用户名: 密码: 验证码:
饥饿胁迫对团头鲂鳃组织结构及Na~+/K~+-ATP酶、抗氧化酶的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of hunger stress on the gill microstructure and Na~+/K~+-ATPase, antioxidant enzyme of blunt snout bream Megalobrama amblycephala
  • 作者:王东东 ; 吴成宾 ; 郑国栋 ; 陈杰 ; 邹曙明
  • 英文作者:WANG Dongdong;WU Chengbin;ZHENG Guodong;CHEN Jie;ZOU Shuming;Genetics and Breeding Center for Blunt Snout Bream,Ministry of Agriculture and Rural Affairs,Shanghai Ocean University;Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University;National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University;
  • 关键词:团头鲂 ; 耐低氧 ; 饥饿 ; ; 组织结构 ; 酶活性
  • 英文关键词:Megalobrama amblycephala;;hypoxia-tolerant;;hunger;;gill;;tissue structure;;enzyme activity
  • 中文刊名:上海海洋大学学报
  • 英文刊名:Journal of Shanghai Ocean University
  • 机构:上海海洋大学农业农村部团头鲂遗传育种中心;上海海洋大学农业农村部淡水水产种质资源重点实验室;上海海洋大学水产科学国家级实验教学示范中心;
  • 出版日期:2019-06-13 14:51
  • 出版单位:上海海洋大学学报
  • 年:2019
  • 期:05
  • 基金:国家科技支撑计划(2012BAD26B00);; 国家自然科学基金(31572220);; 上海高校知识服务平台(ZF1206);; 上海地方高校能力建设项目(18050501900)
  • 语种:中文;
  • 页:126-132
  • 页数:7
  • CN:31-2024/S
  • ISSN:1674-5566
  • 分类号:S917.4
摘要
为了研究不同饥饿时间(0、5、10、15、20、25和30 d)对团头鲂耐低氧F_4幼鱼鳃组织的影响,在温度(25±1.0)℃、溶解氧(7.0±0.5)mg/L条件下,以体质量为(30.5±2.6)g的团头鲂耐低氧F_4幼鱼为研究对象,利用组织切片、扫描电镜技术和分光光度计法研究饥饿胁迫对其鳃组织结构、Na~+/K~+-ATP酶和抗氧化酶的影响。酶活性结果显示:随着饥饿时间的延长,团头鲂耐低氧F_4鳃组织的Na~+/K~+-ATP、SOD和CAT酶活性逐渐降低(P<0.05),恢复投喂7 d后基本恢复到正常水平。形态学观察显示:随着饥饿时间延长,团头鲂耐低氧F_4鳃小片平均伸出长度增加(P<0.05),层间基质的厚度减小(P<0.05),这种变化导致鳃小片呼吸面积增加和层间基质体积减小(P<0.05)。恢复投喂7 d后,基本恢复到正常投喂时的形态。由此可见,在饥饿胁迫情况下,团头鲂耐低氧F_4幼鱼抗氧化系统受到严重干扰,鱼体主动调整鳃小片呼吸面积适应饥饿胁迫。
        In order to research the effects of different hunger time(duration 0,5,10,15,20,25 and 30 d)on gills of hypoxia-tolerant F_4 generation of blunt snout bream,the gill microstructure,Na~+/K~+-ATPase and antioxidant enzyme of hypoxia-tolerant F_4 generation of blunt snout bream were studied by light,scanning electron microscopy and absorptiometry at(25±1.0)℃ and dissolved oxygen(7.0±0.5)mg/L.The results showed that with the increase of the hunger time,the activity of Na~+/K~+-ATP, SOD and CAT in the hypoxia-tolerant F_4 generation of blunt snout bream was gradually decreased and then restored to normal level after 7 days of re-feeding.Gill microstructure observation showed that the protruding lamella lengths were enlarged,which caused the expansion of the lamella surface area,and the height and volume of the ILCM decreased.After 7 days of re-feeding recovery,the changes in gill morphology were reversed.These results indicated that the hunger stress could seriously disturb the antioxidant system,but fish showed the capacity to alter respiratory surface area in response to hunger.
引文
[1] PéREZ-JIMéNEZ A,GUEDES M J,MORALES A E,et al.Metabolic responses to short starvation and refeeding in Dicentrarchus labrax.Effect of dietary composition[J].Aquaculture,2007,265(1/4):325-335.
    [2] MCCUE M D.Starvation physiology:reviewing the different strategies animals use to survive a common challenge[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2010,156(1):1-18.
