用户名: 密码: 验证码:
柑橘/大球盖菇套作下土壤CO_2排放及其效率对秸秆还田量的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of Soil CO_2 Emissions to Straw-returning in Citrus/Mushroom Intercropping Systems
  • 作者:游璟 ; 倪九派 ; 黄容 ; 张洋 ; 谢德体
  • 英文作者:YOU Jing;NI Jiu-pai;HUANG Rong;ZHANG Yang;XIE De-ti;College of Resources and Environment,Southwest University;Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agriculture Sciences;
  • 关键词:大球盖菇 ; 柑橘 ; 套作 ; 土壤CO2排放 ; 秸秆还田
  • 英文关键词:stropharia mushroom;;citrus;;intercropping;;soil CO2 emissions;;straw returning
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:西南大学资源环境学院;中国农业科学院农业环境与可持续发展研究所;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金项目(41671291);; 重庆市社会事业与民生保障科技创新专项项目(cstc2017shms-xdny80062)
  • 语种:中文;
  • 页:408-417
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:S141.4;S646;S666
摘要
以柑橘/大球盖菇套作模式为研究对象,利用秸秆作为大球盖菇的培养基原料,通过原位试验,连续监测大球盖菇生长期内,不同秸秆还田量(半量、全量和倍量)下土壤CO_2排放规律,并进一步对比栽培大球盖菇(HSM、ASM和DSM)和未栽培大球盖菇(HS、AS和DS)处理下土壤CO_2排放量变化及其影响因素,结合大球盖菇产量及土壤碳排放效率,分析不同秸秆还田量所产生的环境及经济效益,为合理利用柑橘园林下土地提供理论依据.结果表明:①秸秆还田处理的土壤CO_2累积排放量均高于常规种植(CK),随着秸秆还田量的增加呈增加趋势;且栽培大球盖菇处理的土壤CO_2累积排放量大于未栽培大球盖菇,表现为:DSM(52. 09 t·hm-2)> ASM(41. 10 t·hm-2)> HSM(33. 20 t·hm-2)> DS(27. 15 t·hm-2)> AS(25. 34t·hm-2)> HS(18. 94 t·hm-2)> CK(12. 16 t·hm-2);其中,倍量秸秆填埋还田+栽培大球盖菇(DSM)处理的土壤CO_2累积排放量增加最为显著,较CK增加了328. 37%;②对于栽培了大球盖菇的处理,土壤CO_2排放量最大时段均集中在大球盖菇菌丝生长期,其次为出菇后和出菇期;其中DSM处理在菌丝生长期的土壤CO_2累积排放量占其总累积排放量的43. 27%,其次为全量秸秆填埋还田+栽培大球盖菇(ASM,42. 63%)和半量秸秆填埋还田+栽培大球盖菇(HSM,40. 57%);③栽培大球盖菇处理降低了温度敏感系数Q10; 5cm土壤温度能解释27%~71%的土壤CO_2排放速率变化(P <0. 01),而土壤体积含水量单因子对土壤CO_2排放速率不存在显著影响;但双因子拟合发现,5 cm土壤温度和体积含水量可以解释土壤CO_2排放速率变化的36%~82%;④对于栽培了大球盖菇的处理,各处理产量分别为:DSM(49. 7 t·hm-2)> ASM(47. 0 t·hm-2)> HSM(23. 3 t·hm-2),其中ASM的土壤碳排放效率最高(CEE=1. 14).综上,柑橘/大球盖菇套作模式短期内会显著促进土壤CO_2排放,但同时也提高了柑橘园综合经济效益,其中全量秸秆还田能较好地协调其产生的经济及环境效益.
