用户名: 密码: 验证码:
12种常见落叶果树BVOCs排放清单和排放特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Inventory and Characteristics of Biogenic Volatile Organic Compounds (BVOCs) for 12 Deciduous Fruit Trees
  • 作者:李双江 ; 袁相洋 ; 李琦 ; 冯兆忠
  • 英文作者:LI Shuang-jiang;YUAN Xiang-yang;LI Qi;FENG Zhao-zhong;College of Urban and Environmental Science,Northwest University;State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Science,Chinese Academy of Sciences;School of Environmental Science and Engineering,Nanjing University of Information Science & Technology;
  • 关键词:植物源挥发性有机化合物(BVOCs) ; 果树 ; 有毒有害大气污染物 ; 排放清单 ; 排放特征
  • 英文关键词:biogenic volatile organic compounds(BVOCs);;fruit tree;;hazardous air pollutants(HAPs);;emissions inventory;;emission characteristics
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西北大学城市与环境学院;中国科学院生态环境研究中心城市与区域生态国家重点实验室;南京信息工程大学环境科学与工程学院;
  • 出版日期:2019-05-15
  • 出版单位:环境科学
  • 年:2019
  • 期:05
  • 基金:江苏省大气环境监测与污染控制高技术研究重点实验室开放基金项目(KHK1801);; 国家重点研发计划项目(2017YFC0210106)
  • 语种:中文;
  • 页:82-89
  • 页数:8
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X51
摘要
为了解城市近郊区域植物源挥发性有机化合物(biogenic volatile organic compounds,BVOCs)排放情况,运用动态采样法对北京地区广泛种植的12种典型落叶果树(其中9种为首次报道) BVOCs进行野外采样和实验室分析.结果表明,果树释放物中含有烃类、醇类和醛类等9类物质,烃类含量最高,占39. 0%. 12种果树均释放异戊二烯和单萜(6种果树释放倍半萜烯),其中,桃等3种果树为高BVOCs排放树种,海棠等9种果树为中等BVOCs排放树种.果树总BVOCs(异戊二烯、单萜和倍半萜烯之和)释放速率在(2. 6±0. 1)~(14±0. 8)μg·(g·h)~(-1)之间,其中杏子总BVOCs释放速率最高[(14±0. 8)μg·(g·h)~(-1)].对不同科属及生活型果树BVOCs进行显著性分析发现,木本类果树异戊二烯释放速率[(4. 2±1. 4)μg·(g·h)~(-1)]显著高于藤本类[(0. 6±0. 2)μg·(g·h)~(-1),P=0. 03],但果树BVOCs的释放速率不具有显著的科属差异,暂不能依据果树科属关系对BVOCs释放水平进行分类.与松柏科植物不同,具有花香或脂香味的β-月桂烯(β-myrcene)、D-柠檬烯(D-limonene)和γ-松油烯(γ-terpinene)是果树释放的主要成分,β-月桂烯(β-myrcene)含量最高,占单萜总释放量的59. 3%.此外,果树还可能释放芴、菲和萘等8种具有芳香味的有毒有害大气污染物.本研究拓展了BVOCs研究领域,为丰富BVOCs数据库及BVOCs环境效应评估提供了基础数据.
        To better understand the emission of biogenic volatile organic compounds( BVOCs) in suburbs,we selected 12 typical deciduous fruit trees and conducted field sampling and laboratory analysis of BVOCs using a dynamic sampling technique. To our knowledge,details of BVOC emissions for nine of the selected fruit tree species are reported here for the first time. Emissions of BVOCs from fruit trees contained nine kinds of compounds,including hydrocarbons,alcohols,and aldehydes,of which hydrocarbons accounted for up to 39. 0%. All fruit trees were found to emit isoprene and monoterpenes( six species also emitted sesquiterpenes),of which three species were high emitters and nine species,such as Catalpa,were medium emitters. The emission rates of total BVOCs( including isoprene,monoterpenes,and sesquiterpenes) from different fruit trees ranged from( 2. 6 ± 0. 1) μg·( g·h)~(-1) to( 14 ±0. 8) μg·( g·h)~(-1). Analyses of BVOCs from different families and plant forms indicated that isoprene emission rates were significantly higher from woody fruit trees [( 4. 2 ± 1. 4) μg·( g·h)~(-1)] than from vine fruit trees [( 0. 6 ± 0. 2) μg·( g·h)~(-1),P = 0. 03],whereas there was no significant difference between family or genus. This suggests that the emission level of BVOCs from fruit trees cannot be classified by family and genera. In contrast to coniferous plants,β-myrcene,D-limonene,and γ-terpinene—associated with floral or resinous aromas—were the main monoterpenes of fruit trees. The emission rate of β-myrcene was highest,accounting for59. 3% of the total monoterpene emissions. In addition,fruit trees may emit eight other fragrant VOCs listed as hazardous air pollutants( HAPs),e. g.,fluorene,phenanthrene,and naphthalene. This study expands the field of BVOCs research and provides basic data for enriching the BVOCs database,as well as for evaluating the environmental effects of BVOCs.