    [3] STEFANSSON S O,IMSLAND A K,HANDELAND S O.Food-deprivation,compensatory growth and hydro-mineral balance in Atlantic salmon (Salmo salar) post-smolts in sea water[J].Aquaculture,2009,290(3/4):243-249.
    [4] WOOD E M,YASUTAKE W T.Histopathology of fish:V.Gill disease[J].The Progressive Fish-Culturist,1957,19(1):7-13.
    [5] KüLTZ D,JüRSS K.Acclimation of chloride cells and Na/K-ATPase to energy deficiency in tilapia (Oreochromis mossambicus)[J].Zoologische Jahrbucher Abteilung fur Allgemeine Zoologie und Physiologie der Tiere,1991,95:39-50.
    [6] 刘凌云,郑光美.普通动物学[M].4版.北京:高等教育出版社,2009:343.LIU L Y,ZHENG G M.General zoology[M].4th ed.Beijing:Higher Education Press,2009:343.
    [7] PERRY S F,WALSH P J.Metabolism of isolated fish gill cells:contribution of epithelial chloride cells[J].Journal of Experimental Biology,1989,144:507-520.
    [8] OLSON K R.Gill circulation:regulation of perfusion distri-bution and metabolism of regulatory molecules[J].Journal of Experimental Zoology,2002,293(3):320-335.
    [9] FERGUSON W H.Systemic pathology of fish:a text and atlas of normal tissues in teleosts and their responses in disease[M].2nd ed.London:Scotian Press,2006.
    [10] LI S F,CAI W Q,ZHOU B Y.Variation in morphology and biochemical genetic markers among populations of blunt snout bream (Megalobrama amblycephala)[J].Aquaculture,1993,111(1/4):117-127.
    [11] 农业农村部渔业渔政管理局.中国渔业统计年鉴[M].北京:中国农业出版社,2018.Fisheries and Fisheries Administration Bureau of the Ministry of Agriculture and Rural Areas.China fishery statistical year book[M].Beijing:China Agriculture Press,2018.
    [12] 苏艳莉,戈贤平,孙盛明,等.高温季节饥饿后补偿摄食对团头鲂幼鱼生长性能、血清生化指标、肠道消化酶活性及肝脏抗氧化酶活性的影响[J].动物营养学报,2017,29(11):4198-4206.SU Y L,GE X P,SUN S M,et al.Effects of compensatory feeding after starvation on growth performance,serum biochemical indexes,intestinal digestive enzyme activities and hepatic antioxidant enzyme activities of juvenile blunt snout bream (Megalobrama amblycephal) in summer[J].Chinese Journal of Animal Nutrition,2017,29(11):4198-4206.
    [13] REN M C,HABTE-TSION H M,LIU B,et al.Food depri-vation of blunt snout bream,Megalobrama amblycephala fingerlings and the subsequent effect of feeding with different dietary starch levels on glucose metabolism[J].The Israeli journal of aquaculture-Bamidgeh,2015,67:1-9.
    [14] LI X F,TIAN H Y,ZHANG D D,et al.Feeding frequency affects stress,innate immunity and disease resistance of juvenile blunt snout bream Megalobrama amblycephala[J].Fish & Shellfish Immunology,2014,38(1):80-87.
    [15] SOLLID J,DE ANGELIS P,GUNDERSEN K,et al.Hy-poxia induces adaptive and reversible gross morphological changes in crucian carp gills[J].Journal of Experimental Biology,2003,206(20):3667-3673.
    [16] SOLIMAN A K,WILSON R P.Water-soluble vitamin requi-rements of tilapia.1 Pantothenic acid requirement of blue tilapia,Oreochromis aureus[J].Aquaculture,1992,104(1/2):121-126.
    [17] OLSVIK P A,HEMRE G I,WAAGB? R.Exploring early micronutrient deficiencies in rainbow trout (Oncorhynchus mykiss) by next-generation sequencing technology-from black box to functional genomics[J].PLoS One,2013,8(7):e69461.
    [18] TAVEEKIJAKARN P,MIYAZAKI T,MATSUMOTO M,et al.Studies on vitamin K deficiency in amago salmon,Oncorhynchus rhodurus (Jordan & McGregor)[J].Journal of Fish Diseases,1996,19(3):209-214.
    [19] ADHAM K G,HASHEM H O,ABU-SHABANA M B,et al.Vitamin C deficiency in the catfish Clarias gariepinus[J].Aquaculture Nutrition,2000,6(2):129-139.