        Based on the pattern of citrus tree/stropharia mushrooms intercropping,returning-straw was used as the raw material for the stropharia mushrooms,and an in-situ experiment was conducted to monitor soil CO_2 emissions under different dosage of straw application during the stropharia growth period. Soil CO_2 emissions and the influencing factors were analyzed under different treatments of cultivated( HSM,ASM,and DSM) and uncultivated stropharia mushrooms( HS,AS,and DS). The mushroom yield and soil carbon emission efficiency( CEE) were used to provide a theoretical basis for improving the use of land under citrus orchards. The results showed that: ① Straw return increased the cumulative CO_2 emissions compared with the control system( conventional planting,CK) and cumulative CO_2 emissions increased with the dosage of straw application. Cumulative CO_2 emissions from soil treated with cultivated stropharia mushrooms were higher than those from soil treated with uncultivated stropharia mushrooms,in the order of DSM( 52. 09 t·hm-2) > ASM( 41. 10 t·hm-2) > HSM( 33. 20 t·hm-2) > DS( 27. 15 t·hm-2) > AS( 25. 34 t·hm-2) > HS( 18. 94 t·hm-2) > CK( 12. 16 t·hm-2). Cumulative CO_2 emissions under the DSM treatment significantly increased by 328. 37% compared with CK. ② For the treatment of cultivated stropharia mushrooms,peak soil CO_2 emissions occurred during the period of mycelium growth. The highest cumulative CO_2 emissions during this period were obtained under the DSM treatment and accounted for 43. 27% of the total cumulative emissions. This was followed by ASM and HSM which accounted for 42. 63% and 40. 57% of emissions,respectively. ③ Cultivated stropharia mushrooms reduced the temperature sensitivity coefficient( Q10). The soil temperature( 5 cm depth) had a significant effect on the soil CO_2 emission rate( P < 0. 01) but soil moisture did not( P > 0. 05). Soil temperature explained 27% to 71% of the variation in soil CO_2 emissions rates,and the two-factor fitting of soil temperature and soil moisture explained 36% to 82% of the variation. ④ For the treatment of cultivated stropharia mushrooms,the ranked yield of each treatment was DSM( 49. 7 t·hm-2) > ASM( 47. 0 t·hm-2) > HSM( 23. 3 t·hm-2),and ASM had the highest soil CEE( 1. 14). Therefore,under the system of citrus tree/stropharia mushroom intercropping,straw return can increase soil CO_2 emissions,with the highest emissions being obtained when a double dosage of straw was applied. However,the optimal amount of straw still needs to be determined in combination with changes in soil nutrients and crop yields.
引文
[1]重庆市统计局.重庆统计年鉴[M].北京:中国统计出版社,2018.
    [2]冉瑞莲.浅析重庆柑橘种植产业优势与果品提升的综合措施[J].农家参谋,2017,(16):10.
    [3]汪虹,陈辉,张津京,等.大球盖菇生物活性成分及药理作用研究进展[J].食用菌学报,2018,25(4):115-120.Wang H,Chen H,Zhang J J,et al. Research progresses on bioactive components in Stropharia rugosoannulata and their pharmacological effects[J]. Acta Edulis Fungi,2018,25(4):115-120.
    [4]廖家艳,雷干农.梨园套种大球盖菇试验研究[J].现代农业科技,2010,(24):108-109.Liao J Y,Lei G N. The experimental research on transplanting Stropharia ruqoso-annulata in pear orchard[J]. Modern Agricultural Sciences and Technology,2010,(24):108-109.
    [5]颜淑婉,苏诗垂.大球盖菇立体高效栽培模式[J].食用菌,1997,(6):34-35.
    [6]张洋,刘月娇,倪九派,等.柑橘/大球盖菇间作对三峡库区紫色土活性有机碳库的影响[J].草业学报,2015,24(5):53-65.Zhang Y,Liu Y J,Ni J P,et al. Effect of Citrus tree/Stropharia mushrooms intercropping on ‘purple soil’labile organic carbon in the Three Gorges Reservoir region[J]. Acta Prataculturae Sinica,2015,24(5):53-65.
    [7]农金花.果菇间作系统下紫色土碳氮组分变化特征及其相互关系研究[D].重庆:西南大学,2017.Nong J H. Study on the variation characteristics and relationships of carbon and nitrogen compositions in purple soil under the intercropping system[D]. Chongqing:Southwest University,2017.
    [8]马超,周静,刘满强,等.秸秆促腐还田对土壤养分及活性有机碳的影响[J].土壤学报,2013,50(5):915-921.Ma C,Zhou J,Liu M Q,et al. Effects of incorportion of pretreated straws into field on soil nutrients and labile organic carbon in ShaJiang black soil[J]. Acta Pedologica Sinica,2013,50(5):915-921.
