HU Feinan,ZHAO Shiwei,et al. Effects of cementing materials on the formation of loessial soil aggregates[J].Journal of Soil and Water Conservation,2017,31(2):204-208.
    [39]刘中良,宇万太.土壤团聚体中有机碳研究进展[J].中国生态农业学报,2011,19(2):447-455.LIU Zhongliang,YU Wantai.Review of researches on soil aggregate and soil organic carbon[J]. Chinese Journal of Eco-Agriculture,2011,19(2):447-455.
    [40]刘哲,孙增慧,吕贻忠.长期不同施肥方式对华北地区温室和农田土壤团聚体形成特征的影响[J].中国生态农业学报,2017,25(8):1119-1128.LIU Zhe,SUN Zenghui,LV Yizhong.Effect of long-term fertilization on soil aggregate formation in greenhouse and farmland conditions in the North China Plain[J]. Chinese Journal of Eco-Agriculture,2017,25(8):1119-1128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700