引文
[1]李庆军,王永峰.陆地生态系统植物挥发性有机化合物的排放及其生态学功能研究进展[J].植物生态学报,2005,29(3):487-496.Li Q J,Wang Y F.BVOCs emitted from plants of terrestrial ecosystems and their ecological functions[J].Chinese Journal of Plant Ecology,2005,29(3):487-496.
    [2]Ameye M,Allmann S,Verwaeren J,et al.Green leaf volatile production by plants:a meta-analysis[J].New Phytologist,2018,220(3):666-683.
    [3]Guenther A,Nicholas Hewitt C,Erickson D,et al.A global model of natural volatile organic compound emissions[J].Journal of Geophysical Research,1995,100(D5):8873-8892.
    [4]Pacifico F,Harrison S P,Jones C D,et al.Isoprene emissions and climate[J].Atmospheric Environment,2009,43(39):6121-6135.
    [5]Zare A,Christensen J H,Gross A,et al.Quantifying the contributions of natural emissions to ozone and total fine PMconcentrations in the Northern Hemisphere[J].Atmospheric Chemistry and Physics,2014,13(6):16775-16830.
    [6]Dentener F,Stevenson D,Ellingsen K,et al.The global atmospheric environment for the next generation[J].Environmental Science&Technology,2006,40(11):3586-3594.
    [7]万五星,夏亚军,张红星,等.北京远郊区臭氧污染及其对敏感植物叶片的伤害[J].生态学报,2013,33(4):1098-1105.Wan W X,Xia Y J,Zhang H X,et al.The ambient ozone pollution and foliar injury of the sensitive woody plants in Beijing exurban region[J].Acta Ecologica Sinica,2013,33(4):1098-1105.
    [8]杨丹菁,白郁华,李金龙,等.珠江三角洲地区天然源碳氢化合物的研究[J].中国环境科学,2001,21(5):422-426.Yang D J,Bai Y H,Li J L,et al.Study on hydrocarbon compounds from natural source in the Pearl River Delta area[J].China Environmental Science,2001,21(5):422-426.
    [9]白建辉,Tiffany D,余树全,等.亚热带竹林挥发性有机物排放的模拟[J].生态环境学报,2015,24(12):1923-1937.Bai J H,Tiffany D,Yu S Q,et al.Simulation of BVOCemissions in a subtropical bamboo forest in China[J].Ecology&Environmental Sciences,2015,24(12):1923-1937.
    [10]Geron C,Owen S,Guenther A,et al.Volatile organic compounds from vegetation in southern Yunnan Province,China:emission rates and some potential regional implications[J].Atmospheric Environment,2006,40(10):1759-1773.
    [11]白建辉,Baker B.草地异戊二烯排放通量影响因子的研究[J].大气科学,2004,28(5):783-794.Bai J H,Baker B.A study of the affecting factors of isoprene emission at grassland[J].Journal of Atmospheric Sciences,2004,28(5):783-794.
    [12]Bai J H,Baker B,Liang B S,et al.Isoprene and monoterpene emissions from an Inner Mongolia grassland[J].Atmospheric Environment,2006,40(30):5753-5758.
    [13]Calfapietra C,Fares S,Loreto F.Volatile organic compounds from Italian vegetation and their interaction with ozone[J].Environmental Pollution,2009,157(5):1478-1486.
    [14]牛竹梅.中国果树资源利用现状与发展潜力分析[J].中国果菜,2008,12(5):5-7.
    [15]Klinger L F,Li Q J,Guenther A B,et al.Assessment of volatile organic compound emissions from ecosystems of China[J].Journal of Geophysical Research,2002,107(D21):ACH 16-1-ACH 16-21.
    [16]国家统计局.中国统计年鉴2017[M].北京:中国统计出版社,2017.184-206.National Bureau of Statistics.China statistical yearbook 2017[M].Beijing:China Statistics Press,2017.184-206.
    [17]中华人民共和国农业部.中国农业统计资料2016[M].北京:中国农业出版社,2017.104-116.The Ministry of Agriculture of the People's Republic of China.China agriculture statistical report 2016[M].Beijing:China Agriculture Press,2017.104-116.
    [18]Yuan X Y,Calatayud V,Gao F,et al.Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar[J].Plant,Cell&Environment,2016,39(10):2276-2287.
    [19]Guenther A B,Zimmerman P R,Harley P C,et al.Isoprene and monoterpene emission rate variability:Model evaluations and sensitivity analyses[J].Journal of Geophysical Research,1993,98(7):12609-12617.
    [20]US EPA.US Clean air act section 112(b)[M].Washington DC:US EPA,1990.
    [21]Benjamin M T,Sudol M,Bloch L,et al.Low-emitting urban forests:a taxonomic methodology for assigning isoprene and monoterpene emission rate[J].Atmospheric Environment,1996,30(9):1437-1452.
    [22]Laothawornkitkul J,Taylor J E,Paul N D,et al.Biogenic volatile organic compounds in the Earth system[J].New Phytologist,2009,183(1):27-51.