    [9]王丙文,迟淑筠,田慎重,等.不同玉米秸秆还田方式对冬小麦田土壤呼吸的影响[J].应用生态学报,2013,24(5):1374-1380.Wang B W,Chi S J,Tian S Z,et al. Effects of different maize straw-returning modes on the soil respiration in a winter wheat field[J]. Chinese Journal of Applied Ecology,2013,24(5):1374-1380.
    [10]范围,吴景贵,李建明,等.秸秆均匀还田对东北地区黑钙土土壤理化性质及玉米产量的影响[J].土壤学报,2018,55(4):835-846.Wu W,Wu J G,Li J M,et al. Effects of straw return on soil physico-chemical properties of chernozem in Northeast China and Maize Yield Therein[J]. Acta Pedologica Sinica,2018,55(4):835-846.
    [11]矫丽娜,李志洪,殷程程,等.高量秸秆不同深度还田对黑土有机质组成和酶活性的影响[J].土壤学报,2015,52(3):665-672.Jiao L N,Li Z H,Yin C C,et al. Effect of incorporation of crop straw on composition of soil organic matter and enzyme activity in black soil relative to depth and rate of the incorporation[J]. Acta Pedologica Sinica,2015,52(3):665-672.
    [12]张莉,王婧,逄焕成,等.短期秸秆颗粒还田对小麦-玉米系统作物产量与土壤呼吸的影响[J].应用生态学报,2018,29(2):565-572.Zhang L, Wang J, Pang H C, et al. Effects of short-term granulated straw incorporation on grain yield and soil respiration in a winter wheat-summer maize cropping system[J]. Chinese Journal of Applied Ecology,2018,29(2):565-572.
    [13]王海飞,贾兴永,高兵,等.不同土地利用方式土壤温室气体排放对碳氮添加的响应[J].土壤学报,2013,50(6):1172-1182.Wang H F,Jia X Y,Gao B,et al. Response of greenhouse gas emission to application of carbon and nitrogen in soils different in land use[J]. Acta Pedologica Sinica,2013,50(6):1172-1182.
    [14]李昕竺,曾先富,沈鹰,等.秸秆栽培食用菌的现状与发展趋势[J].食药用菌,2015,23(4):222-224.
    [15]涂纯,王俊,官情,等.秸秆覆盖对旱作冬小麦农田土壤呼吸、作物产量及经济-环境效益的影响[J].中国生态农业学报,2013,21(8):931-937.Tu C,Wang J,Guan Q,et al. Effect of straw mulching on soil respiration,crop yield,economy-environment benefit in rainfed winter wheat fields[J]. Chinese Journal of Eco-Agriculture,2013,21(8):931-937.
    [16]陈述悦,李俊,陆佩玲,等.华北平原麦田土壤呼吸特征[J].应用生态学报,2004,15(9):1552-1560.Chen S Y,Li J,Lu P L,et al. Soil respiration characteristics in winter wheat field in North China Plain[J]. Chinese Journal of Applied Ecology,2004,15(9):1552-1560.
    [17] Tarafdar J C,Meena S C,Kathju S. Influence of straw size on activity and biomass of soil microorganisms during decomposition[J]. European Journal of Soil Biology,2001,37(3):157-160.
    [18] Santos V B,Araújo A S F,Leite L F C,et al. Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems[J]. Geoderma,2012,170:227-231.
    [19]邵泱峰,梅洪飞,潘忠潮,等.玉米秸秆还田对土壤有机碳、微生物功能多样性及甘蓝产量的影响[J].浙江农业学报,2016,28(5):838-842.Shao Y F,Mei H F,Pan Z C,et al. Effects of corn straw returning on soil organic carbon content,microbial functional diversity and cabbage yield[J]. Acta Agriculturae Zhejiangensis,2016,28(5):838-842.
    [20]王志明,朱培立,黄东迈,等.秸秆碳的田间原位分解和微生物量碳的周转特征[J].土壤学报,2003,40(3):446-453.Wang Z M, Zhu P L, Huang D M, et al. Straw carbon decomposition in situ in field and characteristics of soil biomass carbon turnover[J]. Acta Pedologica Sinica,2003,40(3):446-453.