    [20] WU C B,LIU Z Y,LI F G,et al.Gill remodeling in response to hypoxia and temperature occurs in the hypoxia sensitive blunt snout bream (Megalobrama amblycephala)[J].Aquaculture,2017,479:479-486.
    [21] K?UCI■ R,et al.Erythrocyte antioxidant parameters in workers occupationally exposed to low levels of ionizing radiation[J].Annals of Agricultural and Environmental Medicine,2008,15(1):9-12.
    [22] 吴志昊,尤锋,王英芳,等.低氧和高氧对大菱鲆幼鱼红细胞核异常及氧化抗氧化平衡的影响[J].上海海洋大学学报,2011,20(6):808-813.WU Z H,YOU F,WNAG Y F,et al.The effects of hypoxia and hyperoxia on nucleus anomaly,SOD,CAT activities and MDA content in juvenile turbot Scophthalmus maximus[J].Journal of Shanghai Ocean University,2011,20(6):808-813.
    [23] WELKER A F,CAMPOS E G,CARDOSO L A,et al.Role of catalase on the hypoxia/reoxygenation stress in the hypoxia-tolerant Nile tilapia[J].American Journal of Physiology Regulatory Integrative and Comparative Physiology,2012,302(9):R1111-R1118.
    [24] 邱德全,周鲜娇,邱明生.氨氮胁迫下凡纳滨对虾抗病力和副溶血弧菌噬菌体防病效果研究[J].水生生物学报,2008,32(4):455-461.QIU D Q,ZHOU X J,QIU M S.Study on anti-disease ability of Litopenaeus vannamei and the biological control of Vibrio parahaemolyticus bacteriophage under stresses of ammonia nitrogen[J].Acta Hydrobiologica Sinica,2008,32(4):455-461.
    [25] ROMANO N,ZENG C S.Ontogenetic changes in tolerance to acute ammonia exposure and associated gill histological alterations during early juvenile development of the blue swimmer crab,Portunus pelagicus[J].Aquaculture,2007,266(1/4):246-254.
    [26] 黄鹤忠,李义,宋学宏,等.氨氮胁迫对中华绒螯蟹(Eriocheir sinensis)免疫功能的影响[J].海洋与湖沼,2006,37(3):198-205.HUANG H Z,LI Y,SONG X H,et al.NH+4-N stress on Mmune function of Eriocheir sinensis[J].Oceanologia et Limnologia Sinica,2006,37(3):198-205.
    [27] 洪美玲.水中亚硝酸盐和氨氮对中华绒螯蟹幼体的毒性效应及维生素E的营养调节[D].上海:华东师范大学,2007.HONG M L.Toxicity of ambient nitrite and ammonia on Eriocheir sinensis juveniles and nutritional modulation of dietary VE[D].Shanghai:East China Normal University,2007.
    [28] BAYIR A,SIRKECIOGLU A N,BAYIR M,et al.Metabolic responses to prolonged starvation,food restriction,and refeeding in the brown trout,Salmo trutta:oxidative stress and antioxidant defenses[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2011,159(4):191-196.
    [29] ROSSI A,CAZENAVE J,BACCHETTA C,et al.Physio-logical and metabolic adjustments of Hoplosternum littorale (Teleostei,Callichthyidae) during starvation[J].Ecological Indicators,2015,56:161-170.
    [30] PASCUAL P,PEDRAJAS J R,TORIBIO F,et al.Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata)[J].Chemico-Biological Interactions,2003,145(2):191-199.
    [31] 徐力文,刘广锋,王瑞旋,等.急性盐度胁迫对军曹鱼稚鱼渗透压调节的影响[J].应用生态学报,2007,18(7):1596-1600.XU L W,LIU G F,WANG R X,et al.Effects of abrupt salinity stress on osmoregulation of juvenile Rachycentron canadum[J].Chinese Journal of Applied Ecology,2007,18(7):1596-1600.
    [32] JüRSS K,BITTORF T,V?KLER T,et al.Effects of tem-perature,food deprivation and salinity on growth,RNA/DNA ratio and certain enzyme activities in rainbow trout (Salmo gairdneri Richardson)[J].Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1987,87(2):241-253.
    [33] WATENPAUGH D E,BEITINGER T L.Nitrite exposure and respiration rates in fathead minnows[J].Bulletin of Environmental Contamination and Toxicology,1985,35(1):106-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700