用户名: 密码: 验证码:
湔江冲洪积扇地下水化学特征及控制因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Groundwater Chemical Characteristics and Analysis of Their Controlling Factors in an Alluvial Fan of Jianjiang River
  • 作者:唐金平 ; 张强 ; 胡漾 ; 张宇 ; 聂保伟
  • 英文作者:TANG Jin-ping;ZHANG Qiang;HU Yang;ZHANG Yu;NIE Bao-wei;College of Environment and Civil Engineering,Chengdu University of Technology;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology;College of Earth Sciences,Chengdu University of Technology;Shanxi Huajin Geotechnical Investigation Co.,Ltd.;
  • 关键词:湔江 ; 冲洪积扇 ; 水化学 ; 变异系数 ; 空间分析
  • 英文关键词:Jianjiang River;;alluvial fan;;hydrogeochemistry;;coefficient of variation;;spatial analysis
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:成都理工大学环境与土木工程学院;成都理工大学地质灾害防治与地质环境保护国家重点实验室;成都理工大学地球科学学院;山西华晋岩土工程勘察有限公司;
  • 出版日期:2019-02-25 17:04
  • 出版单位:环境科学
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金项目(41472275)
  • 语种:中文;
  • 页:131-140
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:P641.12
摘要
湔江冲洪积扇是成都平原龙门山前冲洪积扇群之一,为研究其地下水化学特征及控制因素,2018年5月现场采集30组地下水水样.利用描述性统计分析、Piper图解、Arc GIS空间分析和离子比例系数等方法,分析研究区地下水化学类型与离子空间分布特征,讨论控制地下水化学演化过程的主要因素与离子的主要来源.冲洪积扇东北部区域多为弱酸性水,占13. 33%,其余呈弱碱性;地下水化学类型有HCO_3·SO_4-Ca、HCO_3-Ca、HCO_3·SO_4-Ca·Mg与HCO_3·SO_4-Ca·Na,均为淡水;主要离子空间变异系数介于0. 22~0. 91,变异性均为中等变异;地下水化学演化过程主要受溶滤作用的控制,人类活动亦有一定的影响,蒸发浓缩、大气降雨以及阳离子交替吸附作用影响效果不甚明显.
        The Jianjiang alluvial fan is one of the frontal alluvial fan clusters in the Longmen Mountains of the Chengdu Plain. In order to study the groundwater chemical characteristics and controlling factors,we collected 30 groups of groundwater samples on site in May2018. Descriptive statistical analysis,Piper diagrams,Arc GIS spatial analysis,ion-scale coefficients,and other methods were used to analyze the chemical types and ion spatial distribution characteristics. The main factors controlling the chemical evolution processes of the groundwater and the main sources of ions are discussed. The northeast area of the alluvial fan contains mostly weakly acidic waters,accounting for 13. 33%,the rest being weakly alkaline. Groundwater chemical types included HCO_3·SO_4-Ca,HCO_3-Ca,HCO_3·SO_4-Ca·Mg,and HCO_3·SO_4-Ca·Na,and all groundwater was freshwater. The main ion spatial variation coefficient were between 0. 22 and0. 91,and the variability was moderate. The chemical evolution processes of groundwater was mainly controlled by leaching,and human activities have certain influence. The effect of evaporation and concentration,and atmospheric rainfall,and alternating cation adsorption were not obvious.
引文
[1]刘江涛,蔡五田,曹月婷,等.沁河冲洪积扇地下水水化学特征及成因分析[J].环境科学,2018,39(12):5428-5439.Liu J T,Cai W T,Cao Y T,et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River[J]. Environmental Science,2018,39(12):5428-5439.
    [2]崔健,都基众,马宏伟,等.基于因子分析的浑河冲洪积扇地浅层地下水水质影响因素辨析[J].中国农村水利水电,2011,(7):45-48,51.Cui J,Du J Z,Ma H W,et al. Distinguishing significant factors for shallow groundwater quality in the Hunhe River Alluvial Fan based on factor analysis[J]. China Rural Water and Hydropower,2011,(7):45-48,51.
    [3]张千千,王慧玮,翟天伦,等.滹沱河冲洪积扇地下水硝酸盐的污染特征及污染源解析[J].水文地质工程地质,2017,44(6):110-117.Zhang Q Q,Wang H W,Zhai T L,et al. Characteristics and source apportionment of groundwater nitrate contamination in the Hutuo River alluvial-pluvial fan regions[J]. Hydrogeology and Engineering Geology,2017,44(6):110-117.