    [23]冯兆忠,袁相洋.臭氧浓度升高对植物源挥发性有机化合物(BVOCs)影响的研究进展[J].环境科学,2018,39(11):5257-5265.Feng Z Z,Yuan X Y.Effect of evaluated ozone on biogenic organic compounds(BVOCs)emission-a review[J].Environmental Science,2018,39(11):5257-5265.
    [24]Loreto F,Schnitzler J P.Abiotic stresses and induced BVOCs[J].Trends in Plant Science,2010,15(3):154-166.
    [25]Sardans J,Llusia J,Owen S M,et al.Screening study of leaf terpene concentration of 75 borneo rainforest plant species:relationships with leaf elemental concentrations and morphology[J].Records of Natural Products,2015,9(1):19-40.
    [26]Tsui J K Y,Guenther A,Yip W K,et al.A biogenic volatile organic compound emission inventory for Hong Kong[J].Atmospheric Environment,2009,43(40):6442-6448.
    [27]Tambunan P,Baba S,Kuniyoshi A,et al.Isoprene emission from tropical trees in Okinawa island,Japan[J].Chemosphere,2006,65(11):2138-2144.
    [28]胡春芳,袁相洋,田媛,等.常见花卉植物释放挥发性有机化合物的研究进展[J].生态学杂志,2018,37(2):588-595.Hu C F,Yuan X Y,Tian Y,et al.A review on biogenic volatile organic compounds emitted from common flower plants[J].Chinese Journal of Ecology,2018,37(2):588-595.
    [29]来雨晴.华山松和沙地柏挥发物季节变化规律研究[D].北京:北京林业大学,2016.Lai Y Q.Seasonal variasions of volatile organic compounds from Pinus amandii and Juniperus sabina[D].Beijing:Beijing Forestry University,2016.
    [30]谢小洋.西安市主要绿化树种VOCs组成及释放规律研究[D].杨凌:西北农林科技大学,2016.Xie X Y.Research on composition and release regularities of VOCs form main landscape plants in Xi'an[D].Yangling:Northwest A&F University,2016.
    [31]Knudsen J T,Eriksson R,Gershenzon J,et al.Diversity and distribution of floral scent[J].Botanical Review,2006,72(1):1-120.
    [32]李德文,史奕,何兴元.O3浓度升高对银杏及油松BVOCs排放的影响[J].环境科学,2008,29(2):300-304.Li D W,Shi Y,He X Y.Effects of elevated O3on the volatile organic compounds emit from Ginkgo biloba and Pinus tabulaeformis[J].Environmental Science,2008,29(2):300-304.
    [33]白建辉,林凤友,万晓伟,等.长白山温带森林挥发性有机物的排放通量[J].环境科学学报,2012,32(3):545-554.Bai J H,Lin F Y,Wan X W,et al.Volatile organic compound emission fluxes from a temperate forest in Changbai Mountain[J].Acta Scientiae Circumstantiae,2012,32(3):545-554.
    [34]Malik T G,Gajbhiye T,Pandey S K.Plant specific emission pattern of biogenic volatile organic compounds(BVOCs)from common plant species of central India[J].Environmental Monitoring and Assessment,2018,190:631-642.
    [35]Greenberg J P,Asensio D,Turnipseed A,et al.Contribution of leaf and needle litter to whole ecosystem BVOC fluxes[J].Atmospheric Environment,2012,59(9):302-311.
    [36]黄爱葵,李楠,Guenther A,等.深圳市显著排放VOCs的园林植物调查与分析[J].环境科学,2011,32(12):3555-3559.Huang A K,Li N,Guenther A,et al.Investigation on emission properties of biogenic VOCs of landscape plants in Shenzhen[J].Environmental Science,2011,32(12):3555-3559.
    [37]王效科,牟玉静,欧阳志云,等.太湖流域主要植物异戊二烯排放研究[J].植物学通报,2002,19(2):224-230,223.Wang X K,Mu Y J,Ouyang Z Y,et al.Study on emission of isoprene from major plants living in Taihu Basin[J].Chinese Bulletin of Botany,2002,19(2):224-230,223.
    [38]Benjamin M T,Winer A M.Estimating the ozone-forming potential of urban trees and shrubs[J].Atmospheric Environment,1998,32(1):53-68.
    [39]Guenther A,Zimmerman P,Wildermuth M.Natural volatile organic compound emission rate estimates for U.S.woodland landscapes[J].Atmospheric Environment,1994,28(6):1197-1210.
    [40]王志辉,张树宇,陆思华,等.北京地区植物VOCs排放速率的测定[J].环境科学,2003,24(2):7-12.Wang Z H,Zhang S Y,Lu S H,et al.Screenings of 23 plant species in Beijing for volatile organic compound emissions[J].Environmental Science,2003,24(2):7-12.
    [41]Bracho-Nunez A,Welter S,Staudt M,et al.Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation[J].Journal of Geophysical Research:Atmospheres,2011,116(D16):304-317.
    [42]Harley P C,Monson R K,Lerdau M T.Ecological and evolutionary aspects of isoprene emission from plants[J].Oecologia,118(2):109-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700