    [21] Chaker R, Gargouri K, Ben Mbarek H, et al. Effect of biochemical fraction of exogenous organic matter on CO2emission from arid soil[J]. Greenhouse Gases-Science and Technology,2018,8(4):721-733.
    [22]陆娜,宋吉玲,闫静.竹-菇套种模式对毛竹林土壤的影响[J].浙江农业科学,2017,58(10):1717,1720.
    [23] Martínez-García L B,Korthals G,Brussaard L,et al. Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties[J]. Agriculture,Ecosystems&Environment,2018,263:7-17.
    [24]强学彩,袁红莉,高旺盛,等.秸秆还田量对土壤CO2释放和土壤微生物量的影响[J].应用生态学报,2004,15(3):469-472.Qiang X C,Yuan H L,Gao W S,et al. Effect of crop-residue incorporation on soil CO2emission and soil microbial biomass[J]. Chinese Journal of Applied Ecology,2004,15(3):469-472.
    [25]王朝辉,陈书涛,孙鹭,等.模拟降水量减少对大豆-冬小麦轮作农田土壤呼吸的影响[J].环境科学,2018,39(4):1943-1951.Wang Z H,Chen S T,Sun L,et al. Effects of simulated precipitation reduction on soil respiration in a soybean-winter wheat rotation cropland[J]. Environmental Science,2018,39(4):1943-1951.
    [26]刘玉槐,严员英,张艳杰,等.不同温度条件下亚热带森林土壤碳矿化对氮磷添加的响应[J].生态学报,2017,37(23):7994-8004.Liu Y H,Yan Y Y,Zhang Y J,et al. Effects of nitrogen and phosphorus addition under different temperatures on the soil carbon mineralization in a Cunninghamia lanceolata plantation in the subtropics[J]. Acta Ecologica Sinica,2017,37(23):7994-8004.
    [27]李晓莎,武宁,刘玲,等.不同秸秆还田和耕作方式对夏玉米农田土壤呼吸及微生物活性的影响[J].应用生态学报,2015,26(6):1765-1771.Li X S,Wu N,Liu L,et al. Effects of different straw recycling and tillage methods on soil respiration and microbial activity[J].Chinese Journal of Applied Ecology,2015,26(6):1765-1771.
    [28] Rittl T F,Butterbach-Bahl K,Basile C M,et al. Greenhouse gas emissions from soil amended with agricultural residue biochars:effects of feedstock type,production temperature and soil moisture[J]. Biomass and Bioenergy,2018,117:1-9.
    [29]赵亚丽,薛志伟,郭海斌,等.耕作方式与秸秆还田对土壤呼吸的影响及机理[J].农业工程学报,2014,30(19):155-165.Zhao Y L,Xue Z W,Guo H B,et al. Effects of tillage and crop residue management on soil respiration and its mechanism[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(19):155-165.
    [30]黄容,高明,万毅林,等.秸秆还田与化肥减量配施对稻-菜轮作下土壤养分及酶活性的影响[J].环境科学,2016,37(11):4446-4456.Huang R, Gao M, Wan Y L, et al. Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils[J].Environmental Science,2016,37(11):4446-4456.
    [31]田冬,高明,黄容,等.油菜/玉米轮作农田土壤呼吸和异养呼吸对秸秆与生物炭还田的响应[J].环境科学,2017,38(7):2988-2999.Tian D,Gao M,Huang R,et al. Response of soil respiration and heterotrophic respiration to returning of straw and biochar in rape-maize rotation systems[J]. Environmental Science,2017,38(7):2988-2999.
    [32]胡发龙,柴强,甘延太,等.少免耕及秸秆还田小麦间作玉米的碳排放与水分利用特征[J].中国农业科学,2016,49(1):120-131.Hu F L,Chai Q,Gan Y T,et al. Characteristics of soil carbon emission and water utilization in wheat/maize intercropping with minimal/zero tillage and straw retention[J]. Scientia Agricultura Sinica,2016,49(1):120-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700