    [4] Xing L N,Guo H M,Zhan Y H. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences,2013,70-71:250-264.
    [5] Adams S, Titus R, Pietersen K, et al. Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo,South Africa[J]. Journal of Hydrology,2001,241(1-2):91-103.
    [6] Jalali M. Chemical characteristics of groundwater in parts of mountainous region,Alvand,Hamadan,Iran[J]. Environmental Geology,2006,51(3):433-446.
    [7] Love D,Hallbauer D,Amos A,et al. Factor analysis as a tool in groundwater quality management:two southern African case studies[J]. Physics and Chemistry of the Earth,Parts A/B/C,2004,29(15-18):1135-1143.
    [8] Chen K P,Jiao J J,Huang J M,et al. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen,China[J]. Environmental Pollution,2007,147(3):771-780.
    [9] Pu J B,Yuan D X,Zhang C,et al. Hydrogeochemistry and possible sulfate sources in karst groundwater in Chongqing,China[J]. Environmental Earth Sciences,2013,68(1):159-168.
    [10] Machiwal D, Jha M K. Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques[J]. Journal of Hydrology:Regional Studies,2015,4:80-110.
    [11]马志刚.成都平原卵砾石层地震响应研究[D].成都:成都理工大学,2009.Ma Z G. The study on the seismic response of the gravel formation on Chengdu plain[D]. Chengdu:Chengdu University of Technology,2009.
    [12] Piper A M. A graphic procedure in the geochemical interpretation of water‐analyses[J]. EOS, Transactions, American Geophysical Union,1944,25(6):914-928.
    [13] Zhou F Y,Sun S Q,Molnar J J. Evaluation of the development of circular agriculture in Sichuan Province based on the coefficient of variation[J]. Asian Agricultural Research,2015,7(3):56-60.
    [14] Kitanidis P K,Shen K F. Geostatistical interpolation of chemical concentration[J]. Advances in Water Resources,1996,19(6):369-378.
    [15] Gibbs R J. Mechanisms controlling world water chemistry[J].Science,1970,170(3962):1088-1090.
    [16] Gibbs R J. Water chemistry of the amazon river[J]. Geochimica et Cosmochimica Acta,1972,36(9):1061-1066.
    [17] Gaillardet J, DupréB, Louvat P, et al. Global silicate weathering and CO2consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology,1999,159(1-4):3-30.
    [18] Xiao J,Jin Z D,Wang J,et al. Hydrochemical characteristics,controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau[J]. Quaternary International,2015,380-381:237-246.
    [19] García G M,del V. Hidalgo M,Blesa M A. Geochemistry of groundwater in the alluvial plain of Tucumán province,Argentina[J]. Hydrogeology Journal,2001,9(6):597-610.
    [20] Richards L. Diagnosis and improvement of saline and alkali soils[J]. Soil Science,1954,78(2):154.
    [21] Sanusi A,Wortham H,Millet M,et al. Chemical composition of rainwater in Eastern France[J]. Atmospheric Environment,1996,30(1):59-71.
    [22] Karim A,Veizer J. Weathering processes in the Indus River Basin:implications from riverine carbon,sulfur,oxygen,and strontium isotopes[J]. Chemical Geology,2000,170(1-4):153-177.
    [23]刘丛强,蒋颖魁,陶发祥,等.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J].地球化学,2008,37(4):404-414.Liu C Q,Jiang Y K,Tao F X,et al. Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica,2008,37(4):404-414.
    [24] Liu C Q,Li S L,Lang Y C,et al. Usingδ15N-andδ18O-values to identify nitrate sources in karst ground water, Guiyang,Southwest China[J]. Environmental Science&Technology,2006,40(22):6928-6933.
    [25] Magaritz M,Nadler A,Koyumdjisky H,et al. The use of Na/Cl ratios to trace solute sources in a semiarid zone[J]. Water Resources Research,1981,17(3):602-608.
    [26] Sami K. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin,Eastern Cape,South Africa[J].Journal of Hydrology,1992,139(1-4):27-48.
    [27] Dixon W,Chiswell B. The use of hydrochemical sections to identify recharge areas and saline intrusions in alluvial aquifers,southeast Queensland, Australia[J]. Journal of Hydrology,1992,135(1-4):259-274.
    [28] Meybeck M. Global occurrence of major elements in rivers[J].Treatise on Geochemistry,2003,5:207-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700